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SUMMARY
Low birth weight (LBW) is associated to poor health outcomes. Its causes includematernal lifestyle, obstetric
factors, and fetal (epi)genetic abnormalities. This study aims to increase the knowledge regarding the genetic
background of LBWby analyzing its association with a set of 110maternal variants related to gestational dia-
betesmellitus, in the setting of a nutritional intervention withMediterranean diet. The analysis follows amulti-
factorial approach, including maternal genetic information of 1,642 pregnant women, along with their anthro-
pometric and metabolic characteristics. Binary logistic regression models provided 33 discovery variants
associated with LBW that underwent a functional enrichment process to obtain a protein/gene interaction
network and 126 enriched terms. Overall, our analysis proves that genetic variants form proximity clusters,
grouped into subsets statistically associated with underlying biological processes or other maternal charac-
teristics, which, on their part, allow early prevention of the eventual risk of LBW.
INTRODUCTION

Birth weight of a newborn is an important biomarker used as an

indicator of fetal health and nutrition. Its measurement is recom-

mended immediately after delivery, before the neonatal early-

days’ weight loss occurs. An excessively low or high birth weight

is statistically associated with adverse health outcomes for the

newborn. Specifically, babies born with low birth weight (LBW)

have a higher risk of stunting, lower IQ, and even death during

childhood, while it can cause overweight and obesity, diabetes,

and heart disease during adulthood.1 The World Health Organi-

zation (WHO) includes LBW as a primary outcome indicator in

the core set of indicators for the Global Nutrition Monitoring

Framework and includes it in the WHO Global reference list of

100 core health indicators. In this regard, the WHO has estab-

lished a threshold of 2500 g (5.5 lbs) to define a newborn as

LBW worldwide.1 Statistics published by the United Nations

Children’s Fund (UNICEF) and WHO, corresponding to the

period 2000–2015, show that the prevalence of LBW ranges be-

tween 7.2% and 17.3% in the different United Nations regions

and sub-regions, reaching 14.7% worldwide.1 These data are

approximately maintained in the estimates that appear on the
iScience 27, 111376, Decem
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UNICEF-WHO website updated as of July 2023.2 Reducing the

prevalence of LBW by at least 30% between 2012 and 2025 is

a target endorsed by the World Health Assembly that can

contribute to achieving Sustainable Development Goal 2 (Zero

Hunger) by 2030.3

The WHO’s definition of LBW is objective and easy to calcu-

late, although it does not consider gestational age, sex assigned

at birth, or factors such as intrauterine growth retardation (IUGR),

which may influence fetal growth. On another part, maternal in-

fluences on fetal growth are determined by nutrient intake, health

conditions, medication, habits, and genetic factors. This means

that biological and pathological conditions can interfere with

growth potential and reduce size at birth.

In the clinical management of abnormal fetal growth, the

expression small-for-gestational-age (SGA) is used to designate

newborns with a birth weight and/or length below the normal

range for gestational age. The recent recommendations of the In-

ternational Consensus Guideline on Small for Gestational Age

define SGA as being born with birth weight and/or length below

�2 SDS (Standard Deviation Score) for gestational age accord-

ing to national reference standards.4 The SGA definition is com-

plex because it requires accurate knowledge of gestational age,
ber 20, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
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precise anthropometric measurements at birth, and appropriate

reference data for birth weight and birth length.4–6

Causes of LBW aremultifactorial and includematernal lifestyle

and obstetric factors, placental dysfunction, and numerous fetal

(epi)genetic abnormalities. Fetal growth and weight gain are

complex balanced process in which demands of the fetus and

maternal placenta interact, ideally without harm to the mother’s

health. One of the key regulators of fetal growth is insulin. As

such, in womenwith diabetes, the fetus gains weight in response

to insulin hypersecretion secondary to maternal hyperglycemia,

and not so much due to an increase in the transfer of nutrients

from the placenta per se.7 This explains why both type 2 diabetes

(T2D) and gestational diabetes mellitus (GDM) have been

previously associated with differences in birth weight.8–13 In

this regard, GDM, defined as diabetes newly diagnosed in the

second or third trimester of pregnancy that was not clearly overt

diabetes prior to gestation,14,15 is a frequent gestational meta-

bolic complication that has become a major public health issue.

Its prevalence has significantly augmented in parallel with

increasing rates of obesity and older age at pregnancy. GDM

is associated with adverse maternal and neonatal outcomes,

including birth weight deviations,14,15 and has a relevant genetic

basis that has been revealed in various investigations.16–19

The association between birth weight and the genomic profile

of both the mother and her offspring has been evaluated in

several recent publications. These studies focus on analyzing

the influence of genetic variants in birth weight, considering their

capacity to predict specific adult disorders, such as cardiometa-

bolic risk, and T2D.20–23 It is interesting to note that some results

show that thematernal genetic profile provides relevant informa-

tion, regardless of that obtained by studying the offspring’s own

genetic profile.20,23,24 Similarly, there are interesting reports on

the clinical treatment of growth retardation, studying the associ-

ation of genetic variants with newborn biomarkers, such as birth

weight, height and head circumference, which characterize

certain monogenic disorders related to short stature.4,25

Beyond the clinical treatment of fetal growth restriction and

birth weight, this study aims to investigate the early prevention

of LBW newborns, based on their mothers’ genetic profile, in a

multinational and multiethnic sample. Given that The Monarch

Initiative26 and The Human Phenotype Ontology27 use the

code HP:0001518 to designate the phenotypic feature that in-

cludes as synonyms the terms LBW and SGA, in this study, we

will use the experimental variable directly related to the baby’s

weight phenotype, since it provides adequate information for

the purpose of this work.

This study forms part of a broader project initiated in 2015 in

the Endocrinology and Nutrition Department of the San Carlos

Clinical Hospital in Madrid (Spain), which is a public university

hospital and healthcare institution that is responsible for moni-

toring pregnancy, childbirth, and postnatal care of women

belonging to a group of nearly half a million people, whose socio-

demographic characteristics may be considered as representa-

tive of the population currently living in the country. The general

objective of the project is the prevention and control of

GDM, with special emphasis in a context of a nutritional interven-

tion (NI) with a Mediterranean diet (MedDiet). It has been devel-

oped in various phases, including a randomized controlled
2 iScience 27, 111376, December 20, 2024
trial (RCT), registered December 4, 2013, at SRCTN84389045

(DOI 10.1186/ISRCTN84389045), and a real-world study, regis-

tered October 11th, 2016, at ISRCTN13389832 (DOI 10.1186/

ISRCTN13389832), both with approval by the Clinical Trials

Committee of the Hospital Clı́nico San Carlos (July 17, 2013,

CI13/296-E and October 1st, 2016, CI16/442-E, respectively),

and compliance with the Declaration of Helsinki. Consequently,

we have a real data warehouse with data collected in everyday

clinical practice that we call the San Carlos Cohort. Research

conclusions derived from these data warehouse have been pre-

viously published in several papers.28–30

This study aims to contribute to increasing the knowledge

regarding the genetic background of LBW by analyzing its as-

sociation with a set of maternal genetic variants related to

GDM. Our approach to the genetic factors that influence

newborn LBW will consist on discovering and evaluating the

eventual association between this phenotype and several

maternal single nucleotide polymorphisms (SNPs), to promptly

identify maternal genetic profiles that may influence the trait

and, consequently, enhance preventive recommendations to

guide future mothers.

As a starting point, 110 SNPs were selected for their relation-

ship with T2D and/or GDM, according to results of large meta-

analysis of genome-wide association studies (GWASs) per-

formed in European and other populations, with the presumption

that their effects can be extrapolated and generalized, and that

large sample sizes allow solid estimations of the true effect.

Data regarding clinical, demographic, and anthropometric

characteristics was collected from medical records and follow-

up visits. Specifically, for the objectives of this study, we postu-

lated that significance and effect size of association test be-

tween variants and LBW phenotype can be modified by the

following factors, biometric, and metabolic characteristics of

pregnant woman: ethnicity, present status of GDM, NI group,

age, height, weight, body mass index, glucose, and insulin at

the time of the oral glucose tolerance test (OGTT).

The main objectives of this work will be to analyze several as-

sociation statistical hypotheses that translate the different

models of genetic inheritance and include variables that are

postulated as possible modifiers of the sought association.

RESULTS

Patient characteristics and LBW
The statistical analysis is based on a cohort of 1,363 women and

86 SNPs who passed all the stages and controls and gave birth

to a newborn, of which 72 (5.2%) were LBW (Figure 1). Table 1

includes demographic, anthropometric and clinical characteris-

tics of the sample of pregnant women. It shows significant differ-

ences in the distribution of the number of newborns regarding

LBW status when adjusted by ETHN (p = 0.04), GDM (p =

0.01), and NI (p = 0.04) variables. Likewise, among the maternal

anthropometric and metabolic characteristics considered, only

WEIGHT (p = 0.01) significantly influenced LBW.

Logistic regression
Association between SNPs and LBW phenotype was evaluated

using binary logistic regression models. The base category was



Figure 1. Flow diagram of sample setup
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the sample minor allele (A1), meaning that it can be a risk allele

when OR >1 or a protective allele when OR <1.

Specifically, we used the following genetic inheritance models

and corresponding tests: additive, test ADD; dominant, test

DOM; recessive, test REC; hetonly, test HET. Several logistic

regression model variations were contemplated.

Our initial approach is to pose the most general situation, that

is, to analyze the direct relationship between each SNP and

LBW. The results of this analysis are valid in themselves at the

population level and are of interest to increase general knowl-

edge about the genetic influence on LBW.

The next step is to analyze whether the SNPs-LBW relation-

ships can be modulated by the influence of certain maternal

characteristics such as age, height, weight, BMI, glucose and in-

sulin levels of the pregnant woman, data that are systematically

recorded in the pregnancy follow-up. Therefore, we consider the

SNPs-LBW association models adjusted for each of following

numerical variables: maternal age (AGE), height (HEIGHT),

weight (WEIGHT), body mass index (BMI), glucose (GLUC),
iSc
and insulin (INSU) at the time of the

OGTT. Furthermore, in genomewide asso-

ciation (GWA) it is common to consider the

subject’s ethnicity as a possible source of

variation, which leads us to consider the

SNPs-LBW association models adjusted

by ethnicity (ETHN). As indicated previ-

ously, the study is part of a more general

project, aimed at the control of gestational

diabetes (GDM) in a context of NI based on

DietMed. This leads us to consider the

models adjusted for GDM and NI group.

To consider the eventual unidentified

underlying stratification in the data ware-

house, according to literature practical

recommendations,31 we also consider

models that include principal components

(PC) as adjust variables. Due to low level of

incidence of phenotype, which means a

small number of cases in the sample,

we included only the first principal compo-

nent PC1, remaining in sample a case

counts greater than 103 predictor count

for phenotype. Consequently, we reiter-

ated the previous models and tests, add-

ing in each of them the first PC as an addi-

tional variable. Finally, we also calculated

models and tests that included the interac-

tion between SNP and the adjust variables,

so that for each variable indicated above,

we repeated models and tests including

additionally the interaction term.

In summary, for each SNP we proposed

29 logistic regression models, and we

calculated four tests of association with
LBW per model, according to genetic inheritance (ADD,

DOM, REC, and HET). This means that we have formulated a

total of 116 null hypotheses of no association between LBW

and each SNP. Table 2 outlines the variables included in

each model.

To decide if each of the null hypotheses was truly null or,

alternatively, could pinpoint an association signal, that is, a dis-

covery, we used the following approach. For each model, we

obtained the corresponding tests p values using PLINK soft-

ware. As false discovery rate (FDR) control, we used the qvalue

package (version 2.34.0) of R software (version 4.3.3), with

smoother method option and adjustment of lambda parameter

in the interval 0.01–0.95 with increment of 0.01.32–34 This soft-

ware estimates the overall proportion pi0 of true null hypothe-

ses in each model and computes the q-values, i.e., minimum

FDR incurred when calling discovery a test that has a p value

equal to or less than the p value associated with the q-value;

also computes the lfdr-values (local false discovery rate), i.e.,

the empirical Bayesian posterior probability that the null
ience 27, 111376, December 20, 2024 3



Table 1. Main characteristics of pregnant women included in the study

Low birth weight

Controls Cases p value Test

Ethnicity Caucasian 849a 57b

93.7% 6.3%

Hispanic 406a 15a

96.4% 3.6%

Other 36a 01

100.0% 0.0% 0.04 Fisher-Freeman-Halton Exact Test

Gestational diabetes mellitus NO 1080a 51b

95.5% 4.5%

YES 211a 21b

90.9% 9.1% 0.01 Fisher-Freeman-Halton Exact Test

Nutritional intervention Control group 349a 25a

93.3% 6.7%

Intervention group 316a 9b

97.2% 2.8%

Real world group 626a 38a

94.3% 5.7% 0.04 Fisher-Freeman-Halton Exact Test

n-count Controls Cases p value Test

Maternal Age 1,363 33.00 [30.00–36.00] years 34.50 [30.00–37.00] years 0.20 Mann-Whitney U

Height 1,361 1.63 [1.58–1.67] m 1.62 [1.57–1.65] m 0.10 Mann-Whitney U

Weight 1,353 58.50 [53.50–65.00] kg 56.25 [52.00–61.50] kg 0.01 Mann-Whitney U

Body mass index 1,351 22.92 [21.08–25.09] kg/m2 22.47 [20.72–24.29] kg/m2 0.18 Mann-Whitney U

Glucose 1,361 80.00 [76.00–85.00] mg/dL 81.00 [77.00–87.00] mg/dL 0.25 Mann-Whitney U

Insulin 1,347 9.10 [5.00–21.80] U/mL 8.70 [4.85–17.25] U/mL 0.87 Mann-Whitney U

Categorical data are presented as absolute and/or relative frequencies.

Numerical data are presented as median and interquartile range [Q1–Q3].

Values in the same row and sub table not sharing the same subscript are significantly different at p < 0.05 in the two-sided test of equality for column

proportions.

Tests assume equal variances.

Tests are adjusted for all pairwise comparisons within a row of each innermost sub table using the Benjamini-Hochberg correction.
1This category is not used in comparisons because its column proportion is equal to zero.

iScience
Article

ll
OPEN ACCESS
hypothesis is true, conditional on the observed p value. We rate

a test as discovery when p value %0.05 or q-value %0.05 or

lfdr % 0.1, so that each test of each model received a rating

of 0, 1, 2, or 3 as an intensity discovery score. For each variant,

we obtained the variant score in a particular logistic regression

model by adding the scores of the four genetic tests in the

model, so its value is between 0 and 12. In addition, the total

score of a variant is obtained as the sum of the scores in all lo-

gistic regression models, so its value is between 0 and 348. In

the comparative analyses, score values have been rescaled to

the corresponding percentual scale.

Table S1 shows the numerical characteristics of variants.

Table S2 shows the results of each of the four genetic inheritance

tests calculated for eachof the 29models of binary logistic regres-

sion proposed, Tables S2A to S2.AC, respectively. Table S3 is a

reduced version of Table S2, including only the variants that

show a discovery signal in any test of the corresponding model.

Table S4 presents scores of variants that have obtained a discov-

ery signal at least in one of the proposed tests. Table S5 shows
4 iScience 27, 111376, December 20, 2024
the scores of discoveries by logistic regression models, genetic

models, and the total score.

Table 3 includes only the SNPs with strictly positive total score,

along with the corresponding logistic regression results, in the

following two relevant cases: (1) model and test for which the

SNP reaches the lowest OR among the tests in which it has

been classified as discovery, that is, the lower-risk/higher-protec-

tion situation; (2) model and test for which the SNP reaches the

highestOR among the tests in which it has been classified as dis-

covery, that is, the highest-risk/lowest-protection situation.

Figure 2 shows the model scores heatmap of the LBW-SNP

association as well as the proximity dendrograms between var-

iants and between models, derived from variants with positive

total score. We use themetric that results from rescaling the total

score to a percentage scale from 0 to 100.

Bioinformatics analysis and gene enrichment
We reduced the set of SNPs to those for which any of the pro-

posed association tests received a discovery rating strictly
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greater than zero. With the corresponding set of proteins/genes

as initial data, we performed a functional enrichment process us-

ing String 12 software https://string-db.org.35 We selected the

following options: full string network, edges mean evidence, all

active interaction sources, and minimum required interaction

score equal to 0.15. The results included the interaction network

between proteins/genes resulting from the LBW discoveries, the

enrichment terms of these proteins/genes, and information

related to the annotations available in String 12 on proteins/

genes.

Figure 3 shows the String 12 interaction network between pro-

teins/genes resulting from discoveries mapping. The network

permanent link is https://version-12-0.string-db.org/cgi/network?

networkId=b0y0rXL0NYIR.

Network statistics are: 31 nodes, 167 edges, average node de-

gree 10.8, expected number of edges: 40, protein-protein-inter-

action enrichment p value <1.0E-16.

Table S6 summarizes the gene enrichment process executed

by String 12. Specifically, Table S6A shows the description of the

genes/proteins, Table S6B includes various interaction scores

between genes/proteins, and Table S6C shows the list of 126 en-

riched terms in the following 5 categories: GOProcess, 19 terms;

Search Tool for the Retrieval of Interacting Genes/Proteins

(STRING) clusters, 2 terms; Monarch, 91 terms; Diseases, 8

terms; and UniProt Keywords, 2 terms. Figure S1 presents a

Manhattan Plot graphic with the strength and fdr terms from

Table S6C.

Table 4 is a reduced version of Table S6C obtained by manu-

ally extracting main terms specifically related to methodological

framework features, and Figure 4 shows the corresponding

Manhattan-plot, including the strength and fdr of each enrich-

ment term and the subset of variants associated with each

of them.

Main general findings
Our study begins with 110 variants, of which 86 (78.2%) passed

rigorous quality control and configured a set of SNPs in approx-

imate linkage equilibrium. 33 variants, 38.4% of analyzed vari-

ants, reached a positive discovery rate.

The association LBW-SNPs shows coherent patterns both in

the logistic regression models and individually for each SNP. In

the three methodological groups of models on which our study

is based, (SNP+Variable, SNP+Variable+PC1, and SNP+Varia-

ble+Interaction), the association signals are more intense when

the adjust variables are HEIGHT, GDM, andWEIGHT, it is slightly

lower when adjusted byBMI, and reaches a level similar tomodel

base, only SNP effect, in the models adjusted by ETHN, NI, AGE,

GLUC, and INSU. In general, the association signals increase

with respect to base models when principal component variable

PC1 is introduced and decreases when interaction term is

considered.

In the simplest model, SNP only, a positive rate was observed

in 18 variants (Table S2A). The most notable discoveries are

LYPLAL1/rs2785980/C, protective, min OR = 0.31 (REC), max

OR = 0.51 (ADD); GLP2R/rs17676067/C, risk, min OR = 2.02

(ADD), max OR = 2.99 (REC); ZHX3/rs17265513/C, risk, min

OR = 1.71 (HET), max OR = 2.84 (REC), and SLC17A9/

rs3746750/A, risk, min OR = 1.55 (ADD), max OR = 2.17 (DOM).
iScience 27, 111376, December 20, 2024 5
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Table 3. Low birth weight and SNP association

Minimum Risk/Maximal Protection Maximum Risk/Minimal Protection

CHROM LOCUS ID A1 A1_FREQ

OBS_

CT MODEL TEST OR L95 U95 p-value q-value lfdr MODEL TEST OR L95 U95 p-value q-value lfdr

1 MTHFR rs1801131 G 0.2470 1342 SNP_HEIGHT ADD 1.37 0.93 2.02 0.1091 0.0422 0.0827 SNP_HEIGHT HET 1.77 1.09 2.89 0.0213 0.0488 0.0979

1 LYPLAL1 rs2785980 C 0.4033 1360 SNP_HEIGHT REC 0.21 0.07 0.57 0.0026 0.1027 0.1447 SNP_GDM_

PC1

ADD 0.57 0.38 0.85 0.0059 0.0078 0.0139

2 FIGN rs2119289 C 0.1198 1361 SNP_HEIGHT_

PC1

HET 0.55 0.28 1.08 0.0835 0.0391 0.5207 SNP_GDM_

PC1

DOM 0.58 0.30 1.12 0.1031 0.0273 0.2079

2 COBLL1 rs7607980 C 0.1215 1362 SNP_HEIGHT ADD 1.49 0.93 2.39 0.0980 0.0391 0.0812 SNP_HEIGHT REC 4.28 1.20 15.35 0.0255 0.1272 0.1640

2 G6PC2 rs560887 T 0.2135 1363 SNP_HEIGHT_

PC1

DOM 0.60 0.35 1.02 0.0586 0.0209 0.2613 SNP_WEIGHT_

PC1

ADD 0.67 0.43 1.05 0.0785 0.0455 0.3249

2 NYAP2 rs2943634 A 0.2744 1350 SNP_WEIGHT_

PC1

HET 0.64 0.38 1.07 0.0881 0.0403 0.3083 SNP_HEIGHT_

PC1

DOM 0.68 0.41 1.11 0.1248 0.0418 0.5564

2 IRS1 rs1801278 T 0.0745 1362 SNP_GDM_PC1 DOM 1.49 0.82 2.71 0.1930 0.0488 0.4638 SNP_BMI DOM 1.71 0.95 3.10 0.0760 0.0437 0.0766

3 PPARG rs17036328 C 0.1126 1363 SNP_GDM_INT ADD 0.42 0.18 0.98 0.0457 0.1073 0.2598 SNP_GDM_INT ADD 0.42 0.18 0.98 0.0457 0.1073 0.2598

3 AMT rs11715915 T 0.2646 1357 SNP_GDM_PC1 ADD 1.38 0.96 1.97 0.0813 0.0417 0.2684 SNP_HEIGHT_

INT

DOM 2.02 1.22 3.34 0.0065 0.1959 0.2391

3 IGF2BP2 rs4402960 T 0.2975 1363 SNP_HEIGHT HET 1.51 0.94 2.44 0.0890 0.0488 0.0979 SNP_HEIGHT HET 1.51 0.94 2.44 0.0890 0.0488 0.0979

5 IRX1 rs17727202 C 0.0616 1363 SNP_GDM_

PC1

DOM 1.67 0.90 3.08 0.1035 0.0273 0.2090 SNP_HEIGHT_

INT

HET 1.94 1.06 3.55 0.0317 0.3789 0.3475

5 PCSK1 rs17085593 G 0.2656 1363 SNP_HEIGHT ADD 1.38 0.94 2.01 0.0973 0.0391 0.0812 SNP_GDM_INT HET 2.30 1.38 3.83 0.0015 0.0297 0.0333

5 PCSK1 rs6235 G 0.2401 1362 SNP_HEIGHT ADD 1.38 0.93 2.04 0.1058 0.0414 0.0812 SNP_GDM_INT HET 2.03 1.22 3.37 0.0061 0.0378 0.0793

6 RREB1 rs9379084 A 0.1207 1363 SNP_HEIGHT_

PC1

DOM 0.61 0.33 1.14 0.1197 0.0407 0.5388 SNP_GDM_

PC1

DOM 0.61 0.33 1.15 0.1249 0.0322 0.2752

7 GCK rs1799884 T 0.1935 1362 SNP_BMI_PC1 HET 0.47 0.26 0.88 0.0172 0.0212 0.0472 SNP_HEIGHT ADD 0.64 0.39 1.04 0.0745 0.0386 0.0812

7 GRB10 rs6943153 T 0.3474 1353 SNP_HEIGHT ADD 0.71 0.49 1.02 0.0652 0.0386 0.0812 SNP_HEIGHT ADD 0.71 0.49 1.02 0.0652 0.0386 0.0812

8 ANK1 rs12549902 G 0.4514 1357 SNP_GDM_

PC1

ADD 1.38 0.98 1.95 0.0689 0.0359 0.2105 SNP_BMI_INT REC 1.73 1.00 2.99 0.0489 0.3462 0.3800

8 SLC30A8 rs11558471 G 0.2698 1362 SNP_HEIGHT_

PC1

DOM 1.53 0.94 2.49 0.0876 0.0305 0.4075 SNP_GLUC HET 1.70 1.06 2.74 0.0292 0.1247 0.3315

9 SARDH rs573904 T 0.2645 1361 SNP_HEIGHT ADD 1.37 0.95 1.96 0.0920 0.0386 0.0812 SNP_HEIGHT ADD 1.37 0.95 1.96 0.0920 0.0386 0.0812

10 CDC123 rs11257655 T 0.2399 1363 SNP_INSU_INT DOM 0.50 0.29 0.87 0.0148 0.6405 0.9590 SNP_HEIGHT_

PC1

ADD 0.63 0.40 1.00 0.0491 0.0275 0.3289

10 CDC123 rs12779790 G 0.1773 1362 SNP_AGE_INT DOM 0.52 0.28 0.98 0.0426 0.4281 0.4055 SNP_HEIGHT_

PC1

DOM 0.62 0.36 1.10 0.1004 0.0347 0.4642

10 HHEX rs7923866 T 0.4060 1362 SNP_WEIGHT_

INT

HET 0.56 0.32 0.99 0.0457 0.1435 0.3395 SNP_WEIGHT_

INT

HET 0.56 0.32 0.99 0.0457 0.1435 0.3395

10 TCF7L2 rs4506565 T 0.3151 1363 SNP_BMI_INT ADD 1.44 1.01 2.05 0.0458 0.2079 0.2422 SNP_HEIGHT DOM 1.97 1.19 3.28 0.0089 0.0554 0.1006

11 CRY2 rs11605924 C 0.4949 1363 SNP_INSU_INT REC 0.13 0.03 0.71 0.0179 0.5395 0.9233 SNP_INSU_INT HET 1.72 1.05 2.82 0.0322 0.8612 0.9455

(Continued on next page)
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When considering all logistic regression models, we can classify

the discoveries into four groups defined by the quartiles Q1–Q4

of the percentual discovery score (pds).

(1) Discoveries in Q1 (pds R 26.7%). Risk variants: GLP2R/

rs17676067/C, PEPD/rs731839/G, ZHX3/rs17265513/C,

SLC17A9/rs3746750/A. Protector variants: LYPLAL1/

rs2785980/C, GCK/rs1799884/T, CDC123/rs11257655/

T. Risk/protector variant depending on genetic inheri-

tance test: CRY2/rs11605924/C. These variants have

reached statistical significance in practically all proposed

logistic regression models.

(2) Discoveries in Q2 (9.8% % pds < 26.7%). Risk variants:

AMT/rs11715915/T, IRX1/rs17727202/C, PCSK1/rs6235/G,

PCSK1/rs17085593/G, SLC30A8/rs11558471/G, TCF7L2/

rs4506565/T, OASL/rs7957197/A, C2CD4B/rs11071657/

G. Most of the variants in this quartile reach statistical sig-

nificance in models without PC1, but it is noteworthy that

C2CD4B variant only reaches positive rates in models in

which the principal component PC1 appears.

(3) Discoveries in Q3 (1.7% % pds < 9.8%). Risk variants:

COBLL1/rs7607980/C, FTO/rs8050136/A, TOP1/rs6072275/A,

MTHFR/rs1801131/G, ANK1/rs12549902/G. Protector

variants:FIGN/rs2119289/C,CDC123/rs12779790/G,FBRSL1/

rs10747083/G.

(4) Discoveries in Q4 (pds < 1.7%). Risk variants: IRS1/

rs1801278/T, IGF2BP2/rs4402960/T, SARDH/rs573904/T.

Protector variants: G6PC2/rs560887/T, NYAP2/rs2943634/A,

PPARG/rs17036328/C, RREB1/rs9379084/A, GRB10/

rs6943153/T, HHEX/rs7923866/T.

Nodes’ halo color in Figure 3 indicates the main character of

variant, blue for protection and red for risk, while color intensity is

proportional to the OR of logistic regression model with greater

risk/less protection, Table 3.

Table 4 and Figure 4 include the 16 enrichment terms extracted

from Table S6C obtained from the GWA discoveries, for their spe-

cific relationship with methodological framework features. Terms

with greatest strength are the following: Age at assessment:

strength = 1.70, fdr = 2.91E-05; Insulin measurement: strength =

1.63, fdr = 7.25E-15; Obesity: strength = 1.50, fdr = 0.044; Birth

weight: strength = 1.41, fdr = 7.04E-07; Glucose measurement:

strength = 1.34, fdr = 5.25E-17.

Colors inside the nodes in Figure 3 indicate the relationship

of the protein/gene with the corresponding enrichment terms

included in Table 4.
DISCUSSION

This work presents an extensive evaluation of the link between

the LBW phenotype, as defined by the WHO, with a set of

86 maternal genetic variants. The population forms part of a

large healthcare center in Madrid (Spain), which follows-up

pregnant women from different ethnographic origins and their

offspring, who have undergone a NI developed in a first phase

as an RCT and, subsequently, generalized to the entire popu-

lation. The analysis methodology follows a multifactorial
iScience 27, 111376, December 20, 2024 7



Figure 2. Heatmap and dendrograms derived from LBW-SNP association based on percentage scores that a discovery has achieved in

logistic regression models
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approach and includes maternal genetic information, both

genotype and inheritance, along with anthropometric and

metabolic characteristics of the future mother that are

routinely evaluated during pregnancy.

The GWA design follows the general STrengthening the RE-

porting of Genetic Association studies (STREGA) guidelines,36

as well as literature recommendations that advise to introduce

some sample principal component(s) as control variables

of association models,31 to formulate different genetic inheri-

tance tests,37 and to perform fdr control by means of qvalue

method.32–34 GWA identified 33 variants that show signals of as-

sociation with LBW. The searching strategy was based on 29 lo-

gistic regression models in each of which four models of genetic

inheritance were evaluated.

Figure 2 shows that association patterns are remarkably

similar in logistic regression models, and these form

three main cluster roughly corresponding to the three ap-

proaches used to models configuration: SNP + control vari-

able, adding PC1, and adding interaction. In general, associ-

ation evidence increases when PC1 is included as adjust

variable and decreases when the interaction is considered in

models.
8 iScience 27, 111376, December 20, 2024
The basic model, SNP only, presents 18 discoveries, all of

which are in Q1 and Q2 quartiles of score, except MTHFR,

COBLL1, and FBRSL1 that are in Q3 quartile.

With some differences, the association pattern observed in

SNP only model is repeated in models that included an adjust

factor or biometric variable.

Most models with PC1 modify the pattern of basic model. In

general, variants that remain inmodels with PC1 increase the as-

sociation evidence.

Models that include the interaction term show an uneven

pattern. We can point out that interaction model with GDMmain-

tains an association pattern in the variants of the Q1 quartile, while

interaction model with WEIGHT maintains a different pattern. The

performance of models with interaction is that association evi-

dence decreases, so we understand that its predictive usefulness

is weaker and, in any case, deserves further investigation.

The previous discussion allows us to establish that the associ-

ation patterns obtained in different models of GWA are coherent,

and clearly determine the association of SNPs classified as dis-

coveries with the LBW phenotype.

Functional enrichment reveals biological mechanisms under-

lying the association of LBW and the identified discoveries.



Figure 3. Network of interactions between proteins/genes identified by mapping of low-birth-weight GWA discoveries

Nodes’ inner color represent the SNP association with terms in Table 4, halo color represents the protective (blue) or risk (red) nature of the SNP, with the intensity

being proportional to the corresponding OR in Table 3, and colors of the edges represent the active interaction sources.
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Table 4 and Figure 4 show that PCSK1, GCK, GRB10, and CRY2

are associated with the process response to glucose, while

glucose measurement is associated, in addition to the previous

ones, with COBLL1, AMT, IGF2BP2, PCSK1, RREB1, GRB10,
Table 4. Functional enrichment terms linked to low-birth-weight dir
ANK1, SLC30A8, SARDH, CDC123, TCF7L2, FTO, GLP2R,

TOP1, ZHX3. Moreover, IRS1, PPARG, GCK, GRB10, and

CRY2 are associated with response to insulin process, while, in

addition, COBLL1, G6PC2, IRS1, IGF2BP2, SLC30A8, TCF7L2,
ectly related tomodel variables considered in theGWA-LBWstudy

iScience 27, 111376, December 20, 2024 9



Figure 4. Low-birth-weight GWA functional enrichment

x axis includes functional enrichment terms directly related to model variables considered in the GWA-LBW study (Table 2). Points refer to proximity clusters

between discoveries and the size of the point indicates the strength of the association (Table 4).

iScience
Article

ll
OPEN ACCESS
FTO, GLP2R, TOP1 and ZHX3 are associated with insulin mea-

surement. These facts reinforce the genetic influence of insulin

on LBW, reaffirming the role regulator of insulin in fetal growth,7

and pointing toward the hypothesis of fetal insulin, which pro-

poses that LBW and T2D in adulthood may be two phenotypes

of the same genotype.38,39

In Table 4, the term birth weight is associated with MTHFR,

G6PC2, RREB1, GCK, GRB10, ANK1, and PEPD, while in the

case of the term body weight, FTO is added to the previous

list. These variants reach values of different ranges in our GWA

scores, but we understand that the results allow us to reaffirm

the association of these SNPs with LBW.

It can be observed that Table 4 includes protein/genes asso-

ciated with a relevant number of enrichment terms, such as

PPARG, IGF2BP2, RREB1, GRB10, that they have barely ob-

tained any association with LBW in our study.

In this regard, we can point out that variants of PPARG,

IGF2BP2, and GRB10 have been associated with weight-related
10 iScience 27, 111376, December 20, 2024
phenotypes, Table 5. Nevertheless, we have not located any

reference to association of any of them with LBW. However,

RREB1 is associated with offspring birth weight.21 These facts

suggest that, in our GWA approach, a low discovery score

does not necessarily imply the absence of association between

the variant and the phenotype. Rather, as corresponds to an

exploratory study, the results point the way for a more in-depth

study of these variants.

On the contrary, several protein/genes, such as GLP2R,

SLC17A9, OASL, C2CD4B, and LYPLAL1, barely show associa-

tion with terms in Table 4. However, in our study, they present

high association scores with LBW. Table 6 shows some charac-

teristics of these discoveries.43,44

Our results are in line with the GWA studies of birth weight

focused on maternal genetic variants. Our GWA includes

some variants that Warrington et al. significantly associate

with birth weight,21 specifically, the variants G6PC2/rs560887,

RREB1/rs9379084, TCF7L2/rs7903146, ADCY5/rs11708067,



Table 5. Variants associated with a relevant number of enrichment terms in Table 4 and, however, present low scores in the logistic regression models with LBW

CHROM POS ID GENE SYMBOL A1 DESCRIPTION ASSOCIATION REFERENCES OBSERVATIONS

3 12348985 rs17036328 ENSG00000132170 PPARG T Peroxisome proliferator

activated receptor

gamma.

Fasting blood insulin measurement.

Body mass index.

Black et al.40

3 185793899 rs4402960 ENSG00000073792 IGF2BP2 G Insulin like growth

factor 2 mRNA

binding protein 2.

Peak insulin response measurement.

Type II diabetes mellitus.

Ramos-LeviRodrı́guez

et al.30 and Arnoriaga-

Rodrı́guez et al.41

6 7231610 rs9379084 ENSG00000124782 RREB1 A Ras responsive element

binding protein 1.

Appendicular lean mass.

Birth weight.

Diabetes mellitus.

Fasting blood glucose measurement.

Heel bone mineral density.

Body height.

HbA1c measurement.

BMI-adjusted hip circumference.

Body mass index.

Parental genotype effect measurement.

Type II diabetes mellitus.

Warrington et al.21

7 50723882 rs6943153 ENSG00000106070 GRB10 T Growth factor receptor

bound protein 10.

Fasting blood glucose measurement. Holt and Siddle42 Described as

enigmatic regulator

of insulin action.

CHROM, Chromosome code; POS, Base-pair coordinate [GRCh38]; ID, Variant ID; A1, Counted allele in logistic regression.
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Table 6. Variants with high scores in the logistic regression models with LBW and, however, are associated with a low number of enrichment terms in Table 4

CHROM POS ID GENE SYMBOL A1 DESCRIPTION ASSOCIATION Reference OBSERVATIONS

1 219527177 rs2785980 ENSP00000355895 LYPLAL1 C Lys phospholipase-like

protein 1

Phenotypes: adiponectin

measurement, fasting

blood insulin, waist-hip

ratio.

Spracklen et al.45,

Wheeler et al.46 and Heid

et al.47

12 121022883 rs7957197 ENSG00000135114 OASL A 20-50-oligoadenylate
synthetase like.

Belongs to the 2-5A

synthase family.

Biological process:

immune system process,

response to virus.

Phenotypes: C-reactive

protein levels,

cardiovascular disease

risk factors, hematocrit,

hemoglobin, inborn

genetic diseases,

N-glycan levels,

inflammation.

Ding et al.19 Variant rs7957197 has

been mentioned in

various publications in

relation to T2D, usually

mapped to the HNF1A

gene, which is more than

20knt away from the

position of the variant in

the base-pair coordinate

GRCh.38

15 62141763 rs11071657 ENSG00000205502 C2CD4B G C2 calcium dependent

domain containing 4B.

Belongs to the C2CD4

family and may regulate

cell architecture and

adhesion.

Biological process:

regulation of cell

adhesion.

Phenotypes: fasting

blood glucose, fasting

blood proinsulin levels,

pulse pressure,

L-selectin levels, height,

inborn genetic diseases.

Dupuis et al.48 and Jung

et al.49

17 9888058 rs17676067 ENSG00000065325 GLP2R C Glucagon Like Peptide 2

Receptor.

Is a receptor for

glucagon-like peptide 2

mediated by G proteins

that activate

adenylyl cyclase.

Biological process:

positive regulation of cell

population proliferation,

and cellular response to

glucagon, adenylate

cyclase-modulating G

protein-coupled receptor

signaling pathway.

Phenotypes: stimulus

glucose-dependent

insulinotropic

polypeptide (GIP) levels

in response to oral

glucose tolerance test

(fasting), type 2 diabetes,

GDM, inborn genetic

diseases.

Ramos-Levi et al.30 and

Scott et al.50

(Continued on next page)
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and GLIS3/rs10814916. Our study agrees on the direction of the

association and its statistical significance for G6PC2, RREB1,

and TCF7L2. However, our analysis has not given a signal of dis-

covery for GLIS3 and ADCY5. On the other hand, at locus level,

our study shares with the GWA of Warrington et al. the following

discoveries: MTHFR, GCK, GRB10, and ANK1.21

An additional consideration can be drawn from our study.

Traditional management of some pregnancy complications,

such asGDM, focuses on tight glycemic control to prevent even-

tual macrosomia. This may cause a bias toward increasing the

incidence of LBW.11 The results of this work may contribute to

preventing this unintended consequence.

Limitations of the study
The limitations of our study are mainly derived from the general

research project, about NI and GDM control, in which it is

framed. Analysis of SNPs does not include variants specifically

related only to birth weight,21 or growth retardation.4 On the

other hand, as mentioned in the introduction, only maternal ge-

netic information was available, without that of the newborn or

the paternal information.

Conclusion
Paraphrasing the WHO, the proportion of infants with LBW is an

indicator of a multifaceted public health problem that includes

long-term maternal malnutrition, ill-health, and poor health care

during pregnancy.

Our study identifies genetic and epigenetic risk factors that

allow the prevention of LBW. These factors include a set of

maternal SNPs associated with LBW in the newborn. The asso-

ciation is modulated by several maternal characteristics, which

are usually monitored during pregnancy. Our overall analysis

proves that the genetic variants lead to proximity clusters,

grouped into subsets of variants statistically associated with un-

derlying biological processes or other maternal characteristics,

which, on their part, allow early prevention of the eventual risk

of LBW.

Our study allows to conclude that the prevention and reduc-

tion of the prevalence of LBW must be achieved through atten-

tion to issues such as the careful observation of certain maternal

phenotypes, as well as the persistent recommendation to preg-

nant women regarding an appropriate diet and modus vivendi,

together with the eventual incorporation of the maternal genome

analysis, which leads to more personalized monitoring of

pregnancy.
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(2010). Meta-analysis identifies 13 new loci associated with waist-hip ratio
16 iScience 27, 111376, December 20, 2024
and reveals sexual dimorphism in the genetic basis of fat distribution. Nat.

Genet. 42, 949–960. https://doi.org/10.1038/ng.685.

48. Dupuis, J., Langenberg, C., Prokopenko, I., Saxena, R., Soranzo, N., Jack-

son, A.U., Wheeler, E., Glazer, N.L., Bouatia-Naji, N., Gloyn, A.L., et al.

(2010). New genetic loci implicated in fasting glucose homeostasis and

their impact on type 2 diabetes risk. Nat. Genet. 42, 105–116. https://

doi.org/10.1038/ng.520.

49. Jung, S.Y., Sobel, E.M., Papp, J.C., Crandall, C.J., Fu, A.N., and Zhang,

Z.F. (2016). Obesity and associated lifestyles modify the effect of

glucosemetabolism-related genetic variants on impaired glucose homeo-

stasis among postmenopausal women. Genet. Epidemiol. 40, 520–530.

https://doi.org/10.1002/gepi.21991.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Genomic DNA extracted from

EDTA-stabilized blood samples

This paper

Deposited data

Genome assembly GRCh38 Genome Reference

Consortium (GRC)

https://www.ncbi.nlm.nih.gov/datasets/genome/

GCF_000001405.26/

Phenotype driven discovery Monarch Initiative https://monarchinitiative.org/

The Human Phenotype Ontology (HPO) Monarch Initiative https://hpo.jax.org/

Ensembl Variant Effect Predictor (VEP) Ensembl https://www.ensembl.org/info/docs/tools/vep/index.html

Raw and analyzed data This paper Available from the lead contact upon request

(ana_ramoslevi@hotmail.com)

Oligonucleotides

IPLEX MassARRAY PCR and extension

primers for each target SNP (Table S3-1)

This paper

Software and algorithms

IBM SPSS Statistics for Windows,

Version 29.0.1.0(171)

Armonk, NY: IBM Corp. https://www.ibm.com/es-es/products/spss-statistics

R software (version 4.3.3) R Software Foundation https://www.r-project.org/

Plink 1.9, PLINK 2.00 Alpha 5.10 Storey et al.33 https://www.cog-genomics.org/plink/

qvalue package (version 2.34.0) of

R software (version 4.3.3)

Szklarczyk et al.35,

Little et al.36

and Liu et al.37

https://www.bioconductor.org/packages/release/bioc/

html/qvalue.html

String 12 Hattersley and Tooke38 https://string-db.org

ggplot2 3.5.1 Reim et al.39 https://ggplot2.tidyverse.org/index.html

ggrepel 0.9.6 Black et al.40 https://github.com/slowkow/ggrepel.

heatmaply 1.4.3 Arnoriaga-Rodrı́guez et al.41 https://talgalili.github.io/heatmaply/articles/heatmaply.html
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Data included in this study have been configured as summarized below. During the years 2014-16, a total of 2418 women attending

their first gestational visit (GW) at 8–12, Visit 0, with FBG <92 mg/dL, were assessed for inclusion in a randomized clinical trial (RCT).

They were invited to participate upon their first ultrasound visit, between 12 and 14 GW (Visit 1). Gestational age at entry for inclusion

was based on the one obtained in this first ultrasound. The inclusion criteria were: R18 years old, single gestation, acceptance of

participation in the study, and signature of the consent form. The exclusion criteria were: gestational age at entry >14GW, intolerance

to nuts or extra virgin olive oil (EVOO), and medical conditions or pharmacological therapy that could compromise the effect of the

intervention and/or the follow-up program. From this initial group, a sample of 1000 women was selected and randomly divided into

two groups of the same size, according to NI. Allocation to control group (CG) and IG was performed by building a stratified random-

ization with permutated block-randomization, stratified by age (18–29, 30–34 and R35), pregestational body mass index (BMI)

(<25, 25–29.9 and R30 kg.m2), parity (1 or >1), and ethnicity, classified as Caucasian (Spanish and Slavic), Hispanic and other, in

an allocation ratio of (1:1) in blocks of 4–6. Due to the nature of the RCT design, participants, staff and the dietician were aware of

the allocation assignments. Allocation to groups remained unknown to the statistician and research assistant. Both groups were

given the same basic Mediterranean Diet (MedDiet) recommendations: R two servings/day of vegetables, R three servings/day

of fruit (avoiding juices), three servings/day of skimmed dairy products, wholegrain cereals, two-three servings of legumes/week,

moderate to high consumption of fish; a low consumption of red and processed meat, avoidance of refined grains, processed baked

goods, pre-sliced bread, soft drinks and fresh juices, fast foods and precooked meals. They were also recommended to walk

R30 min/day. These recommendations were given to women by different parties, depending on the group they were allocated

to. On one hand, participants allocated to IG received lifestyle guidance from dieticians oneweek after inclusion in a unique 1-h group

session. The key IG recommendation was a daily consumption of at least 40 mL of EVOO and a handful (25-30g) of pistachios. To
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ensure the consumption of theminimum amount recommended, womenwere provided at Visit 1 and 2 with 10 L of EVOO and 2 kg of

roasted pistachios each. This way, they had available 1L of EVOO and 150g of roasted pistachios weekly, throughout their preg-

nancy. Women in the CG, however, were advised bymidwives to restrict consumption of dietary fat, including EVOO and nuts. These

recommendations are provided in local antenatal clinics as part of the available guidelines in pregnancy standard care. The number of

visits for the study was alike in both groups. All women were followed-up taking advantage of their scheduled standard-practice lab-

oratory appointments. This was at first ultrasound visit (Visit 1), at 24–28 GW (Visit 2), third trimester evaluation at 36–38 GW (Visit 3)

and at delivery. Nutritional guidance was reinforced at each visit for both groups. Dietary recommendations were individualized at

each visit, in the context of usual recommendations. These recommendations were given aiming to reduce the caloric content of their

diet when gestational weight gain exceeded the goal, by either the dietician (IG) or themidwife (CG). The study was completed by 874

women (440/434, CG/IG). This group is the initial sub-cohort of this paper.

The RCT concluded that an early NI with a supplemented MedDiet reduces the incidence of GDM.28 Based on these results, our

hospital recommended the adoption of this NI (i.e., MedDiet enriched with EVOO and nuts), without providing these specific prod-

ucts, to all pregnant women, from the beginning of gestation, in real word.29 Thus, from November 2016 onwards, every pregnant

womanwho attended the first gestational visit were invited to participate in our study based on the implementation of the RCT results

in clinical practice. In accordance with the inclusion and exclusion criteria indicated above, a new sub-cohort (real-world group, RW)

was defined, with 768 samples that are included in this study. Therefore, a total of 1642 pregnant women, with their corresponding

fetus, comprised the initial sample of this study, Figure 1.

METHOD DETAILS

Genotyping
Genomic DNAwas extracted fromEDTA-stabilized blood samples, taken between 08.00 and 09.00 a.m. after an overnight fast, at the

time of the OGTT for screening of GDM, between 12 and 14 GW (Visit 1), using the Maxwell RSC instrument (Promega, Dubendorf,

Switzerland). Genotyping was performed by IPLEX MassARRAY PCR using the Agena platform (Agena Bioscience, SanDiego, CA).

An Agena Bioscience Compact MassArray Spectrometer was used to perform MALDI-TOF mass spectrometry according to the

iPLEX Gold Application Guide. The Typer 4 software package (Agena Bioscience) was used to analyze the resulting spectra, and

the composition of the target bases was determined from the mass of each extended oligo. These panels were designed in collab-

oration with PATIA BIOPHARMA S.A. (www.patiadiabetes.com) and genotyping was performed at the Agena platform located at the

Epigenetics and Genotyping laboratory, Central Unit for Research in Medicine (UCIM), Faculty of Medicine, University of Valencia,

Valencia, Spain. More details can be found at Ramos-Levı́.30

Thirteen samples were lost in the genotyping process. In addition, 246 pregnant women did not give birth in our hospital, mainly for

personal and family reasons. Consequently, the GWA input data included 1383 samples, Figure 1.

Single nucleotide polymorphisms list and characteristics
For each SNP, Table S7A includes the references used for selection, the chromosome code, base-pair coordinate GRCh38, variant

identification, reference allele, and URL location from dbSNP.43 Main characteristics of the variants were extracted from the Ensembl

database using Variant Effect Predictor.44 Specifically, for each variant, we obtained the annotations of consequences, biotypes,

genes, and symbols (Tables S7B–S7E). We used the information collected in Tables S7C–S7E to map each variant to a symbol

gene. Variants that show a protein-coding biotype, Table S7C, were mapped to the corresponding most relevant symbol gene

collected in Tables S7D and S7E. For some variants, the information in Tables S7C–S7E did not allow us to clearly resolve the desired

mapping, so we looked directly at Ensembl database to locate the protein code gene closest to these variants. We show the genes

that result in mapping in Table S7F and will be included as additional identification of variants.

Genome wide analysis quality control
Starting from the initial set of 110 SNPs, quality control process produces first a pruned subset of variants in approximate linkage

equilibrium (independent-pairwise 100kb 1 0.8), which excludes 11 variants from the analysis. Next, we removed SNPs with a

highmissing genotype data (GENO>5%, 1 variant), removed SNPs due to Hardy-Weinberg exact test (HWE, p < 1.0E-06, 8 variants),

and removed SNPs due to allele low frequency threshold (MAF <5%, 4 variants). As a result, our data warehouse included 86 SNPs

(Table S7G).

Quality control process of sample genotyping (MIND >5%) eliminated 20 samples, so the size of the study cohort reached 1363

samples (Figure 1), with a total genotyping rate in remaining samples equal to 0.996658.

Coding of the Low birth weight phenotype
Samples were coded LBW if their birth weight was less than or equal to 2500g and non-LBW otherwise (WHO criteria).

Graphic software
For graphic representation, the following R packages we used: ggplot2 (version 3.5.1),51 ggrepel (version 0.9.5),52 heatmaply (version

1.5.0),53 and plotly (version 4.10.4).53
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QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses regarding patients’ characteristics were performed in IBM SPSS Statistics for Windows, Version 29.0.1.0(171),

Armonk, NY: IBM Corp. Categorical data are presented as absolute and/or relative frequencies. The normality of the scale variables

will be verified using the Lilliefors Corrected Kolmogorov-Smirnov test. Normal variables are presented asmean ± standard deviation,

while themedian and interquartile rangewill be used for non-normal variables. Qualitative characteristics were comparedwith Fisher-

Freeman-Halton Exact Test. Quantitative characteristics were compared with Student’s t test or Mann-Whitney U test, depending on

whether their distribution was normal or not. A two-sided p-value%0.05 was considered statistically significant. Tests assume equal

variances. Tests are adjusted for all pairwise comparisons using the Benjamini-Hochberg correction.

Logistic regression models were performed using PLINK v.1.9 and PLINK 2.0 Alpha 5.10 software.33 PC variables were calculated

using Plink 2.0.54 As FDR control, we used the qvalue package (version 2.34.0) of R software (version 4.3.3).32–34

ADDITIONAL RESOURCES

This study forms part of a broader project initiated developed in various phases, including a randomized controlled trial (RCT), regis-

teredDecember 4, 2013 at SRCTN84389045 (https://doi.org/10.1186/ISRCTN84389045), and a real-world study, registeredOctober

11th, 2016 at ISRCTN13389832 (https://doi.org/10.1186/ISRCTN13389832), both with approval by the Clinical Trials Committee of

the Hospital Clı́nico San Carlos, Madrid, Spain (July 17, 2013, CI13/296-E and October 1st, 2016, CI16/442-E, respectively), and

compliance with the Declaration of Helsinki.
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