Table 4.
Precision (Pre) and Recall (Rec) per class after fine-tuning the model for every target dataset. Precision and recall are computed, respectively, to their class.
Dataset | Bas |
Eos |
Ery |
Lym |
Mon |
Neu |
||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre | Rec | Pre | Rec | Pre | Rec | Pre | Rec | Pre | Rec | Pre | Rec | |
Rabin | 0.88 | 0.36 | 0.78 | 0.72 | 0.87 | 0.97 | 0.73 | 0.79 | 0.96 | 0.98 | ||
Munich 2021 | 0.64 | 0.13 | 0.75 | 0.80 | 0.78 | 0.93 | 0.76 | 0.88 | 0.91 | 0.28 | 0.89 | 0.96 |
Lisc | 0.96 | 1.0 | 1.0 | 0.70 | 0.96 | 0.93 | 0.70 | 0.97 | 0.88 | 0.91 | ||
Jslh | 1.00 | 1.00 | 1.00 | 1.00 | ||||||||
Jin woo choi | 1.0 | 0.87 | 0.72 | 1.0 | ||||||||
Jiangxi tecom | 0.58 | 1.0 | 0.80 | 0.60 | 0.88 | 0.85 | 0.96 | 0.97 | ||||
Bccd | 0.70 | 0.67 | 0.94 | 0.94 | 0.81 | 0.92 | 0.77 | 0.71 | ||||
Tianjin | 0.95 | 0.73 | 0.81 | 0.99 | 0.77 | 0.94 | 0.93 | 0.92 | 0.98 | 0.98 |