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A B S T R A C T

Photoacoustic tomography, a novel non-invasive imaging modality, combines the principles of optical and
acoustic imaging for use in biomedical applications. In scenarios where photoacoustic signal acquisition is
insufficient due to sparse-view sampling, conventional direct reconstruction methods significantly degrade image
resolution and generate numerous artifacts. To mitigate these constraints, a novel sinogram-domain priors
guided extremely sparse-view reconstruction method for photoacoustic tomography boosted by enhanced
diffusion model is proposed. The model learns prior information from the data distribution of sinograms under
full-ring, 512-projections. In iterative reconstruction, the prior information serves as a constraint in least-squares
optimization, facilitating convergence towards more plausible solutions. The performance of the method is
evaluated using blood vessel simulation, phantoms, and in vivo experimental data. Subsequently, the trans-
formation of the reconstructed sinograms into the image domain is achieved through the delay-and-sum method,
enabling a thorough assessment of the proposed method. The results show that the proposed method demon-
strates superior performance compared to the U-Net method, yielding images of markedly higher quality.
Notably, for in vivo data under 32 projections, the sinogram structural similarity improved by ~21% over U-Net,
and the image structural similarity increased by ~51% and ~84% compared to U-Net and delay-and-sum
methods, respectively. The reconstruction in the sinogram domain for photoacoustic tomography enhances
sparse-view imaging capabilities, potentially expanding the applications of photoacoustic tomography.

1. Introduction

Photoacoustic imaging is a novel non-invasive modality in biomed-
ical imaging, combining the advantages of high contrast of optical im-
aging and high resolution of acoustic imaging in deep tissues [1–4].
Photoacoustic tomography (PAT), a significant branch of photoacoustic
imaging, demonstrates substantial clinical translational potential and
promising prospects for widespread application. Nevertheless, current
PAT imaging techniques and systems face several limitations, such as
limited number of transducer array elements, restricted detection an-
gles, and constrained bandwidth [5–8]. These challenges lead to sig-
nificant artifacts, low resolution, and limited imaging depth in
photoacoustic images.

In PAT imaging, conventional reconstruction methods such as back-

projection [9,10], time reversal [11,12], and delay-and-sum [13,14]
(DAS) tend to degrade image quality and imaging depth when the
photoacoustic signal data acquisition is sparse. Model-based iterative
methods [15–19] can mitigate these issues to some extent. Nevertheless,
these methods are computationally expensive, time-consuming, and the
reconstruction quality heavily depends on the selection of prior models
and regularization methods. In recent years, deep learning has emerged
as a preferred method in medical imaging, showing immense potential
for efficiently reconstructing high-quality images [20–23].

Currently, most deep learning-based PAT reconstruction methods
function within the image domain. Davoudi et al. proposed a U-Net-
based sparse-view reconstruction method that removes artifacts in
photoacoustic images by training end-to-end from sparse-view to full-
view images [6]. Guan et al. introduced a FD-Unet method for sparse
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reconstruction [24], which incorporates dense blocks into a standard
U-Net architecture, significantly enhancing the feature extraction ca-
pabilities of the network and effectively eliminating artifacts. Another
common type of reconstruction method is the direct reconstruction of
sinograms into photoacoustic images. Feng et al. proposed an end-to-end
Res-UNet method [25], which is trained on pairs of sinograms and their
corresponding photoacoustic images, enabling direct reconstruction of
photoacoustic images from sinograms. Guan et al. also developed a
pixel-level deep learning (Pixel-DL) method for sparse-view recon-
struction [26], employing sinogram pixel-level interpolation based on
photoacoustic wave propagation physics as input for a deep learning
network to directly output reconstructed images. However, there are
few studies focused solely on sparse-view reconstruction in the sinogram
domain. By implementing direct reconstruction in the sinogram domain,
thus improving the results of inverse problems and inherently reducing
distortions in image reconstruction methods [27,28]. Awasthi et al.
proposed an enhanced U-Net network that reconstructs super-resolution
sinograms from degraded sinograms and use a linear back-projection
method for the final PAT image reconstruction [28].

In recent years, the development of generative models [29–34] has
shown significant potential for generating high-quality data. During the
parameter learning process, generative models acquire prior informa-
tion that can be utilized for restore degraded images. Score-based
generative models [34] have adopted more efficient sampling
methods, further enhancing their generative capabilities. Score-based
models learn the probability distribution of given samples, deriving
probabilistic models to generate target images that fit the characteristics
of the samples. Inspired by this, a novel sinogram domain sparse-view
reconstruction method for photoacoustic tomography based on an
enhanced score-based diffusion model was proposed. This method har-
nesses the capability of generative models to learn prior information,
focusing on sparse reconstruction in the sinogram domain. During the
training phase, an enhanced diffusion model is employed to learn the
prior distribution of sinograms under full-ring 512 projections. During
reconstruction, the prior information serves as a constraint in the
least-squares optimization, facilitating the generation of missing data in
sparse sinograms. Then, the reconstructed sinograms are transformed
into the image domain using the DAS method. The contribution of this
work is summarized as follows:

• It is the first time a sinogram domain prior-guided method exploiting
enhanced score-based diffusion model has been proposed. By
implementing direct reconstruction in the sinogram domain, it im-
proves the results of inverse problems and inherently reducing dis-
tortions in image-domain reconstruction methods.

• The proposed enhanced diffusion model network is equipped with a
parallel auxiliary network. It enables the network to learn prior in-
formation from both full-view and sparse-view sinograms, resulting
in higher-quality reconstruction compared to the original diffusion
model using only the backbone network.

• The proposed method is compared with the state-of-the-art methods,
demonstrating high reconstruction precision. Even under extremely
sparse conditions with only 32 projections, the proposed method
performs exceptionally well. Additionally, the proposed method also
greatly improves structural similarity for in vivo experimental data.

2. Method

2.1. Photoacoustic tomography principle

In PAT imaging, pulse lasers are typically directed at the target tissue
area, and ultrasound detectors capture the photoacoustic signals. By
considering the relative positions of the transducers and the tissue, along
with other imaging system parameters, the structural information of the
tissue can be reconstructed, ultimately forming a photoacoustic image of
the target tissue. The initial acoustic pressure at each sound source can

be calculated using the corresponding formula, represented by Eq. (1):

P0 = Γηthμaϕ (1)

where Γ is the dimensionless Gruneisen parameter, ηth representing the
efficiency of converting optical energy into thermal energy, μa denotes
the optical absorption coefficient, and ϕ represents the optical fluence.
Centered at a point in the tissue excited by the laser, the mathematical
model of the photoacoustic signal propagation equation at a distance r
from the point can be expressed by Eq. (2):
(

∇2 −
1
c2

∂2

∂t2

)

P
(

r, t
)

= −
γ
cp

∂H(r, t)
∂t

(2)

where H(r, t) = ρCv∂T(r,t)
∂t is the heating function, c is the speed of sound,

cp is the specific heat capacity of the tissue, γ is the thermal expansion
coefficient, and P(r, t) is the acoustic pressure at position r and time t.
P(r, t) can be determined using the Green’s function method, as shown in
Eq. (3):
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Eq. (3) delineates the propagation process of acoustic waves in PAT
imaging. In real-world scenarios, sparse sampling is typically used to
acquire photoacoustic signals (i.e., sinograms), as illustrated in Eq. (4):

y = P(Λ)x (4)

where y represents the photoacoustic signal detected by the transducer.
x denotes the photoacoustic signal under full view. P(Λ) is a binary
extraction mask, where the value of each row represents the sampling
strategy under the corresponding projection. A value of 0 indicates no
sampling, while a value of 1 indicates sampling. The sparse sampling can
be regarded as the process that x is sampled to obtain y via an extraction
mask P(Λ). In this paper, the sparse reconstruction process can be suc-
cinctly summarized as utilizing y to restore the x.

2.2. Enhanced score-based diffusion model

The score-based diffusion model treats the data within the training
dataset as independent and identically distributed samples drawn from a
common distribution pdata. To estimate the parameters of the unknown
data distribution pdata, a neural network is employed to model its
probability structure, yielding an estimated distribution pθ with known
parameters [34]. The distribution pθ closely approximates pdata, the
distribution of the training data. Furthermore, the score-based diffusion
model employs the score function∇x log pdata(x), defined as the gradient
of the log-probability density function, to characterize data distribution.
This model reframes the task of estimating the data distribution as a
process of training a neural network to approximate the score function
∇x log pdata(x)of data distribution pdata.

In score-based diffusion model, the diffusion process is modeled as a
dynamic system influenced by random noise using stochastic differential
equations (SDE). The diffusion model consists of a forward SDE process
and a corresponding reverse SDE process, as depicted in Fig. 1. The
forward process progressively injects Gaussian noise into the data dis-
tribution. This gradual process transforms the original data distribution
through a series of intermediate distributions, ultimately converging to a
simple, known prior distribution (typically a standard Gaussian). The
reverse process, governed by the backward SDE, systematically removes
the injected noise, thereby transforming the simple prior distribution
through a sequence of intermediate distributions, ultimately approxi-
mating the original data distribution. The process effectively enables
sampling from the learned data distribution.

The model utilizes Brownian motion to describe the forward diffu-
sion process, as represented by Eq. (5).
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dx = f(x, t)dt+ g(t)dw (5)

where f(x, t) ∈ ℝn represents the drift coefficient, g(t) ∈ ℝ represents the
diffusion coefficient, w ∈ ℝn denotes the Brownian motion, dt is the
infinitesimal time step, and dx represents the increment of the data
within dt. The forward SDE process aims to train a score network Sθ to
obtain a known distribution approximating the data probability distri-
bution pdata without relying on specific structural interpretations. Noise-
disturbed data distribution obtained from the forward process is used as

training data to train the score network, which estimates the scores of
the data distribution. These scores are then employed in solving the
reverse SDE to generate data from noise. The reverse SDE process solves
for samples, as show in Eq. (6):

dx =
[
f
(
x, t
)
− g(t)2∇x log pt(x)

]
dt+ g(t)dw (6)

where w denotes the reverse Brownian motion. The specific structure of
the SDE can be constructed by selecting different f(x, t) and g(t). This
work employs variance exploding (VE) SDEs to generate samples of

Fig. 1. (a)→(e) The forward diffusion process of the SDE. The forward process gradually adds Gaussian noise to the original sinogram. (e)→(a) The reverse diffusion
process of the SDE. The reverse process is the inverse of the forward process, progressively reconstructing the original sinogram from a state filled with noise.

Fig. 2. The structure of the enhanced score network. The red dashed box encompasses the original encoder structure (backbone network). The green dashed box
denotes the introduced auxiliary network within the encoder. The purple dashed box represents the decoder structure. t, the time step for the reverse SDE. xt , the
noise-disturbed of full-view sinograms. e, the sparse-view sinograms prior after the nearest-neighbor interpolation. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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superior quality, as depicted in Eq. (7).

f
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√
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where σ(t) > 0 is a monotonically increasing noise scale function over
time t. During the training phase, the parameters θ of the score network
are optimized according to Eq. (8):

The trained score network satisfies Sθ(xt , t,e) ≃ ∇x log pt(xt |x0), also
called denoising score matching. The input to the score network includes
the noise-disturbed image xt, the time t, and the prior information e
containing information of x0. It can approximate the solution to Eq. (6)
within a specified time t, achieving image restoration corresponding to
the noise scale σ(t), as depicted in Eq. (9).

dx =
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dt
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(
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)

+

̅̅̅̅̅̅̅̅̅̅̅̅
d[σt2]

dt

√

dw (9)

In this paper, the score-based diffusion model was enhanced by
changing the original network, with introducing an independent prior e
containing information of x0 into the score network, thereby alleviating
the issue of insufficient prior information for sparse reconstruction in
PAT. Fig. 2 illustrates the structure of the enhanced score network.

Based on the original score network structure, the enhanced score
network introduces an auxiliary network that runs parallel to the orig-
inal encoder (backbone network). The auxiliary network is designed to
encode multi-scale features of e. In the encoder section, t encoded via
Fourier embedding and intermediate image xt are input into the back-
bone network for multi-scale feature extraction. The inputs are pro-
cessed through residual convolution blocks consisting of convolution
layers, group normalization, dropout, and an activation function. Scale
features extracted by the auxiliary network are concatenated with those
from the backbone network at the combined layers, forming the input
for the next layer, and are made available to the upsampling stage via
skip connections. The parallel auxiliary network notably extracts global
image structure information, supplying features for subsequent smaller-
scale extraction in the backbone network. In the decoder section, the
scale features extracted at various scales by both the backbone network
and the auxiliary network in the encoder are fused and utilized for
upsampling purposes. Between the encoder and decoder, a single-layer
self-attention mechanism is applied to process the features, while all
other feature extraction stages are handled by convolution layers. The
final output of Sθ(xt , t, e) incorporates the prior information of xt, σ(t),
and e, therefore enhancing the accuracy of denoising score matching.

2.3. Sinogram domain sparse reconstruction of PAT based on diffusion
model

In scenarios of extreme sparse-view sampling, the application of the
original diffusion model to reconstruct sparse data frequently induces
pixel-level distortions, consequently yielding ill-posed solutions in
sinogram reconstruction. The phenomenon also occurs in analogous
applications of diffusion models [35–37]. Inspired by the utilization of
sketches to guide diffusion models in the generation of high-resolution
images [38], the proposed method incorporates ý as the aforemen-
tioned prior input e. ý is obtained through nearest-neighbor

interpolation from the sparse sinogram y. ý can be considered as a
low-resolution sketch, offering prior information for the score network,
and thereby enhancing the accuracy of denoising score matching. The
optimization problem in sparse reconstruction can be formulated as Eq.
(10):

x = arg min
x

‖P(Λ)x − P(Λ)ý ‖22 + τR
(

x, ý
)

(10)

where ‖P(Λ)x − P(Λ)ý‖22 is the data consistency (DC) term, ensuring that
the generated data remains consistent with the original data in certain
specific aspects. The nearest-neighbor interpolation (NI) is used to
obtain a sparse sinogram ý of size 512×512 from a sparse sinogram y.
P(Λ) represents an extraction mask for the sinogram, transforming the
sparse sinogram ý to P(Λ)ý , which is suitable for network processing, as
detailed in Fig. 3. During the reconstruction stage, the intermediate
results xi are processed by the operator P(Λ) to obtain the corresponding
components with ý , thereby ensuring data consistency between x and y
via the L2-norm. Due to sparse sampling, the ill-posedness of the opti-
mization problem is exacerbated, increasing the non-uniqueness of the
solution. Incorporating a high-quality prior as a regularization term can
lead to faster and more accurate convergence in the problem-solving
process. The regularization term τR(x, ý ) is implemented through the
enhanced score-based diffusion model, which allows the proposed
method to overcome the ill-posedness of the optimization problem by
learning high-quality prior.

Fig. 4 illustrates the network input and replacement fidelity methods
during the reconstruction phase. As shown in Figs. 4(a) and 4(b) the
original sparse sinogram y is obtained through the forward process by
the k-Wave toolbox. The k-Wave toolbox is widely employed in PAT [39,
40]. In each iteration, elements of the network output xi are selectively
replaced by corresponding elements from y through replacement fidel-
ity. The updated xi then serves as the input for the next iteration, as
illustrated in Fig. 4(c). Fig. 4(d) displays ý , which is the result of
applying nearest-neighbor interpolation to the sparse sinogram y. Figs. 4
(e)-4(h) show the results after the replacement operation. The final
sparse reconstruction x0 conforms to the prior distribution pθ ≃ pdata,
thus achieving high-quality sparse reconstruction.

The training process for sparse reconstruction in the sinogram
domain is depicted in the upper part of Fig. 5. During training,
∇x log pt(xt |x0) replaces the unknown ∇x log pt(x) to realize the step-
wise noise addition based on t. xt is obtained by applying Gaussian
perturbation centered at x0, where ∇x log pt(xt |x0) represents the
gradient of the log-likelihood function of the current state xt with
respect to x0. The score network is trained to estimate the gradient,
achieving denoising score matching as described in Eq. (11).

dx =
[
f
(
x, t
)
− g(t)2∇x log pt

(
xt |x0)

]
dt+ g(t)dw (11)

The enhanced diffusion model achieves iterative reconstruction of
sinograms through two pivotal steps: prediction and correction, as
shown in the lower part of Fig. 5.

Predictor: Prediction is conducted based on Eq. (12) to generate the
target sinogram x̂i from the learned prior distribution, followed by
replacement fidelity to derive x̂1i , as shown in Eq. (13):

x̂i = xi +

(

σ2i+1 − σ2i
)

Sθ

(

xi, t, ý
)

+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2i+1 − σ2i
√

zi (12)

θ∗ = arg min
θ

Et∼N(0,T)

{
λ(t)Ex0∼p0(x)Ext∼p(xt |x0)

[
‖Sθ(xt , t, e) − ∇xt log pt(xt |x0)‖22

]}
(8)
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Fig. 3. The process of mask-based extraction from the sinogram. P(Λ) is the extraction operator. NI, nearest-neighbor interpolation.

Fig. 4. Schematic diagram of the fidelity input to the score network and the method of iteration replacement fidelity during the reconstruction phase. (a) The
forward process in photoacoustic imaging simulated by the k-Wave toolbox. b) The original sparse data y. (c) The result of mask sampling on ý through P(Λ). (d)The
sparse sinogram ý after nearest-neighbor interpolation. (e)-(h) The sinograms after the replacement fidelity. NI, nearest-neighbor interpolation.

Fig. 5. Sparse reconstruction flowchart in the sinogram domain for PAT. Top: The training process for learning the gradient distribution of sinograms using denoising
score matching. Noise is added to training samples to create disturbed inputs xt for the score network Sθ, which is trained to estimate the score using the time step t
and the sparse-view sinogram prior e. Bottom: Sparse reconstruction using a numerical SDE solver. Pure noise xt is denoised by the Predictor and Corrector using the
reverse SDE. Data consistency ensures fidelity. P(Λ)ý directs score estimation for sparse reconstruction. The final output x0 is projected into the image domain. DC,
data consistency.
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x̂1i = arg min
x

‖P(Λ)x̂i − P(Λ)ý ‖22 (13)

where σi is the noise scale, i = N − 1, ⋅⋅⋅,1,0 is the number of iterations,
and z ∼ ℕ(0,1) is Gaussian white noise with zero mean.

Corrector: The further improved sinogram x̂2i is obtained using the
Langevin Markov Chain Monte Carlo correction algorithm [41], as
depicted in Eq. (14). Subsequently, replacement fidelity is applied to
obtain xi− 1, as shown in Eq. (15).

x̂2i = x̂1i + εiSθ

(
x̂1i , σi+1, ý

)
+

̅̅̅̅̅̅
2εi

√
zi (14)

xi− 1 = arg min
x

⃦
⃦P(Λ)x̂2i − P(Λ)ý

⃦
⃦
2

2 (15)

By employing prediction-correction sampling and replacement fi-
delity, iterative generation achieves high-quality sparse reconstruction.
Algorithm 1 outlines the pseudocode for the training and reconstruction
process. During the training stage, the network learns the prior distri-
bution of the object sinogram dataset. In the reconstruction stage, the
algorithm operates in two nested loops: (1) The outer loop utilizes the
learned prior distribution to predict and applies replacement fidelity on
sparse sinograms. (2) The inner loop employs the correction algorithm
to further refine the sinograms and perform replacement fidelity again.

Algorithm 1. . Training for prior learning

2.4. Dataset and network configuration

In this paper, the sparse reconstruction performance of the proposed
method was validated using both simulated and experimental data. A
virtual PAT system was simulated using the k-Wave toolbox, enabling
the simulation of forward acoustic wave propagation for arbitrary pro-
jection angles [39]. The entire computational area is set to 50.1 mm ×

50.1 mm, with a total grid of 506 × 506 pixels. And the reconstruction
grid is set to 256 × 256 pixels. The ultrasound transducers are set with a
central frequency of 2.25 MHz and a bandwidth of 70 %. They are
positioned at a radial distance of 22 mm from the grid center. The sound
velocity is set to 1500 m/s, and the surrounding medium is water with a
density of 1000 kg/m³.

The simulation dataset from the public retinal vessel datasets RAVIR
and DRIVE [42]. Following data augmentation operations such as
rotation and cropping, a total of 1688 images were obtained. These
images were split into training and test sets in an 8:1 ratio, with 1500
images allocated for training and 168 images for testing. The experi-
mental datasets consist of public circular phantom and in vivo mouse
datasets [6], both acquired under full-ring 512 projections. After
augmentation, the circular phantom dataset comprises 1600 images,
with 1422 images used for training and 178 images for testing. The in
vivo mouse dataset contains 800 images, with 711 images for training
and 89 for testing. During experimentation, the training sets were im-
ported into the virtual PAT to generate sinograms under full-ring 512
projections. The test sets were processed using the virtual PAT to obtain
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sinograms under varying projections (32, 64, 128 and 512 projections).
Sinograms acquired under 32, 64, and 128 projections were utilized as
sparse data for reconstruction purposes, while sinograms obtained under
512 projections served as the ground truth (GT).

The training process utilized the Adaptive Moment Estimation
(Adam) optimization method with a learning rate set to 2×10–4. For the
iterative reconstruction phase, the number of noise scale (number of
iterations) was set to 2000, with images sized at 512×512 pixels.
Gaussian noise perturbation was introduced with noise values ranging
from 0.6 to 300, which indicate the range of Gaussian noise perturba-
tions. The number of noise scale corresponds to the number of levels into
which the noise is categorized. Noise scales are equivalent to the number
of iterations in reconstruction phase. The noise scale determines the
granularity of noise values divisions and influences the accuracy of score
estimation for denoising, which transitions from the noise distribution to
the training data distribution. The learning rate controls the magnitude
of parameter updates in each iteration. The model was developed using
the PyTorch framework, predominantly within a Python environment.
All computations were executed on a GeForce RTX 3060Ti GPU equip-
ped with 8 GB of memory and an Intel Core (TM) i7-12700.

2.5. Baseline methods

In this paper, the proposed method was rigorously compared against
the Cycle-GAN [43], Attention-based U-Net (At-Unet) [44], diffusion
model (DM, using only the backbone network), U-Net [28], iterative
model-based [17] methods to highlight its superior performance. GANs
are a powerful class of generative models that learn the distribution of
data through the continuous adversarial process and optimization be-
tween the generator and the discriminator, enabling the generation of
high-quality data. Lu et al. employed a Cycle-GAN-based method, called
PA-GAN [45], for PAT sparse reconstruction in image domain. In the
following, Cycle-GAN will be used to evaluate its reconstruction per-
formance in sinogram domain. Wang et al. proposed an Attention-based
U-Net [44], which integrates local-global self-attention and external
attention mechanisms by introducing a hybrid Transformer module. The
network architecture effectively captures long-range dependencies be-
tween data samples, demonstrating strong performance in medical
image processing tasks, which will be used to evaluate its reconstruction
performance in sinogram domain as one of baseline methods. In addi-
tion, the reconstruction performance of the original diffusion model
using only the backbone network will also be discussed to validate the
advantages of introducing a parallel auxiliary network. In previous work
[17], an advanced image domain sparse reconstruction method

combining model-based iteration and diffusion model was proposed,
wherein the prior learned by the diffusion model serves as the regula-
rization term. The performance of the proposed method in the image
domain will be compared with that of the model-based method (mod-
el-based DM). U-Net is widely recognized for its effectiveness in image
segmentation tasks. Awasthi et al. enhanced the U-Net architecture by
substituting Relu activation functions with Elu to better accommodate
the bipolar characteristics in sinogram data [28]. The model-based DM
method is trained in image domain, while the other methods are trained
in sinogram domain. The datasets used for the baseline methods are
identical. During the training phase, the sparse sinograms size of P×512
(with P being 32, 64, or 128) pixels are resized to 512×512 pixels using
the nearest-neighbor interpolation. These resized sinograms serve as
inputs to the network, while corresponding sinograms captured under
512 projections act as the target images. In the reconstruction stage,
sparse sinograms, after undergoing nearest-neighbor interpolation, are
input into the network to generate reconstructed sinograms.

3. Outcomes

3.1. Results of simulation blood vessels

In the reconstruction stage, the reconstruction iterating starts from a
pure noise image, and the simulated sparse sinograms are input into the
network as the data fidelity term. Fig. 6(a)-6(f) show the iterative
reconstruction of the sinograms under 64 projections, processing from
0 to 1000 iterations. The white numbers at the bottom of the figures are
the peak signal-to-noise ratio (PSNR) values, and the yellow numbers are
the structural similarity (SSIM) values. Figs. 6(h)-6(m) showcase the
corresponding blood vessel images reconstructed by the DAS method.
Figs. 6(g) and 6(n) is the GTs of the sinograms and the blood vessel
images, respectively. By the 9th iteration, the outlines of both the
sinograms and vessels begin to emerge from the noise. As the iterations
progress from the 16th to the 300th, the noise gradually decreases,
leading to clearer outlines of the sinograms and vessels. Furthermore,
the curves of PSNR and SSIM steadily rise with the number of iterations,
as depicted in Figs. 6(o) and 6(p). At the 1000th iteration, the noise is
nearly eliminated, and the reconstructions of both sinograms and vessels
stabilize. The PSNR and SSIM values for the sinograms at this stage are
39.3 dB and 0.96, respectively. The vessel images achieve PSNR and
SSIM values of 35.0 dB and 0.97, respectively. This iterative process
demonstrates significant improvement in image quality and fidelity as
the reconstruction algorithm refines its output through successive
iterations.

Fig. 6. The iterative reconstruction process for simulated blood vessels under 64 projections. (a)-(f) The iterative reconstruction process of the sinograms from the
0th to the 1000th iterations. (h)-(m) The corresponding blood vessel images were reconstructed from the sinograms using the DAS method. (g) and (n) The GT for the
sinograms and blood vessel images, respectively. (o) and (p) The PSNR and SSIM iteration carves, respectively.
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Fig. 7 shows the comparison of reconstruction results from different
sparse projection sinograms using the Cycle-GAN, At-Unet, DM, U-Net
and the proposed methods. Figs. 7(a)-7(c) show the sinograms (raw
data) under 128, 64, and 32 projections, respectively. Figs. 7(d)-7(r)
show the reconstruction results using the baseline methods and the
proposed method, respectively. The SSIM values are annotated in yellow
at the bottom. Fig. 7(s) show corresponding GT sinogram. As the number
of projections decreases, the results of the Cycle-GAN method are the
worst, and the results of At-Unet have serious signal distortion. The DM
and U-Net methods have shown some improved, but under relatively
sparse projections of 64 and 32, the sinograms have a certain degree of
distortion. In contrary, the proposed method demonstrates robust per-
formance across varying projections. Notably, even under extremely
sparse 32 projections, the proposed method maintains accurate

sinogram structures. Figs. 7(t) and 7(u) show the close-up images indi-
cated by green boxes 1 and 2 in Fig. 7(s), highlighting more precise
details reconstructed by the proposed method (indicated by the yellow
arrows) compared to the baseline methods. Figs. 7(v) and 7(w) present
the signal intensity distributions along white dashed lines in close-ups 1
and 2 under 32 projections. The signal distribution from the proposed
method closely aligns with the GT, underscoring its effectiveness under
sparse conditions. Spectra and phase residuals of the signals along the
white dashed lines in close-up 2 are shown in Figs. 7(x) and 7(y),
respectively. It can be observed that the frequency composition of the
proposed method is closest to that of the GT, and it exhibits the smallest
phase deviation. Quantitative analysis further supports the superiority
of the proposed method. Under the 128 projections, the SSIM of the
proposed method reaches 0.98, which is comparable to the U-Net

Fig. 7. Reconstruction results of sinograms of simulation blood vessels using different methods under different projections. (a)-(c) Sparse sinograms (raw data) under
128, 64, and 32 projections, respectively. (d)-(f) Reconstructed sinograms using the Cycle-GAN method. (g)-(i) Reconstructed sinograms using the Attention-based U-
Net method. (j)-(l) Reconstructed sinograms using the diffusion model method. (m)-(o) Reconstructed sinograms using the U-Net method. (p)-(r) Reconstructed
sinograms using the proposed method. (s) Ground truth sinogram for reference. The yellow numbers at the bottom of each figure are the SSIM values. (t) and (u) The
close-up images indicated by the green boxes 1 and 2 in (s), respectively. Yellow arrows highlight differences in reconstructed details between methods. (v) and (w)
Signal intensity distributions along the white dashed lines in close-ups 1 and 2 under 32 projections, respectively. (x) and (y) Spectra and phase residuals of the
signals along the white dashed lines in close-ups 2, respectively.
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method and significantly higher than other methods. Under 64 pro-
jections, the proposed method achieves a SSIM of 0.97, surpassing the U-
Net, DM, At-Unet and Cycle-GAN methods by 0.08, 0.1, 0.06, and 0.2,
respectively. It indicates the advantages of the proposed method in
sparse reconstruction. When the number of projections is further
reduced to 32, the SSIM of the proposed method achieves 0.90, which is
0.06, 0.12, 0.17 and 0.29 higher than the U-Net, DM, At-Unet and Cycle-
GAN methods, respectively. It underscores the superior reconstruction
performance of the proposed method even under highly sparse projec-
tion conditions.

To further evaluate the results, the sinograms in Fig. 7 were pro-
cessed into the image domain using the DAS method, as shown in Fig. 8.
It is worth noting that the model-based DM method is also included in
the comparison to evaluate the performance of the proposedmethod and
the image-domain method. Figs. 8(a)-8(c) show the reconstruction re-
sults using only the DAS method under 128, 64, and 32 projections,
respectively. It is obvious that there are serious artifacts under different
sparse projections. The SSIM values denoted in yellow at the bottom of
each figure. Figs. 8(d)-8(u) show the reconstruction results of the
baseline methods and the proposed method, respectively. Fig. 8(v)

depict the GT image for reference. Obviously, compared with the DAS
method, the Cycle-GAN and At-Unet methods only remove a small
amount of artifacts, and the images are even worse under 32 projections.
The DM and U-Net methods have achieved substantial improvement in
reconstruction. However, artifacts are still visible, particularly around
blood vessels. It is worth noting that both the model-based DM method
and the proposed method exhibit exceptional performance across
different projections. Even under the highly sparse condition of 32
projections, artifacts are significantly reduced and the structures of
blood vessels remain clearly discernible. Additionally, Figs. 8(w) and 8
(x) show the close-up images indicated by the green boxes 1 and 2 in
Fig. 8(v). Compared to the DAS, Cycle-GAN, At-Unet, DM and U-Net
methods, both the model-based DM method and the proposed method
demonstrate significantly reduced artifacts, complete vessel structures,
and richer detail information, as indicated by the yellow arrows. Figs. 8
(y) and 8(z) show the signal intensity distributions along the white
dashed lines in close-ups 1 and 2 under 32 projections. It is evident that
the signal distribution of both the model-based DM method and the
proposed method closely aligns with the GT, outperforming the other
methods. Quantitative analysis further confirms the above phenomenon.

Fig. 8. Reconstruction results of simulated blood vessels images using different methods under different projections. (a)-(c) The reconstruction results of the DAS
method under 128, 64, and 32 projections, respectively. (d)-(f) Reconstruction results using the Cycle-GAN method. (g)-(i) Reconstruction results using the Attention-
based U-Net method. (j)-(l) Reconstruction results using the diffusion model method. (m)-(o) Reconstruction results using the U-Net method. (p)-(r) Reconstruction
results using the model-based DMmethod. (s)-(u) Reconstruction results using the proposed method. (v) Ground truth image for reference. The yellow numbers at the
bottom of each figure indicate the SSIM values. (w) and (x) The close-up images indicated by the green boxes 1 and 2 in (v), respectively. Yellow arrows highlight
differences in reconstructed details among the methods. (y) and (z) Signal intensity distributions along the white dashed lines in close-ups 1 and 2 under 32 pro-
jections, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Under 128 projections, the SSIM of both the model-based DM method
and the proposed method reach 0.98, which is 0.04, 0.05, 0.17, 0.21 and
0.32 higher than that of the U-Net, DM, At-Unet, Cycle-GAN and DAS
methods, respectively. Under the 64 projections, the SSIM of the pro-
posedmethod reaches 0.96, which is comparable to themodel-based DM
method and is 0.12, 0.13, 0.19, 0.4 and 0.46 higher than the U-Net, DM,
At-Unet, Cycle-GAN and DAS methods, respectively. Even under the
extremely sparse condition of 32 projections, the SSIM value of the
proposed method is comparable to that of the model-based DM method
and far exceeds other methods. These metrics underscore the superior
reconstruction capabilities of the proposedmethod in the image domain,
particularly under extremely sparse projection conditions. Moreover,
the proposed method, by directly reconstructing in sinogram domain,
not only greatly reduces the computational complexity but also shows
performance as good as that of state-of-the-art methods in the image
domain.

To strengthen the claims, additional tests were conducted on six
simulated blood vessels images. The sinogram-domain and image-
domain reconstruction results for two of the test images are shown in
Figs. 9 and 10, respectively. The reconstruction performance on the
additional test images is consistent with the results and analysis pre-
sented above. The proposed method demonstrates an overwhelming
advantage in sinogram domain compared to other methods. Moreover,

despite having lower computational complexity than the model-based
DM method, the proposed method exhibits comparably outstanding
performance.

A cross-correlation (CC) [46,47] image evaluation metric has been
introduced to quantify the degree of correlation between the recon-
structed images and the GT image. By calculating the sum of the prod-
ucts of corresponding elements as one matrix slides over another, a new
cross-correlation matrix is obtained. The normalized maximum value of
the cross-correlation matrix serves as the quantitative measure of
correlation.CC ∈ [0,1], while 0 indicates no correlation, and 1 indicates
perfect correlation. The averages of SSIM and CC values for the recon-
struction results of the seven simulated blood vessels images in both the
sinogram domain and image domain using different methods are pre-
sented in Tables 1 and 2, respectively. Side-by-side comparisons high-
light the excellent performance and robustness of the proposed method.

3.2. Results of experimental phantoms

To validate the effectiveness of the proposed method on experi-
mental data, Fig. 11 presents a comparative of reconstruction perfor-
mance achieved using the different method on circular phantom
experimental data under varying projections. Figs. 11(a)-11(c) show the
sparse sinograms under 128, 64, and 32 projections, respectively.

Fig. 9. Reconstruction results of sinograms of two additional simulated blood vessels using different methods under different projections.
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Figs. 11(d)-11(r) show the reconstruction results using the Cycle-GAN,
At-Unet, DM, U-Net and the proposed methods, respectively. The SSIM
values provided at the bottom of each figure. The baselinemethods show
good reconstruction capability under 128 projections but exhibits limi-
tations as the number of projections decreases. The proposed method
effectively reconstructs signals from missing projections across different
sparse conditions and maintains high-quality reconstruction even under
extremely sparse 32 projections. Fig. 11(s) present the GT sinogram for
reference. Figs. 11(t) and 11(u) show the close-up images indicated by
the green boxes 1 and 2 in Fig. 11(s). Compared to the baseline methods,
the proposed method accurately reconstructs missing projection signals
and preserves detailed information in the sinograms (highlighted by
yellow arrows). Quantitative analysis confirms the superiority of the
proposed method. Under 128, 64, and 32 projections, the SSIM values
for the proposed method are 0.94, 0.94, and 0.93, respectively. With the
extremely sparse condition of 32 projections, it represents improve-
ments of 0.14, 0.29, 0.22 and 0.08 over the Cycle-GAN, At-Unet, DM,
and U-Net methods, respectively. It substantiates that the proposed
method outperforms these mainstreaming methods in reconstructing
circular phantom sinograms, particularly under conditions of extremely
sparse views.

The reconstruction results of circular phantom in the image domain
are shown in Fig. 12. Fig. 12(a)-12(c) depict the reconstruction results
using only the DAS method under 128, 64, and 32 projections, respec-
tively, noted with SSIM values in yellow at the bottom. As projections
decreases, blurring of circular phantoms worsens, accompanied by
increased artifacts. Figs. 12(d)-12(u) display the results of baseline
methods and the proposed method, respectively. It is obvious that

Fig. 10. Reconstruction results of two additional simulated blood vessels images using different methods under different projections.

Table 1
The average SSIM and CC values for the reconstruction results of the simulated
vascular sinograms.

Number of
projections

32 64 128

Method/Metric SSIM CC SSIM CC SSIM CC

Cycle-GAN 0.7584 0.2294 0.8090 0.4124 0.8803 0.6205
At-Unet 0.7591 0.2613 0.8078 0.4472 0.9315 0.6723
DM 0.7790 0.2911 0.9169 0.6153 0.9574 0.7029
U-Net 0.8829 0.5606 0.9198 0.6503 0.9792 0.8223
Ours 0.9435 0.7127 0.9796 0.7777 0.9897 0.7895

Table 2
The average SSIM and CC values for the reconstruction results of the simulated
vascular images.

Number of
projections

32 64 128

Method/Metric SSIM CC SSIM CC SSIM CC

DAS 0.4388 0.4431 0.5242 0.6033 0.6599 0.7843
Cycle-GAN 0.5219 0.1148 0.5929 0.2627 0.7137 0.5652
At-Unet 0.6079 0.0742 0.6780 0.4359 0.8122 0.8064
DM 0.6776 0.4451 0.8917 0.8229 0.9559 0.9014
U-Net 0.8175 0.6794 0.8786 0.8233 0.9617 0.9294
Model-based
DM

0.9308 0.8943 0.9714 0.9115 0.9801 0.9233

Ours 0.9467 0.8876 0.9809 0.9443 0.9887 0.9563
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almost all methods can effectively reduce artefacts under 128 pro-
jections. However, under sparser projections, the results of Cycle-GAN,
At-Unet, U-Net, and the model-based DM method still retain a rela-
tively large number of artefacts. Moreover, the reconstruction results of
the DM method exhibit severe distortion. In contrast, the proposed
method not only significantly removes the artefacts, but also exhibits
very high image reconstruction quality under different degrees of sparse
views. Fig. 12(v) is the GT image. Close-ups (green boxes 1 and 2 in
Fig. 12(v)) in Figs. 12(w) and 12(x) highlight the proposed method’s
ability to preserve structure and detail while effectively eliminating
artifacts. Quantitative analysis validates its superiority. Under 128
projections, the proposed method achieves SSIM of 0.97, surpassing
DAS, Cycle-GAN, At-Unet, DM, U-Net and model-based DM methods by
0.15, 0.06, 0.08, 0.02, 0.05 and 0.02, respectively. Under 64 projections,
SSIM of the proposed method remains 0.97, outperforming the baseline
methods by 0.43, 0.08, 0.11, 0.07, 0.1, respectively. Under 32 pro-
jections, the SSIM still reaches 0.96, which is far superior to that of the
other methods. The reconstruction results of the circular phantom
further demonstrate the efficacy of the proposed method under different
projections.

3.3. Results of experimental in vivo mouse

To further validate the effectiveness of the proposed method on in

vivo data, experimental data from in vivo mouse abdomen with more
complex structures were utilized for reconstruction, as shown in Fig. 13.
Figs. 13(a)-13(c) show sinograms under 128, 64, and 32 projections,
respectively. Figs. 13(d)-13(r) show the reconstruction results using the
baseline methods, with SSIM values indicated at the bottom of each
figure. With the decreases of the projections, the quality of the recon-
structed sinograms using the baseline methods notably deteriorates.
Figs. 13(p)-13(r) show the reconstruction results using the proposed
method. Under 128 projections, the proposed method reconstructs
missing projection signals with high fidelity. However, under sparser
projections (e.g., the 64 and 32 projections), some structural details are
lost in the sinograms. Fig. 13(s) show the GT sinogram for reference.
Close-up images from green boxes 1 and 2 in Fig. 13(s) are shown in
Figs. 13(t) and 13(u), respectively. The proposed method reconstructs
more detailed reconstruction than the baseline methods, as indicated by
yellow arrows in Figs. 13(t) and 13(u). Additionally, the proposed
method achieves higher SSIM values compared to the baseline methods.
Specifically, under 64 projections, the SSIM of the proposed method
reaches 0.82, showing an improvement of 0.11, 0.03, 0.12 and 0.08 by
the Cycle-GAN, At-Unet, DM, and U-Net methods, respectively. Under
the sparser 32 projections, the SSIM of the proposed method is 0.74,
indicating an enhancement of 0.22, 0.19, 0.17 and 0.13 over these
methods, respectively. These results underscore the capability of the
proposed method to achieve robust reconstruction of complex

Fig. 11. Reconstruction results of sinograms of circular phantom using different methods under different projections. (a)-(c) Original sinograms (raw data) under
128, 64, and 32 projections, respectively. (d)-(f) Reconstructed sinograms using the Cycle-GAN method. (g)-(i) Reconstructed sinograms using the Attention-based U-
Net method. (j)-(l) Reconstructed sinograms using the diffusion model method. (m)-(o) Reconstructed sinograms using the U-Net method. (p)-(r) Reconstructed
sinograms using the proposed method. (s) Ground truth sinogram for reference. Yellow numbers at the bottom of each figure are the SSIM values. (t) and (u) The
close-up images indicated by the green boxes 1 and 2 in (s), respectively. Yellow arrows highlight differences in reconstructed details between methods. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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experimental data, even under highly sparse projection conditions.
The reconstruction results of in vivo mouse abdomen in the image

domain are shown in Fig. 14. Figs. 14(a)-14(c) show the reconstruction
results using only the DAS method under 128, 64, and 32 projections,
respectively, with SSIM values indicated at the bottom in yellow. The
artifacts are aggravated as the number of projections decreases, making
it challenging to discern the mouse abdomen’s outline under 64 and 32
projections. Figs. 14(d)-14(r) show the reconstruction results of the
baseline methods under 128, 64, and 32 projections, respectively. Under
the 64 and 32 projections, serious artifacts overwhelm image details,
resulting in poor quality. Figs. 14(s)-14(u) show the reconstruction re-
sults using the proposed method. The proposed method effectively
mitigates artifacts, allowing more structure and detail in the image to be
observed even under 32 projections. Fig. 14(v) corresponds to the GT
image. Additionally, Figs. 14(w) and 14(x) show the close-up images
indicated by the green boxes 1 and 2 in Fig. 14(v). Comparative analysis
reveals significant advantages of the proposed method in artifact
reduction compared to the baseline method, as highlighted by yellow
arrows in Figs. 14(w) and 14(x). Quantitative evaluations further
corroborate these findings. Under the 128 projections, the SSIM of the
proposed method reaches 0.92, representing improvements of 0.15,
0.17, 0.08, 0.12, 0.02 and 0.02 over the DAS, Cycle-GAN, At-Unet, DM,
U-Net and model-based DM methods, respectively. Under the 64 pro-
jections, the proposed method achieves a SSIM of 0.79, surpassing the
other methods by 0.26, 0.16, 0.02, 0.18, 0.08 and 0.05, respectively.
Even with a further reduction to 32 projections, the proposed method
maintains a competitive SSIM of 0.68, outperforming the baseline
methods by 0.31, 0.19, 0.3, 0.18, 0.23 and 0.04, respectively. These
results underscore the excellent sparse reconstruction performance of

the proposed method, particularly evident in complex small animal
data.

4. Conclusion and discussion

In summary, to address the challenge of low-quality PAT image
reconstruction from sparse views using conventional methods, this
paper introduces a sinogram domain sparse-view reconstruction method
based on an enhanced score-based diffusion model. The proposed
method utilizes an enhanced diffusion model trained through denoising
score matching to capture prior information from sinograms acquired
under 512 projections. In the iterative reconstruction process, the
Predictor-Corrector (PC) operation incorporates noise reduction and
generates intermediate images as the iteration progresses. Each inter-
mediate image undergoes a fidelity replacement step, ensuring consis-
tency with the sparse data and refining the reconstruction while
preserving data fidelity. After the fidelity enforcement, both the updated
intermediate images and the nearest-neighbor interpolation derived
solely from the sparse data function as essential inputs for the subse-
quent iteration of the diffusion model’s score network. The integrated
method leverages the learned sinograms prior distribution, enabling the
model to progressively sample from its prior knowledge, guided by the
sparse data fidelity and interpolations, to achieve a sparse reconstruc-
tion that accurately captures the underlying image structure associated
with a specific sinograms. Subsequently, the reconstructed sinograms
are transformed into the image domain using the DAS method to assess
reconstruction performance. The proposed method effectively separates
the reconstruction tasks between the sinogram and image domains in
PAT.

Fig. 12. Reconstruction results of circular phantom images using different methods under different projections. (a)-(c) The reconstruction results of the DAS method
under 128, 64, and 32 projections, respectively. (d)-(f) Reconstruction results using the Cycle-GAN method. (g)-(i) Reconstruction results using the Attention-based
U-Net method. (j)-(l) Reconstruction results using the diffusion model method. (m)-(o) Reconstruction results using the U-Net method. (p)-(r) Reconstruction results
using the model-based DM method. (s)-(u) Reconstruction results using the proposed method. (v) Ground truth image for reference. The yellow numbers at the
bottom of each figure indicate the SSIM values. (w) and (x) The close-up images indicated by the green boxes 1 and 2 in (v), respectively. Yellow arrows highlight
differences in reconstructed details among the methods. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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Reconstruction experiments using simulated and experimental data
validate the strong artifact removal capability of the proposed method.
Quantitative analysis demonstrates its superior performance. In in vivo
experiments, the proposed method performs comparably to U-Net under
128 projections. Under 64 projections, it achieves SSIM values of 0.82
for sinograms and 0.79 for images, which are both 0.08 higher than U-
Net. With even sparser 32 projections, SSIM values of 0.74 for sinograms
and 0.68 for images show improvements of 0.13 and 0.23, respectively,
compared to U-Net. Moreover, compared to the conventional DAS
method, the proposedmethod enhances SSIM by 0.26 (~ 49 %) and 0.31
(~ 84 %) for images reconstructed under 64 and 32 projections,
respectively. These results underscore the proposed method’s ability to
deliver high-quality reconstructions of experimental data, even under
extremely sparse conditions.

Diffusion models estimate an unknown score function by training a
score-based network. During training, Gaussian noise is added to the
datasets to effectively learn the underlying data distribution, making it a
time-consuming process. The duration of training primarily hinges on
the size and quantity of training datasets employed, as well as the
graphics processor configuration. In the experiment, one checkpoint is
saved after every 20,000 epochs, which takes ~ 60 minutes. A total of 20
checkpoints were saved throughout the experiment, from which the
optimal training model (the score network) was selected. Hence, the
whole training process took ~ 20 hours. The reconstruction is an

iterative process, and the reconstruction time correlating closely with
the number of iterations. As demonstrated in Figs. 6(o) and 6(p), both
PSNR and SSIM stabilize about the 1000th iteration. Consequently, each
iteration, contributes to an overall reconstruction time of ~ 33 minutes
(each iteration takes ~ 2 seconds). Combined with the DAS method,
photoacoustic images can be reconstructed quickly (in seconds). DAS is
a mainstream and straightforward reconstruction method that demon-
strates satisfactory reconstruction performance when the quality of the
sinograms is sufficiently. In previous work [17], an advanced image
domain sparse reconstruction method combining model-based iteration
and diffusion model was proposed, wherein the prior learned by the
diffusion model serves as the regularization term. However, the
model-based DM method requires invoking the k-Wave toolbox to
compute the A and A* operators [48] in each iteration, which results in
each iteration taking ~5 seconds. Consequently, obtaining the optimal
result under the same computation conditions requires ~1000 itera-
tions, taking ~83 minutes, which is ~2.5 times longer than the pro-
posed method. Both Cycle-GAN and U-Net are non-iterative methods
with lower computational complexity, taking ~1 second to reconstruct
a single image. Utilizing more powerful computing units (e.g., NVIDIA
GeForce RTX 4090) can further reduce the reconstruction time for each
method. It is noteworthy that the output results of the proposed method
surpassed the SSIM of the DAS method by the ~200th iteration, as
shown in Figs. 6(o) and 6(p). If the results had been output at that point,

Fig. 13. Reconstruction results of sinograms of in vivo mouse abdomen using different methods under different projections. (a)-(c) Original sinograms (raw data)
under 128, 64, and 32 projections, respectively. (d)-(f) Reconstructed sinograms using the Cycle-GAN method. (g)-(i) Reconstructed sinograms using the At-Unet
method. (j)-(l) Reconstructed sinograms using the DM method. (m)-(o) Reconstructed sinograms using the U-Net method. (p)-(r) Reconstructed sinograms using
the proposed method. (s) Ground truth sinogram for reference. Yellow numbers at the bottom of each figure are the SSIM values. (t) and (u) The close-up images
indicated by the green boxes 1 and 2 in (s), respectively. Yellow arrows highlight differences in reconstructed details between methods. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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the reconstruction time would have been further reduced to ~6 minutes.
In terms of image quality improvement, the comparison of experimental
results with numerous methods indicates that the proposed approach
exhibits outstanding performance in sparse reconstruction for PAT. The
proposed method is designed to emphasize the precise generation and
recovery of the original data, particularly excelling in the restoration of
high-frequency details in the signals. The model-based DM method re-
constructs images directly from the sinograms by establishing a physical
model of the PAT system, approaching the least-squares optimal solution
through multiple iterations, and demonstrating excellent reconstruction
performance in image domain. The simple structure of U-Net has limited
receptive fields in its convolution layers, which hinder its ability to learn
global features when processing sparse sinograms, making it less effec-
tive than diffusion models. While Cycle-GAN excels in facilitating the
transition between different domains, its ability to recover details in
single samples is relatively weaker. In summary, the proposed method
exhibits outstanding performance in image quality, while the
model-based DM method demands higher requirements on computa-
tional units. U-Net and Cycle-GAN have moderate computational
complexity, whereas DAS has the lowest computational complexity but
yields the poorest image quality. Readers can choose the most suitable
method based on their specific conditions.

The proposed method has certain limitations, specifically in terms of
reconstruction time and generalization. Since the proposed method is an
iterative generation method, it requires ~33 minutes for 1000 iterations

in the current operating environment. It limits the applicability in sce-
narios with high real-time requirements. In addition, the experimental
data in this work are obtained from the same PAT system and a relatively
homogeneous imaging object. It is essential to consider improving the
generalizability of the proposed method when dealing with data from
different PAT systems or various types of imaging objects. In future
work, faster diffusion models such as the Mean-Reverting diffusion
model [49,50] will be explored, as it can achieve satisfactory results
within 100 iterations. Additionally, the experimental datasets will be
augmented to enhance the generalizability of the proposed method. And
the augmented datasets will include sinograms of various kind of sam-
ples obtained from different PAT systems.
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