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Galectin-3, well characterized as a glycan binding protein, has been identified as a putative RNA binding protein, possibly through
participation in pre-mRNA maturation through interactions with splicosomes. Given recent developments with cell surface RNA
biology, the putative dual-function nature of galectin-3 evokes a possible non-classical connection between glycobiology and RNA
biology. However, with limited functional evidence of a direct RNA interaction, many molecular-level observations rely on affinity
reagents and lack appropriate genetic controls. Thus, evidence of a direct interaction remains elusive. We demonstrate that antibodies
raised to endogenous human galectin-3 can isolate RNA-protein crosslinks, but this activity remains insensitive to LGALS3 knock-out.
Proteomic characterization of anti-galectin-3 IPs revealed enrichment of galectin-3, but high abundance of hnRNPA2B1, an abundant,
well-characterized RNA-binding protein with weak homology to the N-terminal domain of galectin-3, in the isolate. Genetic ablation
of HNRNPA2B1, but not LGALS3, eliminates the ability of the anti-galectin-3 antibodies to isolate RNA-protein crosslinks, implying
either an indirect interaction or cross-reactivity. To address this, we introduced an epitope tag to the endogenous C-terminal locus of
LGALS3. Isolation of the tagged galectin-3 failed to reveal any RNA-protein crosslinks. This result suggests that the galectin-3 does not
directly interact with RNA and may be misidentified as an RNA-binding protein, at least in HeLa where the putative RNA associations
were first identified. We encourage further investigation of this phenomenon employ gene deletions and, when possible, endogenous
epitope tags to achieve the specificity required to evaluate potential interactions.
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Introduction

Prior targeted and untargeted reports have identified members
of the Galectin family as possible RNA binding proteins
(Wang et al. 1995; Castello et al. 2012; Huang et al. 2018;
Queiroz et al. 2019). Commonly understood to function on
the cellular surface and in the extracellular matrix (Kuwabara
et al. 2003; Vasta 2009; Ruvolo 2016; Thiemann and Baum
2016), galectins lack signal sequences, are synthesized on
cytosolic ribosomes (Cho and Cummings 1995), and secreted
through unconventional secretion mechanisms (Roff and
Wang 1983; Cooper and Barondes 1990; Lindstedt et al.
1993; Sato et al. 1993; Mehul and Hughes 1997; Bänfer
et al. 2018; Popa et al. 2018; Zhang et al. 2020; Davuluri
et al. 2021). Cytosolic galectins are understood to sense and
respond to endolysosomal membrane damage (Aits et al.
2015; Jia et al. 2018; Jia, Bissa et al. 2020a; Jia, Claude-Taupin
et al. 2020b). The association between galectins and RNA
was postulated in the early 1990s after the discovery of
weak homology between the intrinsically disordered N-
terminal domain of galectin-3 and members of the hnRNP
series of RNA binding proteins (RBPs) (Jia and Wang 1988).
This report was followed by a series of studies identifying
galectins in the nucleus (Seve et al. 1985; Moutsatsos et al.
1986; Moutsatsos et al. 1987; Wang et al. 1991: 198; Sève
et al. 1993; Hubert et al. 1995; Vyakarnam et al. 1998)
and suggesting a role for galectin-3 in pre-mRNA splicing
(Dagher et al. 1995; Wang et al. 1995; Vyakarnam et al. 1998;

Park et al. 2001; Wang et al. 2006; Gray et al. 2008; Haudek
et al. 2009; Voss et al. 2012; Patterson et al. 2015; Haudek
et al. 2016). Further, recent RBP screens have identified
galectin-3 as a candidate RNA binding protein (Castello et al.
2012; Huang et al. 2018; Queiroz et al. 2019).

However, unlike most RNA-binding proteins, galectin-3
lacks a canonical RNA-recognition motif suggesting a non-
canonical mode of interaction (LGALS3 - Homo sapiens
(Human) | UniProt). The potential RNA-binding function
of galectins could represent a tantalizing link between cell-
surface glycobiology and nuclear RNA biology, especially in
light of recently identified cell-surface glycoRNAs (Flynn et al.
2021).

To investigate the possibility of a direct interaction between
galectin-3 and RNA, we pursued an UV-Crosslinking and
Immunoprecipitation (irCLIP) approach leveraging zero-
distance UV-crosslinking, an infrared-dye-conjugated and
biotinylated ligation adaptor, and commercial anti-galectin-3
antibodies to isolate RNA-protein crosslinks (Zarnegar et al.
2016). Here, we show that while capture of endogenous
galectin-3 can generate irCLIP signal, genetic ablation of
LGALS3 does not eliminate this RNAse-sensitive signal.
Further, we show that some commercial anti-galectin-3
antibodies cross-react with well-characterized RNA-binding
proteins and deletion of one of these RNA-binding proteins,
HNRNPA2B1, eliminates the observed galectin-3 RNA-
association. Finally, we use CRISPR-Cas9 gene editing

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-1536-2966
https://orcid.org/0000-0001-5013-0442
https://orcid.org/0000-0003-4482-2754

 45416
17071 a 45416 17071 a
 
mailto:bertozzi@stanford.edu
mailto:bertozzi@stanford.edu
mailto:bertozzi@stanford.edu
mailto:bertozzi@stanford.edu
mailto:bertozzi@stanford.edu
mailto:bertozzi@stanford.edu
mailto:bertozzi@stanford.edu


2 E L Peltan et al.

(Jinek et al. 2012; Lin et al. 2014; Cho et al. 2022) to insert an
epitope tag, demonstrating that galectin-3 does not associate
with RNA directly.

Materials and methods

Cell culture

ATCC reference HeLa (ATCC CCL-2) and HEK-293 T
(ATCC CRL-1573) cells were passaged in DMEM (Gibco
11965092) with 10% FBS in the absence of antibiotics and
frozen in complete growth medium +10% DMSO (Sigma).
All cell lines were maintained at 37 ◦C and 5% CO2. Cells
were routinely tested for mycoplasma using Lonza MycoAlert
Plus (Lonza) and a PCR-based test (Uphoff and Drexler 2005).

CRISPR-Cas9 editing

Three non-overlapping gRNAs targeting a conserved early
exon were selected using Synthego’s CRISPR Design Tool and
synthesized as modified sgRNAs (Synthego). For each clone,
gene knock-out was verified at the DNA level with sanger
sequencing (Elim Bio, Hayward, CA) and at the protein level
by immunoblot. See Supplementary Methods for additional
detail.

Endogenous tag

Based on the cell engineering pipeline from OpenCell (Cho
et al. 2022). See Supplementary Methods for additional detail.

irCLIP

See Supplementary Methods for details of Adaptor synthesis,
UV Crosslinking, Sub-cellular fractionation., Immunoprecip-
itation, and Adaptor Ligation. Following ligation elution, the
total volume of the sample was analyzed SDS-PAGE with
an Odyssey CLx Imager (LI-COR), visualizing ligated RNA
in the 800 channel. Target proteins run ∼15 kDa above
expected MW (RNA fragment+preA-L3-800 adaptor). See
Supplementary Methods for additional details.

Mass-spectrometry

MS Data Acquisition. See Supplementary Methods. The same
MS method was used for CLIP-MS, GeLC-MS/MS, and IP-
MS experiments. MS Data Analysis. Peptide spectral matches
were made against a target-decoy human reference proteome
database downloaded from Uniprot (Elias and Gygi 2007).
For quantitative comparisons, Peptides were identified with
MaxQuant label-free quantitation. Relative enrichment of
log2-transformed intensities was assessed on a per-protein
basis with an FDR computed by a Benjamini-Hochberg
adjusted t-test. Peptides were analyzed on a per-protein basis
and plotted and annotated using the ggplot2 package in R
(Wickham 2009).

Results

Anti-galectin-3 antibodies recognize
RNA-crosslinked proteins in irCLIP

To probe for an in cellulo interaction between galectin-3
and RNA, we pursued an irCLIP approach (Fig. 1A). In this
approach, the target galectin protein is isolated from UV-
crosslinked cell lysate and partially digested with RNAse
to enable ligation of a pre-adenylated DNA adaptor with
T4 RNA ligase (Zarnegar et al. 2016). We assessed a series

of anti-galectin-3 antibodies for their ability to isolate an
RNA-protein crosslinks. Anti-galectin-3 antibodies isolated
protein crosslinks from a variety of oncogenic cell lines (Fig.
S1, Fig. S2). Intriguingly, multiple commercial anti-galectin-
3 antibodies demonstrated RNA signal in irCLIP SDS-PAGE
gel assays (Fig. 1B). Furthermore, sub-cellular fractionation of
UV-crosslinked cells revealed that the anti-galectin-3 irCLIP
signal localized to the nuclear fraction, consistent with prior
reports of nuclear localization of galectin-3 (Fig. 1C) (Seve
et al. 1985; Moutsatsos et al. 1986; Moutsatsos et al. 1987;
Wang et al. 1991: 198; Sève et al. 1993; Hubert et al. 1995;
Vyakarnam et al. 1998). However, the nuclear band recog-
nized by anti-galectin-3 antibodies appeared ∼8 kDa above
the cytosolic band recognized by the same antibody, suggest-
ing a possible post-translational modification or off-target
reactivity (Fig. 1D).

Anti-galectin-3 antibodies isolate RNA-binding
proteins

To evaluate the specificity of the anti-galectin-3 irCLIP, which
is performed under high salt washes usually enabling strin-
gent isolation of target proteins, we performed in-gel digest
of proteins associated with RNA signal. Surprisingly, using
mass spectrometry, we did not detect any galectin-3 peptides
overlapping with the RNA-associated signal (Fig. 1C). Rather,
the most abundant proteins associated with the RNA sig-
nal were nuclear splicing factors, including the highly abun-
dant hnRNPA2B1 (Fig. 1E, Fig. S3). hnRNPA2B1 has been
observed as a putative interactor of galectin-3, in another
anti-galectin-3 co-IP experiment (Fritsch et al. 2016). IP-
MS with anti-galectin-3 in cell fractions confirms enrich-
ment of galectin-3 in addition to splicing factors, includ-
ing hnRNPA2B1 (Fig. S4). While there is little structural
homology between hnRNPA2B1 and galectin-3, both proteins
possess an intrinsically disordered domain rich in prolines and
tyrosines, with semi-regular spacing (Fig. S5) (Lin et al. 2017;
Martin et al. 2020). Additionally, as tyrosine commonly forms
crosslinks with nucleobases following UV-irradiation, their
abundance should improve crosslinking efficiency if galectin-
3 binds RNA directly (Kunkel et al. 1981; Stützer et al. 2020).
Therefore, the proposed interaction is either indirect in nature
or a result of off-target binding of classical RNA-binding
proteins hnRNPA2B1 by the anti-galectin-3 antibodies. Speci-
ficity issues of commercial affinity reagents have been well
documented with estimates suggesting ∼50% of commercial
antibodies recognize the wrong target (Berglund et al. 2008;
Bradbury and Plückthun 2015).

Loss of hnRNPA2B1, but not galectin-3, depletes
irCLIP signal

To control for off-target binding of the commercial affinity
reagents, we used a multi-guide RNP-based CRISPR-Cas9
editing approach to knock-out expression of galectin-3 and
hnRNPA2B1 from HeLa cells. Following CRISPR-KO and
clonal selection by limiting dilution, we verified the loss
of galectin-3 and hnRNPA2B1 expression by immunoblot
(Fig. S6). In the LGALS3 KO background, anti-galectin-3
irCLIP retains the associated RNA signal. However, anti-
galectin-3 irCLIP in the HNRNPA2B1 KO background
does not identify the associated RNA signal, suggesting that
galectin-3 does not bind RNA directly and may not associate
with RNA at all (Fig. 2B).
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Fig. 1. A) irCLIP workflow adapted from Zarnegar et al. 2016 (Zarnegar et al. 2016). B) irCLIP in nuclear and cytosolic fraction of HeLa. Anti-hnRNPA2B1
and anti-Galectin-3 identify RNA primarily in the nuclear fraction. C) irCLIP-MS in-gel digest and proteomic identification of proteins associated with
irCLIP signal. Galectin-3 is not detected in the region of the gel containing RNA signal. D) Fractionation of HeLa cells. Demonstration of separation of
nuclei (Lamin A/C) from cytosol (Tubulin). Anti-Galectin-3 mAb [EPR19244] detects bands in both the cytoplasmic and nuclear fractions. E) Enrichment
profiles of two anti-galectin-3 antibodies by IP-MS. Both antibodies enrich well characterized RNA-binding proteins.

Fig. 2. A) Sub-cellular fractionation of HeLa following CRISPR KO or endogenous tagging of LGALS3. Loss of HNRNPA2B1 eliminates the nuclear band
detected by the anti-galectin-3 mAb [EPR19244]. Loss of LGALS3 does not impact the nuclear band detected by anti-galectin-3 mAb [EPR19244]. B)
irCLIP of HeLa following CRISPR KO and endogenous tag. RNA signal is preserved in the anti-galectin-3 irCLIP in the LGALS3 KO background, but lost in
the HNRNPA2B1 KO background. Anti-HA irCLIP fails to produce any RNA signal in the endogenously tagged LGALS3-HA background.

irCLIP of endogenously tagged galectin-3 does not
isolate RNA-protein crosslinks

To test this directly, we introduced an HA-tag to the endoge-
nous LGALS3 locus at its C-terminal end. In characteriz-
ing RNA-binding proteins, endogenous tags are preferred
to maintain the endogenous expression levels and preserve
native RNA-binding patterns as many of these low-affinity
high-valency RNA-protein interactions are highly sensitive
to context and concentration (Ule et al. 2018; Alberti et al.
2019; Hafner et al. 2021). Further, this tag lets us test if the
postulated galectin-3-RNA interaction is direct or an artifact

of antibody cross-reactivity. Using CRISPR-Cas9 mediated
HDR-directed editing, we inserted an HA epitope tag to the
C-terminal region of LGALS3, without disrupting the 3’UTR
(Lin et al. 2014; Feng et al. 2017; Cho et al. 2022). HA-tagged
galectin-3 retains glycan binding activity (Fig. S10) and nucle-
ocytosolic localization via IF (Fig. S11). Rather conclusively,
the anti-HA IP isolates HA-tagged galectin-3, but an anti-
HA irCLIP in the HA-tagged galectin-3 background identified
no irCLIP signal above the non-tagged control (Fig. 2B). In
addition, an orthogonal physical-chemical method for isolat-
ing RNA-protein crosslinks (Fig. S7) also failed to identify a
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direct interaction between galectin-3 and RNA (Figs S8, S9)
(Queiroz et al. 2019; Villanueva et al. 2020). Therefore, the
association of galectin-3 with RNA is likely not direct and
should be reevaluated in light of observed mAb reactivity.

Some anti-galecitn-3 mAbs enrich known RPBs via
IP-MS in LGALS3 KO HeLa

To assess the specificity of selected galectin-3 mAbs, rat anti-
LGALS3 [Mac2] and mouse anti-LGALS3 [A3A12], previ-
ously used to study galectin-3 (Liu et al. 1996; Vyakarnam
et al. 1998; Gray et al. 2008). We assayed the specificity of
these mAbs, and the rabbit anti-LGALS3 [EPR19422], by
IP-MS to characterize their enrichment in the presence and
absence of galectin-3. IP-MS of the selected mAbs revealed
enrichment of known, well-characterized RBPs in both the
NT-sgRNA and LGALS3 KO backgrounds (Figs S12–S15).

Discussion

The context-dependent nature of many RNA-protein inter-
actions makes proving non-interaction a Sisyphean task
(Castello et al. 2012; Kramer et al. 2014; Hentze et al. 2018;
Trendel et al. 2019; Backlund et al. 2020; Huppertz et al.
2022; Perez-Perri et al. 2023). Validation of candidate RBPs
is essential. Galectin-3 in appeared in multiple RBP screens,
co-isolates with RNA-protein crosslinks, may participate pre-
mRNA maturation, yet fails to bind RNA directly when
assessed under stringent conditions.

This study does not, and cannot, rule out the possibility
of a non-classical RNA binding function for other galectins
in other contexts. Investigators should proceed with caution
and include positive (canonical RBPs) and negative (genetic
deletions) controls for future in cellulo exploration of puta-
tive galectin-RNA interactions. As many RBPs not only self-
associate, but also associate with other RBPs, attribution of
RNA interactions to a target RBP requires comparison to an
RBP-depleted sample (e.g. genetic deletion) or demonstration
of the exclusion of other RBPs (e.g. proteomics).

While this investigation used high stringency methods
to probe for direct RNA-protein interactions, indirect but
functional interactions may exist. Reports proposing indirect
interactions use non-zero distance formaldehyde crosslinking
to capture these interactions (Coppin et al. 2017). However,
recent investigations of the RNA-binding properties of
galectins discover phenotypic evidence suggesting RNA
binding and thus infer an RNA-protein interaction, but
often lack direct evidence in vitro or in cellulo (Coppin
et al. 2017; Wei et al. 2021). At minimum, RNA interaction
claims would require comparison to enrichment in a knock-
out background, proteomic characterization of enrichments,
or an epitope tag enabling antibody specificity would be
necessary for causal interpretation of the contribution of
a galectin to RNA binding. Without controlling for the
specificity of the enrichment, it remains possible that the
RNA fragments identified in an RNA-IP are not sensitive
to genetic deletion, as was the case with anti-galectin-
3 in HeLa. Further, high-sequencing depth (sensitivity)
in workflows with high variability and few replicates,
especially in non-blinded experiments as exploratory RNA-
interaction experiments often are, can create non-meaningful
yet statistically-significant differences through overpowered
hypothesis testing of small variations in transcripts across

samples. We recommend carefully assessing effect sizes
and employing nonparametric statistical testing, such as
bootstrapping, to control for stochastic and batch variability
in untargeted, highly-powered RNA-IP sequencing studies
(Kulkarni et al. 2022).
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