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Abstract

We report herein a convenient one-pot synthesis for the shelf-stable molecular complex 

[Mn(NO3)3(OPPh3)2] (2) and describe the properties that make it a powerful and selective one-

electron oxidation (deelectronation) reagent. 2 has a high reduction potential of 1.02 V versus 

ferrocene (MeCN) (1.65 vs normal hydrogen electrode), which is one the highest known among 

readily available redox agents used in chemical synthesis. 2 exhibits stability toward air in the 

solid state, can be handled with relative ease, and is soluble in most common laboratory solvents 

such as MeCN, dichloromethane, and fluorobenzene. 2 is substitutionally labile with respect to 

the coordinated (pseudo)halide ions enabling the synthesis of other new Mn(III) nitrato complexes 

also with high reduction potentials ranging from 0.6 to 1.0 V versus ferrocene.

Corresponding Author: David C. Lacy – Department of Chemistry, University at Buffalo, State University of New York, Buffalo, 
New York 14260, United States; DCLacy@Buffalo.edu. 

The authors declare no competing financial interest.

ASSOCIATED CONTENT
Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.4c03411.
Additional figures, experimental details, and NMR, FTIR, UV–vis spectra, and reaction data (PDF)

Accession Codes
CCDC 2338924–2338930 contain the supplementary crystallographic data for this paper. These data can be obtained free of 
charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge 
Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

Complete contact information is available at: https://pubs.acs.org/10.1021/jacs.4c03411

HHS Public Access
Author manuscript
J Am Chem Soc. Author manuscript; available in PMC 2024 December 16.

Published in final edited form as:
J Am Chem Soc. 2024 May 01; 146(17): 11616–11621. doi:10.1021/jacs.4c03411.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://pubs.acs.org/doi/10.1021/jacs.4c03411
https://pubs.acs.org/doi/suppl/10.1021/jacs.4c03411/suppl_file/ja4c03411_si_001.pdf
http://www.ccdc.cam.ac.uk/data_request/cif
https://pubs.acs.org/10.1021/jacs.4c03411


Introduction.

Single-electron oxidation, sometimes referred to as deelectronation,1 is one of the most 

fundamental reactions in chemistry. Most very strong oxidants (>0.8 V; all potentials 

vs FeCp2 unless noted) such as main group fluorides (e.g., AsF6) or transition-metal 

hexafluoride compounds (WF6, PtF6, etc.) are impractical because they are difficult to 

synthesize and/or handle in standard laboratory settings.2 Nitrosonium and Ag+ salts of 

weakly coordinating anions (WCAs) are also established reagents for deelectronation,3 

but, as with most strong oxidants, oxidation is often accompanied by side reactions in 

addition to electron removal. Some recent progress toward more selective single-electron 

oxidants such as [TCNQ·4B(C6F5)3] (TCNQ = tetracyanoquinodimethane), [phenazineF]

[Al(ORF)4] (phenazineF = perfluoro-5,10-bis(perfluorophenyl)-5,10-dihydrophenazine), and 

aminium-cation carborane-anion pairs, like T13,4 have been reported, but the multistep 

syntheses and air and moisture sensitivities limit their utility.5 Hence, the search for selective 

single-electron oxidants continues, driven by the need for ease of synthesis and handling 

while maintaining high reduction potentials.

We noted that a characteristic of the Mn(III) ion is its high reduction potential, a 

property that is critical to life,6 battery materials,7 and oxidation in organic transformations 

such as alkene difunctionalization,8 alkene epoxidation,9 and free-radical additions and 

cyclizations.10 Within this framework of reactivity, we recently observed that the 

mononuclear Mn(III) complex [MnIIICl3(OPPh3)2] (1) is a potent Cl-atom transfer reagent11 

and mediates C–H chlorination in specific cases,12 properties that appear to be intrinsic to 

the highly reactive MnCl3 entity. We reasoned that the coordination of pnictogen-oxide ylide 

triphenylphosphine oxide (Ph3PO) enabled the room-temperature stabilization of highly 

reactive MnCl3, which otherwise decomposes above −40 °C.13 As an extension of this 

rationale, we hypothesized that analogous Mn(III) complexes with weakly coordinating 

pseudohalide ligands could likewise exhibit desirable bench-stability characteristics while 

maintaining some of the intrinsic chemical properties, such as the high reduction potential.

Exploring this hypothesis with nitrate as the anion, reported herein, resulted in successful 

gram-scale synthesis of [MnIII(NO3)3(OPPh3)2] (2) and demonstration of desirable bench-

stability and redox properties for oxidation. 2 has a strikingly high reduction potential of 

1.02 V in MeCN (1.65 vs NHE) (Figure 1), which is one of the highest among available 

stoichiometric oxidants.14 While other reactants with higher potentials are known,5 2 can be 

synthesized in a single step on the bench from commercially available reactants, is capable 

of open-to-air manipulations, and is soluble in common laboratory solvents. The byproducts 

of oxidation with 2 are [MnII(NO3)2(OPPh3)2] (9) and non-nucleophilic nitrateion.15 Except 

for use in exotic cases, where extremely electrophilic products are generated, 2 is an 

important addition to the growing class of powerful oxidants. 2 also is substitutionally labile 

with respect to halide/pseudohalide ion metathesis enabling the synthesis of new Mn(III) 

nitrato16 complexes, effectively allowing us to tune the reduction potential in a series of 

strong to very strong oxidants spanning 0.6 to 1.0 V.
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Synthesis and Characterization of [MnIII(NO3)3(OPPh3)2].

A procedure to prepare what is nominally [MnIII(NO3)3] (3) has been known since 1972,17 

but it requires the use of highly toxic and inconvenient reagents like N2O5 and N2O4 

and requires storage below −14 °C (Figure 2). 2 was synthesized from [MnIII(NO3)3] via 

this cumbersome route and, aside from a solid-state magnetic measurement and select 

vibrational data, virtually nothing was known about it prior to this work.17 Motivated 

by the premise that 2 would exhibit a kind of tempered stability like 1, we aimed to 

develop convenient ways of preparing 2 and new pnictogen-oxide stabilized complexes 

of Mn(III); pyridine-N-oxide (Opy), Ph3PO, and triphenylarsine oxide (Ph3AsO) were the 

chosen ligands for this study.

Two convenient routes to 2 were devised, both using an acetonitrile solution of 

trimethylsilylnitrate (Me3SiONO2) generated in situ from AgNO3 and Me3SiCl.18 In the 

first route, 36 equiv of Me3SiONO2 was added to [Mn12Ol2(OAc)16(H2O)4]·2HOAc·4H2O 

(Mn12)19 and then treated with 24 equiv of Ph3PO to give 2 in low yields (26% crystalline). 

The more efficient second route is analogous to the one-pot synthesis that we developed 

for 1 (Scheme 1),11 employing Me3SiONO2 instead of Me3SiCl. Adding Me3SiONO2 to a 

mixture of Mn(OAc)2 and KMnO4 in a 16:4:1 ratio formed a brown solution, presumably 

containing 3, and upon addition of Ph3PO 2 was obtained in good yields. The reaction is 

scalable; we routinely perform syntheses that furnish 6 g of crude product (73%, Figure 2) 

which after recrystallization in a glovebox furnishes 5 g (63%) of crystalline, analytically 

pure material. In the solid state, 2 is stable to air and can be stored for months without 

noticeable change on the bench (Figure S5). Performing an entire synthesis (8 g scale) on a 

Schlenk line under Ar followed by open-to-air filtration does not diminish the yield of the 

crude product.

X-ray diffraction (XRD) characterization of red-brown crystals of 2 revealed a pseudo-

square-pyramidal geometry with the Ph3PO ligands in the cis position (Figure 2), similar to 

1.11 The solid-state ATR-FTIR spectrum of 2 contains a characteristic P–O stretch at 1436 

cm−1 as well as nitrato stretches at 1528, 1260, and 951 cm−1. The solution-state magnetic 

moment of 2 in DCM is consistent with a high-spin Mn(III) center (μeff = 5.46 μB), and the 

X-band EPR spectrum (77 K) is silent.

Synthesis of Other Mn(III) Nitrato Complexes.

Mn(III) nitrato complexes with other pnictogen-oxide ligands were synthesized via 3 that 

was prepared directly from Mn(OAc)2 and KMnO4 (Scheme 2). Addition of 2 equiv of 

Ph3AsO to 3 produced [MnIII(NO3)3(OAsPh3)2] (4) in 61% crystalline yield. XRD analysis 

of deep purple crystals of 4 revealed a pseudo-trigonal-bipyramidal geometry with the 

Ph3AsO ligands in the trans position (Figure 3). Addition of 2 equiv of Opy to 3 did not 

produce the expected [MnIII(NO3)3(Opy)2], and instead the mononitrato Mn(III) complex 

salt [MnIII(NO3)(MeCN)(Opy)4][MnII(NO3)4] (5) was obtained in 64% crystalline yield 

(Figure 3). The six-coordinate manganese center of 5 is in the +3 oxidation state. The 

bond lengths and angles of the other manganese center are consistent with the known anion 

[MnII(NO3)4]2−.20 While 2 and 4 are bench stable in the solid state, 5 readily undergoes 
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hydration when exposed to air. Furthermore, 2 and 4 are soluble in polar organic solvents 

like DCM, MeCN, and THF while 5 is only soluble in MeCN, consistent with its salt-like 

state in contrast to neutral 2. In fact, 2 is soluble in fluorobenzene (2.8 mg/mL) and is 

sparingly soluble in toluene and benzene (<1 mg/mL).

We also prepared mixed nitrato dichlorido Mn(III) complexes via halide/pseudohalide 

metathesis (Scheme 3). Reaction of 1 and 2 in a 2:1 ratio cleanly produces 6 (Figure 

3). Similarly, complex [MnIIICl2(NO3)(OAsPh3)2] (8) was synthesized from 4 and 

[MnIIICl3(OAsPh3)2] (7) (Figure 3).21

Electrochemical Investigation of the Mn(III) Complexes.

The complexes prepared here were analyzed with cyclic voltammetry (CV) and differential 

pulse voltammetry (DPV) in DCM, MeCN (Figure 4), and THF (Figure S47). The reduction 

potentials are remarkably high and span the range of 0.6 to 1.0 V (Table 1).

To confirm that 2 acts as a one-electron oxidant, we titrated a solution of ferrocene with 

2 and found that one equivalent was required to cleanly generate FeCp2
+ in DCM (Figure 

4). The same titration was conducted for [FeII(bipy)3](PF6)2 (0.66 V in MeCN) and N(4-

bromophenyl)3 (0.70 V in DCM), and likewise a clean one-electron transformation occurred 

to [FeIII(bipy)3]3+ 22 and N(4-bromophenyl)3
+•, respectively.

The byproducts of oxidation with 2 are a weakly coordinating nitrate anion and 9, 

which are easy to separate from reaction mixtures and will not likely interfere with 

subsequent chemistries if they are still present. The potentials of oxidants like KMnO4 

or ceric ammonium nitrate (CAN) in aqueous HClO4 that are more powerful than 2 are 

only available in aqueous conditions, and such comparisons with aqueous oxidants are 

misleading. For instance, the E1/2 for tetrabutylammonium ceric nitrate (CTAN)23 is 0.6 V 

(Figure 1) in MeCN and DCM and requires addition of strong acids like HOTf to achieve 

higher oxidizing strength in organic solvent.24

C–H Nitrooxylation and Stability Limits of 2.

Single-electron oxidation is not the only reaction that 2 mediates. We found that 2 and 4 
react with certain benzylic C–H bonds to form nitrate esters (nitrooxylation) (Scheme 4, 

Table 2).25

Hexamethylbenzene (HMB) was chosen as model substrate to investigate this reactivity 

since it has a weak benzylic C–H bond dissociation free energy (BDFE) in MeCN of 81.0 

kcal/mol26 and low ionization potential (IP) of 7.85 eV.27 Reaction of HMB with two equiv 

of 2 in DCM afforded quantitative conversion to 2,3,4,5,6-pentamethylbenzyl nitrate in 5 

min (entry 1). The same reaction but with 4 gave only 58% conversion in 24 h (entry 2). 

Reaction of 1 equiv of 2 with HMB resulted in 50% conversion (entry 3) consistent with 

the proposed mechanism (vide infra). Due to the efficiency and short reaction time of 2 
mediated nitrooxylation of HMB, it can serve as an effective batch control for the purity of 2 
(entry 4; see Supporting Information for details).
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The reactivity of 2 with benzylic C–H bonds is limited, boding well for use of 2 
as a selective single-electron oxidant. For example, 2 did not react with a range of 

benzylic substrates (e.g, aromatic aldehydes, ketones, or esters; Scheme 4), even under 

thermal (refluxing DCM) or photolytic (100 W Xe-arc lamp) conditions. Other substrates 

affording clean nitrooxylation were tert-butyldiphenylsilane (TBDPS) protected p-cresol 

and mesitylene (Scheme 4). One possible mechanism of the reaction with HMB is a C–H 

cleavage akin to what has been proposed for Ni(IV) nitrato-mediated C–H cleavage by 

Jackson and Wang,28 chlorination of HMB using 1 by us,12 and CF3 functionalization of 

arenes using Ag2+ photooxidants by Nocera.29 The first equivalent of 2 cleaves a C–H 

bond forming nitric acid and a benzylic radical, the latter of which couples with a second 

molecule of 2 explaining the need for two equivalents of 2 and observation of 9 as the 

byproduct in HMB nitrooxylation. Given that 2 has an E1/2,MeCN of 1.02 V and HNO3 has a 

pKa,MeCN of 9.4,30 the H atom abstracting ability (i.e., effective BDFE) is estimated to be 89 

kcal/mol.26 This bond energy is high enough for C–H nitrooxylation of HMB, but it is not so 

high as to interfere with selective single-electron oxidation under a wide range of conditions 

(most C–H strengths are above 89 kcal/mol). An alternative mechanism to C–H activation 

could initiate with single-electron oxidation of HMB to form the HMB+• given its low IP.27 

2 also reacts, albeit slowly, with mesitylene (IP = 8.39 eV) but is stable in dry fluorobenzene 

(IP = 9.19 eV), DCM (IP = 11.35 eV), and MeCN (IP = 12.20 eV),31,32 which puts an 

upper limit of single-electron oxidation of <9.2 eV.33 This high IP and low BDFEeff reflects 

the high stability of 2 toward air and common organic solvents while maintaining its potent 

oxidizing ability. In addition to this and the other properties of 2 that we have described 

herein, it is plain that 2 and other Mn(III) nitrato complexes are ideal powerful oxidants for 

organometallic chemists.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Reduction potentials of common air-stable oxidants in MeCN (see the text for citations). (*) 

Potentials in DCM.
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Figure 2. 
X-ray crystal structure of 2 (ellipsoids shown at 50% probability; H atoms omitted and only 

one component of disordered atoms for clarity) and material isolated from multigram scale 

synthesis.
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Figure 3. 
Molecular structures determined with XRD for 4–8 (ellipsoids shown at the 50% 

probability). H atoms are omitted, and only one component of disordered atoms is shown for 

clarity.
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Figure 4. 
(Left) Cyclic voltammograms of 0.006 M 2 in MeCN with 0.500 M [nBu4N][PF6] (see 

Supporting Information for details). (Middle & right) Titration of 2 with ferrocene in DCM 

showing one-to-one stoichiometry.
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Scheme 1. 
Synthesis of 2
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Scheme 2. 
Synthesis of 3–5
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Scheme 3. 
Synthesis of 6–8
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Scheme 4. 
C–H Nitrooxylation Mediated by 2
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Table 1.

Reduction Potentials for Mn(III) Complexes

E1/2 (V vs FeCp2)

Complex MeCN DCM

[MnIII(NO3)3(OPPh3)2] (2)a 1.02 0.96

[MnIII(NO3)3(OAsPh3)2] (4) 0.95 0.91

[MnIII(NO3)(MeCN)(Opy)4][MnII(NO3)4] (5) 1.02

[MnIII(NO3)(Cl)2(OPPh3)2] (6) 0.72 0.68

[MnIII(Cl)3(OAsPh3)2] (7) 0.72 0.78

[MnIII(NO3)(Cl)2(OAsPh3)2] (8) 0.68 0.68

a
Potentials of 2 in MeCN measured in triplicate were within 1 mV. Potentials in DCM measured in triplicate varied by ±10 mV. Electrolyte: 0.5 M 

[nBu4N][PF6]. Analyte conc.: 6 mM.
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Table 2.

Nitrooxylation of HMB with Mn(NO3)3 Complexesa

Entry Complex % yield

1 2 99

2 4 b 58

3 2 (1 equiv) 50

4 2 (crude) 82

a
Conditions shown in Scheme 4.

b
24 h. Average yields for duplicated runs determined by 1H NMR.
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