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A method is described for systematically deriving steady-state rate equations. It is based
on the schematic method of King & Altman [J. Phys. Chem. (1956) 60, 1375-1378], but is
expressed in purely algebraic terms. It is suitable for implementation as a computer
program, and a program has been written in FORTRAN IV and deposited as Supple-
mentary Publication SUP 50078 (12 pages) at the British Library (Lending Division),
Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies can be
obtained on the terms indicated in Biochem. J. (1977) 161, 1-2.

In principle, the steady-state rate equation for any
enzyme-catalysed reaction can be derived by sym-
bolic solution of the simultaneous equations that
result from combining the conservation equation with
the steady-state expressions for all of the inter-
mediates. This method was successfully applied by
such workers as Botts & Morales (1953) to some
surprisingly complex mechanisms, but it is very
tedious for any but trivially simple mechanisms, and
it was not until the publication of the schematic
method of King & Altman (1956) that rapid develop-
ment of enzyme kinetics was practicable. The modi-
fications introduced by Volkenstein & Goldstein
(1966) and Cha (1968) added substantially to the
power of the King-Altman method, and some alter-
native methods are now available, such as those
described by Fromm (1970), Orsi (1972), Seshagiri
(1972), Ainsworth (1974) and Indge & Childs (1976).
Nonetheless, there remain some obstacles to the
practical application of the steady-state assumption,
which have become more serious in recent years with
increasing recognition that there may be numerous
enzymes that do not obey simple mechanisms (see,
e.g., Meunier et al., 1974; Childs & Bardsley, 1975;
Crabbe & Bardsley, 1976; Storer & Cornish-
Bowden, 1977). These stem from the fact that a
complex mechanism usually requires a complex rate
equation, and any manual method of deriving it is
likely to be tedious and prone to human error. So there
appears to be a need for a fully automatic version of
the King-Altman method that can be expressed as a
computer program. The present paper describes such a
method, which has been extensively used in our
laboratory in the study of glucokinase from rat liver
(Storer & Comish-Bowden, 1977).

Principle

The King-Altman method is, in effect, a set of
geometric rules designed to simplify an algebraic
procedure. The geometric aspects are irrelevant to
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the computational problem, however, and it is in-
structive to reformulate the method in purely
algebraic terms. Any mechanism, for example the one
shown in Scheme 1, is defined by an array ofn enzyme
forms and an array of up to n(n-1) first-order (or
pseudo-first-order) rate constants for the reactions
between them, as shown in Table 1.

In the steady state the proportion of any enzyme
form Em, can be written as [Em]Ieo = NmID, where eo is
the total enzyme concentration, Nm is the specific
numerator expression for Em, and D= 2 N,, is the
sum of all such numerator expressions. The King-
Altman method provides a way of expressing each
numerator Nm as the sum of a series of products of
rate constants that satisfy the following rules.

(1) Each product contains (n-1) rate constants.
(2) There are no rate constants for reactions leading
directly from Em, i.e. no rate constants can be taken
from the mth row of rate constants arranged as in
Table 1. (3) There is one rate constant only for a re-
action leading directly away from each enzyme form
apart from Em, i.e. there is one rate constant from
every row except the mth of the rate constants
arranged as in Table 1. (4) All rate constants refer to
reactions that exist in the mechanism, e.g. in Table 1

there is no rate constant in the fourth column of the
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Scheme 1. Random-order ternary-compkx mechanism
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Table 1. Array of enzyme forms and rate constants for
Scheme 1

The Table shows the rate constants for all of the
reactions connecting pairs of enzyme forms in the
mechanism shown in Scheme 1. All rate constants are
expressed in first-order or pseudo-first-order form;
for example, the second-order rate constant k+j is
multiplied by the substrate concentration a to give
the pseudo-first-order rate constant k+1a. Reactions
that are missing from the mechanism, such as the
direct interconversion of EA and EB, are assigned
zero rate constants.

From

E
EA
EAB
EB

To... E EA EAB EB

k+la k_5p k+3b
k- k+2b 0
k+5 k-2 k_4
kL3 0 k+4a

second row, because there is no reaction in Scheme 1

from EA to EB. (5) There is at least one rate constant
for a reaction leading directly to Em, i.e. there is at
least one rate constant from the mth column. (6) No
cyclic reactions can be represented in the product,
e.g. the product kL5p - k_ I *k2 from Table 1 represents
the cyclic reaction E -+ EAB -* EA -* E, and is

therefore forbidden.
For an explanation of the reasons for these rules,

see King & Altman (1956) or Comish-Bowden
(1976a). They are expressed somewhat redundantly
to avoid ambiguity; it is, for example, impossible to
satisfy rules 2 and 3 without also satisfying rule 1, and
it is impossible to satisfy rules 2 and 6 without also
satisfying rule 5. Thus in principle it is unnecessary
to ensure that (for example) rules 1 and 5 are satisfied,
though there may be practical advantages in doing
so, as I shall discuss below.

It is not difficult to generate in turn all possible
products that satisfy rules 1-4; so in principle Nm can

be evaluated by checking each product as it is gener-
ated and including it in the summation only if it
satisfies rules 5 and 6. It is not necessary to repeat the
procedure for each enzyme form, i.e. for each value
of m, because any product in the summation for N1
can be transposed immediately into the correspond-
ing product in the summations for N2, N3 etc. Thus it
is sufficient to generate and test a series of products
for N1.
To generate such a series, the first row of the table

of rate constants is ignored (to satisfy rule 2), and the
first product is obtained by taking the first non-zero
rate constant from every row except the first; for the
example shown in Table 1, this gives kL- k+5 .kL3.
This is converted into the second product by replacing
the last rate constant with the second non-zero rate
constant of the nth row, giving k-I - k+5 * k+4a. In the

case of Table 1 this exhausts the nth row, and the
next product is obtained by returning to the beginning
of the nth row and proceeding to the second non-zero
rate constant of the (n- 1)th row. This process is
continued until all possibilities are exhausted,
rejecting any products that do not contain at least one
rate constant from the first column (to satisfy rule 5).
The complete series generated in this way from Table
1 consists ofkI1 * k+5 *k3, k_L * k+s *k+4a, k-L *2*k2 3,
k_l k2 k+4a, k-l *k4 *k3, k_L1 4 k+4a, k+2b-
k+5 *k3, k+2b k+5*k+4a, k+2b *k2 *k3, k+2b *k4-
kL3. Because each product is obtained from the
previous one by replacing one or more rate constants
from the same rows, it follows that rules 1-3 are
necessarily obeyed. Further, omission of all zero rate
constants ensures that rule 4 is obeyed. This leaves
only rule 6 to be tested. As this is much more labor-
ious than testing for rule 5, it is worth while rejecting
products that do not satisfy rule 5 before checking
rule 6, even though rule 5 is logically redundant.

Cycles are tested (rule 6) by taking each rate
constant in a product in turn and following the
specified sequence of reactions until the target enzyme
form, El, is reached. The reaction specified by any
rate constant is determined by its column and row in
the Table: for example, k+4a occurs in column 3 of
row 4 in Table 1, and so it refers to the reaction from
E4 (EB) to E3 (EAB). So one can identify the next step
in any sequence of reactions by finding the rate
constant with the same row number as the column
number of its precursor. No ambiguity is possible
because no product contains more than one rate
constant from any row (rule 3). In the product
k+2b k+5 k3 the first rate constant k+2b is from the
third column of Table 1, and therefore leads to what-
ever rate constant is from the third row, i.e. k+5. This
terminates the sequence because it is from the first
column and so leads directly to E1. Any rate constant
that appears in a tested sequence, i.e. k+5 in this
example, does not need to be tested again. But k-3
did not appear in the test for k+2b and must be
tested. It is in column 1 and so leads directly to El.
Thus the product as a whole contains no cycle and is
acceptable. But consider now the product k+2b-
kL2k-3: the test for k+2b generates the sequence
E2- E3 -+ E2 -- E3 -* ... and never leads to El.
A simple cycle of two reactions is easily recognized,
but in general the problem is not trivial, and the
simplest solution is to count steps until the (n-2)th;
if a sequence of (n-2) steps does not end with E1 it
must be cyclic. [It might seem necessary to count
(n-1) steps rather than (n-2), but provided rule 5 is
satisfied a cycle of more than (n-2) steps is
impossible.] This method may seem cumbersome,
but a computer cannot 'remember' what enzyme
forms have been encountered in a sequence except
by compiling a complete list and checking each new
enzyme form against every member of the list. It is
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more efficient to avoid such repetitive checking by
counting as described.

In the example given, eight products are left after
rejection of two cyclic products, kL- k4r k+4a and
k+2b*k2* k-3. N1 is the sum ofthese eight, i.e.:

N1= klk+55k-3+k-L k+5 k+4a+k-L&k-2 k-3
k+ lkL2 k+4a + k- -k-4 k-3
+ k+2b *k+5* k-3 +k+2b*k+5*k+4a
+ k+2b *k4*k-3

Each product in this sum can be transposed into
the corresponding product in N2 by identifying the
pathway from E2 to E1 and then reversing the rows
and columns of all rate constants along the route. In
kl*k+s5*k3 the pathway from E2 to E1 is represented
by the single rate constant k-1, which is from column
1 and row 2 of Table 1. In N2 it must be replaced with
the rate constant from column 2 and row 1, i.e. k+la,
so the whole product becomes k+1a k+5 .k3. In
k+2b k+5 kL3 the pathway from E2 to E1 is re-
presented by two rate constants, k+2b k+5, and so the
product transposed for N2 is k-2-k5p-kL3. The
remaining products in N2 and the other numerator
expressions are obtained similarly.

Repeated rate constants

When carrying out the above procedure it is
essential to treat the rate constants for the different
steps as different, even ifthey happen to have the same
symbol (see Comish-Bowden, 1976b). In other
words each rate constant must be defined by its place
in the table of reactions and not by its symbol. For
example, ifone wished to study the mechanism shown
in Scheme 1 with the assumption that the two sub-
strates bound to the enzyme without any interaction,
i.e. k+4= k+1, k4= kl1, k+3= k+2, kL3=k2, the
table might be constructed so that k+1a, kL1, k+2b and
k-2 each occurred twice. But in deriving the rate
equation it would then be important to treat the two
rate constants labelled, for example, k+1a, as two
different rate constants distinguished by their
different positions in the table. In the computer
program described below this problem is taken care
of automatically and no special precautions on the
part of the user are necessary to avoid it.

Irreversible steps

Irreversible steps can be accommodated most
efficiently by suppressing the printing ofproducts that
contain zero elements. But if any such products occur
in the definition of N1 they must nonetheless be
remembered because they may well become non-zero
when they are transposed into the definitions of the
other numerators. Thus a distinction must be made
between missing reactions (e.g. between EA and EB
in Scheme 1), which have zero rate constants in both
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directions, and irreversible reactions (e.g. from EAB
to E in Scheme 1 in the special case of the initial rate
in the absence ofproduct, i.e. whenp = 0), which have
zero rate constants in one direction only. The latter
must be treated like any other reactions except in the
final printing of results. The computer program
described below is written so that any reaction may
be included in the mechanism but assigned a zero rate
constant in one direction.

Parallel steps

In some mechanisms there may exist two or more
parallel steps between a pair of enzyme forms. (For
example, in the two-step Michaelis-Menten mech-
anism the enzyme-substrate complex can be con-
verted into free enzyme either by release of substrate
or by release of product.) In such cases the rate
constants for the parallel steps must be added to-
gether at the outset, i.e. when the table of rate
constants is drawn up. Although this is merely a
useful but inessential simplification of the schematic
method (Volkenstein & Goldstein, 1966), it is an
essential part of the algebraic method.

Steps at equilibrium

If some steps in a mechanism are treated as
equilibria, the rate equation and its derivation are
greatly simplified (Cha, 1968). Each group ofenzyme
forms at equilibrium with one another is treated as a
single form, and all rate constants leading away
from the composite form are weighted according to
the reactive fraction of the equilibrium. For example,
suppose one requires a rate equation for Scheme 1 in
which the binding of B to E is treated as an equili-
brium. In this case [EB]/[E] = k+3b/lk3, and (E+EB)
can be treated as a composite species. The fraction of
(E+EB) that is capable of binding A to give EA is
1/(1 +k+3b/lk3), and so the rate constant k+1a for
conversion of E into EA must be replaced by the
weighted rate constant k+la/(l+k+3b/lk3) for con-
version of (E+EB) into EA. Applying this approach
to all rate constants for reactions that lead away from
E or EB one can convert Table 1 into Table 2, which
can then be analysed in the same way as before.
Although some of the rate constants in Table 2 have
a more complicated appearance than the correspond-
ing ones in Table 1, the analysis is much simpler,
because there are only three products in each sum-
mation instead of eight.

Implementation
The method described has been implemented as a

program in FORTRAN IV, which has been exten-
sively used over a 6-year period on four different
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Table 2. Treatment ofsteps at equilibrium
This Table is similar to Table 1, but is obtained from
Scheme 1 by assuming E and EB to be in equilibrium,
so that [EB]/[E] = k+3b/kL3, and treating (E+EB) as
a composite enzyme form.

From
To ... (E+EB) EA EAB

(E+EB) k+lk3a kL3kL5p+k+3k+4ab
kL3+k+3b kL3+k+3b

EA k-I k+2b
EAB kL4+k+5 k-2

computers. The current version is written for an
International Computers Ltd. (ICL) 1906A com-

puter and contains some unavoidable but minor
machine-dependent features. These are unlikely to
present any serious obstacles to running the program
on other computers, however, as only slightly different
versions were required for use on a Control Data
Corporation (CDC) 6400, an English Electric KDF9
and an International Business Machines (IBM) 370.
The current version, together with sample input,
output, instructions for use and suggestions of modi-
fications likely to be necessary with other computers,
has been deposited as Supplementary Publication
SUP 50078 at the British Library (Lending Division)
Boston Spa, Wetherby, West Yorkshire LS23 7BQ,
U.K.
The program accepts alphanumeric names for rate

constants and enzyme forms, and prints them in the
same way. For example, a rate constant k+1a can be
read in and printed as K+ IA. Consequently the
input is very simple and little or no translation of the
output is necessary to make it comprehensible.
The program is written to accept mechanisms of

up to ten enzyme forms and provides a complete
listing of all numerator terms, provided that there are
no more than 1500/(n- 1) products in each summa-

tion, where n is the number of enzyme forms [i.e. not
more than 1500/(n- 1) King-Altman patterns]. If this
limit is exceeded, a complete listing ofN1 is given, but
the other numerators are truncated after 1500/(n-1)
products and warnings are printed stating the number
of products omitted. The limits are included to avoid
wasting core store for simple mechanisms and can

readily be increased if necessary.
The program has been tested with many simple

mechanisms and some complex ones, such as the
general two-substrate-two-product mechanism of
Lam & Priest (1972), which includes eight forms and
12 reactions between them. With this mechanism, the
program generated 288 products for each numerator,
which were compared with the 288 King-Altman
patterns listed by Lam & Priest (1972). Apart from
the sequence in which they were generated the two
lists were identical.

The time required for execution of the program
varies somewhat with the computer used, but with
modern computers (CDC 6400, ICL 1906A or IBM
370) the central processor time has never exceeded a
few seconds. For simple mechanisms it is always much
less than I s, and, for the mechanism ofLam & Priest
(1972) mentioned above, the program required 8.9s
for execution on an IBM 370 computer. The amount
of core store required also varies with different com-
puters, but is typically about one-half ofthe minimum
required by the FORTRAN compiler; in other words,
the program is easily small enough to run on any
machine that can accommodate a FORTRAN
compiler.

Discussion

The protocol described in the present paper was
developed as a stage in the writing of a computer
program, but there is no reason why it should not be
used manually as an alternative to other methods of
deriving rate equations. As all valid methods must
lead to equivalent results it is a matter of personal
preference which should be used and there can be no
definitive assessment of which is 'best'. But it may
be helpful to outline the special advantages of the
currently available methods.
For complex mechanisms, the main advantage of

the original schematic method of King & Altman
(1956) is that it is immediately obvious to the eye
which patterns are valid and which are not, and so no
tests are necessary. But one must set against this the
difficulty of being certain that all possible patterns
have been found. This difficulty is decreased by
following the recommendations of Volkenstein &
Goldstein (1966); but then there is the new difficulty
that full and efficient use of these recommendations
requires a deep understanding of their principles.
This is even more true of the suggestions of Seshagiri
(1972), which achieve efficiency at a heavy cost in
simplicity.
The characteristics of the previously published

algebraic methods (Fromm, 1970; Orsi, 1972; Indge
& Childs, 1976) are the reverse of those of the
schematic method: it is much more certain that the
result is complete [provided that no products are
improperly deleted; see Cornish-Bowden (1976b)],
but it is more difficult to recognize invalid products.
In the method of Fromm (1970), some products are
generated more than once, and the repetitions must
be recognized and deleted. The method of Orsi (1972)
avoids this problem, but increases the number of
cycles to be eliminated by failing to ensure that every
product contains a route to the target species. (In the
terminology of the present paper it does not include
a check for rule 5.) Moreover, both authors dismiss
too readily the problem ofrecognizing cyclic products
incomplexmechanisms.(Thisproblemis,incidentally,
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aggravated by the widespread practice of ignoring the
recommendations of the Enzyme Commission on the
numbering of rate constants: a product that contains,
for example, kl3a k-3 is obviously cyclic, but the
cyclic character of the same combination may pass
unnoticed if it is written as k5a * k6.) Clearly an accept-
able algebraic method should include a reliable rule
for the detection of cycles. The method described in
the present paper includes such a rule, albeit one that
is more laborious to apply than the simple inspection
by the schematic method.

Several previous FORTRAN programs for deriv-
ing rate equations exist [e.g. Rhoads & Pring, 1968
('K program'); Hurst, 1967, 1969; Fisher & Schulz,
1969; Rudolph & Fromm, 1971], as well as some
others written in other languages or for particular
machines [e.g. Rhoads & Pring, 1968 ('D program');
Kinderlerer & Ainsworth, 1976; Indge & Childs,
1976]. In addition, Lam & Priest (1972) have des-
cribed a program for generating King-Altman
patterns, but without providing a complete rate
equation. This last is based on the same 'Wang
algebra' as the method of Indge & Childs (1976) and
presumably leads to the same difficulties if any rate
constants appear more than once in the mechanism
(Comish-Bowden, 1976b). Most of the other pro-
grams are based on the method of King & Altman
(1956), though two [Rhoads & Pring, 1968 ('D pro-
gram'); Hurst (1969)] use the full determinant method
described by Kistiakowsky & Shaw (1953) and do not
take advantage ofthe simplifications noted by King &
Altman (1956). The determinant method is slightly
more general (see Hurst, 1967), but it is also less effi-
cient and leads to much longer execution times. For
example, Hurst (1969) reports an execution time of
24.5s on an IBM 360 computer for the mechanism
shown in Scheme 1; I obtained 0.4s on an IBM 370
computer. The execution times of several minutes
given by Fisher & Schulz (1969) also seem surprisingly
long, but this may reflect the use of an earlier genera-
tion of computer rather than any inefficiency in their
method.
Most of the programs have been described only in

outline or in technical terms that would not readily
permit the user to mimic them by hand. Consequently
it is difficult for the user to modify them to suit
special needs, to check their operation manually, or
to rewrite them to take advantage of the special
features of particular computers. Accordingly, the
emphasis in the present paper has been primarily on

the details of the procedure and only incidentally on
its implementation as a computer program. The
program does in fact follow a protocol essentially
identical with that described.

I am grateful to Dr. A. C. Storer and Dr. K. F. Tipton
for persuading me of the practical usefulness of this work
and for suggesting improvements to the first draft. The
work was initiated in the Department of Biochemistry,
University of California at Berkeley, and some of the
final testing of the method, carried out in response to
helpful comments of the Referees, was done at the
University of Guelph, Ontario, Canada.
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