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Abstract

To develop reliable, valid, and efficient measures of obsessive-compulsive disorder (OCD) 

severity, comorbid depression severity, and total electrical energy delivered (TEED) by deep 

brain stimulation (DBS), we trained and compared random forests regression models in a clinical 

trial of participants receiving DBS for refractory OCD. Six participants were recorded during 

open-ended interviews at pre- and post-surgery baselines and then at 3-month intervals following 
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DBS activation. Ground-truth severity was assessed by clinical interview and self-report. Visual 

and auditory modalities included facial action units, head and facial landmarks, speech behavior 

and content, and voice acoustics. Mixed-effects random forest regression with Shapley feature 

reduction strongly predicted severity of OCD, comorbid depression, and total electrical energy 

delivered by the DBS electrodes (intraclass correlation, ICC, = 0.83, 0.87, and 0.81, respectively. 

When random effects were omitted from the regression, predictive power decreased to moderate 

for severity of OCD and comorbid depression and remained comparable for total electrical 

energy delivered (ICC = 0.60, 0.68, and 0.83, respectively). Multimodal measures of behavior 

outperformed ones from single modalities. Feature selection achieved large decreases in features 

and corresponding increases in prediction. The approach could contribute to closed-loop DBS that 

would automatically titrate DBS based on affect measures.
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I. Introduction

INTERNALIZING disorders (e.g., obsessive-compulsive disorder and depression) are 

characterized by anxiety, depressive, and somatic symptoms [1]. Advances in the 

development and provision of effective treatments for internalizing disorders depend on 

patient self-report and clinical interview. Self-report is limited by patients’ reading ability, 

idiosyncratic use, inconsistent metric properties across scale dimensions, reactivity, and 

differences between clinicians’ and patients’ conceptualization of symptoms. Clinician 

interviews enable more consistent use, but are time-intensive, difficult to standardize 

across settings, inherently subjective, and susceptible to reactivity effects, rater drift, and 

bias. Neither self-report nor clinical interview have the granularity necessary to measure 

moment-to-moment response to intervention or enable brain-behavior quantification. To 

assess quantitative changes in treatment response, objective measures are needed.

Extant assessment methods fail to consider that internalizing disorders have marked 

observable influence on psychomotor functioning (e.g., agitation), expression of affect 

(reductions in positive affect and increases in negative), and interpersonal communication 

(lack of synchrony). Behavioral signal processing of audio and video recorded behavior has 

shown great potential to objectively measure symptoms of depression and to a lesser extent 

anxiety [2], [3], [4], [5], [6].

Further advances depend in part on four challenges. One is greater emphasis on severity 

rather than detection. While detection matters for screening purposes, to inform treatment 

and assess outcomes precise measurement of severity is what matters. For instance, 

percentage reduction in severity is a common measure of treatment response. Unless severity 

is measured, treatment response cannot be quantified.

Two is attention to internalizing disorders beyond depression. Depression is only one 

of many internalizing disorders that are cause for significant distress and disability. 
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Internalizing disorders often are inter-related or comorbid as well. In the following work, 

we focus on participants with obsessive-compulsive disorder (OCD) that have comorbid 

symptoms of depression.

Three is inclusion of multimodal features. Multimodal communication encompasses facial 

expression, head and body motion, gaze, voice, speech behavior, and speech or language. 

Yet, as a recent scoping review [7] found, the vast majority of studies on depression include 

only one or two modalities. This is the case even though large numbers of studies have 

collected the necessary audio-visual data [8]. Moreover, all but two of the studies that model 

multimodal data use a single corpus of distressed participants that lack clinical diagnosis and 

treatment. OCD and other internalizing disorders are much less studied. We focused on a 

clinical sample of participants diagnosed with refractory OCD and comorbid depression and 

in treatment.

And four, until recently [9], [10] investigators have typically treated multiple observations 

from the same persons as if they were independent [4], [11]. Failure to model the clustering 

of observations within persons ignores individual differences that may present confounds if 

not taken into account. When repeated observations within subjects are combined, trends 

may disappear or even reverse; an effect known as Simpson’s paradox [12]. We compared 

multimodal random forest regression with and without “random effects”, where random 

effects account for the individual differences, to objectively measure change in severity 

within patients over the course of treatment for chronic, severe, obsessive-compulsive 

disorder.

OCD is a persistent, oftentimes disabling condition that is characterized by obsessive 

thoughts and compulsions. Obsessions are repetitive and intrusive thoughts (e.g., 

contamination), images (violent scenes), or urges (e.g., to stab someone) that can be highly 

disturbing. Individuals with OCD attempt to ignore or suppress obsessions or to neutralize 

them with other thoughts or actions [13]. Compulsions are repetitive behaviors that an 

individual feels driven to perform in effort to reduce or avoid obsessions. Obsessions 

and compulsions are time-consuming (many hours per day), result in clinically significant 

impairment, and often are comorbid with depression, especially in more severe cases [14], 

[15].

Approximately 25–50% of OCD sufferers experience major depression [16], [17]. Core 

symptoms of each are conceptually different (i.e., obsessions and compulsions, versus 

dysphoria, anhedonia). Studies on the temporal nature of OCD and depression comorbidity 

suggest that in most (but not all) instances, obsessive-compulsive symptoms predate the 

depressive symptoms [18], [19].

Treatment-resistant OCD is defined as repeated failure to respond to front- or second-line 

treatments. Frontline treatments for OCD are cognitive-behavior therapy with exposure and 

response prevention (ERP), and serotonin reuptake inhibitors with or without clomipramine, 

a tricyclic antidepressant [20], [21]. Second-line treatments may include anti-psychotics 

[22]. About 25% of patients with OCD fail to respond to front- or second-line treatments 
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or have difficulty with adherence or tolerance, respectively, and are considered treatment-

resistant.

Deep brain stimulation (DBS) has shown promising results as a therapeutic intervention 

for patients with severe, treatment-resistant OCD. Participants were treated with DBS of 

or close to the ventral capsule/ventral striatum (VC/VS). The VC/VS is in a subcortical 

circuit involved in error detection, habit formation, and motivational processes [23], [24]. 

In studies by our group and others, DBS using implanted electrodes targeting nodes of this 

circuitry (Figs. 1 and 2) has proven highly effective in relieving treatment-resistant OCD. 

The most comprehensive and up to date review of DBS outcomes found that 66% of patients 

fully responded to treatment [25]. DBS also proved effective in treating depression; 50% of 

patients fully recovered from depression and another 16% partially recovered.

We measured change in severity of OCD and comorbid depression over the course of 

an 18-month clinical trial for treatment-resistant OCD. We tested the hypothesis that 

an unobtrusive AI-based system deployed in open-ended interviews can effectively yield 

biomarkers of OCD and comorbid depression severity as well as total electrical energy 

delivered (TEED) by the DBS electrodes. Participants undergoing DBS treatment for 

refractory OCD were recorded in open-ended interviews at regular intervals over the course 

of the trial. Modalities included facial expression, eye movement, head pose, voice acoustics 

and timing, and linguistic measures of speech. Because each participant was seen on a 

variable number of occasions, we used a mixed-effects random forest regression with 

feature reduction and cross-validation to control for individual differences and overfitting. 

To evaluate the effectiveness of random-effects, we used the same feature reduction and 

cross-validation with standard random forests. We seek to objectively measure response to 

treatment across the duration of clinical trials.

We first briefly review multimodal measures of affect related to internalizing disorders and 

novelties of the research and the research questions

A. Multimodal Measures of Affect

Extensive evidence in psychology and affective computing supports the view that affective 

communication is multimodal [2], [26], [27], [28], [29]. We briefly review literature relevant 

to both unimodal and multimodal communication of emotion and emotion disorders (aka 

internalizing disorders) such as depression, anxiety and OCD.

Visual Features: The Facial Action Coding System (FACS) enables description of nearly 

all-possible visually discernible facial movement [30]. Movements for which the anatomic 

basis is known are referred to as Action units (AUs). Examples of AUs include AU 1 (medial 

strand of the frontalis, which raises the inner brow), AU 2 (lateral frontalis, which raises 

the outer brow), AU 6 (orbicularis oculi, which raises the cheeks, narrows the eye aperture 

and may cause “crows-feet” wrinkles at the lateral eye corners), and AU 12 (zygomatic 

major, which pulls the lip corners obliquely in smiling). While not without controversy, 

strong evidence suggests that specific combinations of actions are strongly related to specific 

emotions and intentions [31], [32], [33], [34], [35]. Automatic detection of AU occurrence 

and intensity and continuous measurement of some action descriptors has become possible 
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[36], [37], [38], [39]. Velocity of automatically detected action units and head motion has 

been strongly related to emotional distress, depression, mania, and autism spectrum disorder 

[4], [29], [40], [41], [42], [43], [44]. Preliminary evidence suggests that facial AUs and head 

dynamics may differentiate between different levels of DBS stimulation [45] and predict 

OCD severity [46].

Acoustic Features: Affective states strongly influence voice production [47], [48]. 

Change in subglottal pressure, transglottal airflow, and vocal fold vibration can be seen 

in acoustic features of affective speech. Additional features that have proven informative 

include vocal fundamental frequency (intonation and rhythm) [49], energy (volume or 

intensity) [50], utterance duration [51], and intra- and inter-speaker pause duration [50], 

[52]. Due to the effectiveness of acoustic and temporal features, they are frequently used in 

mental health studies: Anxiety [53], Distress Assessment [54], and depression and suicide 

[3]. Hence, acoustic and related temporal features are good candidates to assess DBS 

treatment in OCD patients.

Linguistic Features: Linguistic features reveal sentiment and interests [55]. Prior to 

analysis, pre-processing is typically required, which includes localization of speakers’ 

audio, speech recognition [56], and speech-to-text conversion [57]. To calculate linguistic 

features, several natural language processing techniques and models can be used. Notable 

examples include BERT [58], RoBERTa [59], PALM [60], cTAKES [61], and LIWC [55]. 

The instances of well-known linguistic features are syntax parsing using dependency trees, 

Chomsky transformational grammars, and statistical methods (e.g., word counting) [62]. 

Language-based deficits are common symptoms of psychiatric disorders [63]. Linguistic 

features are frequently used to detect depression and suicidal ideation [64], [65], [66], [67], 

[68], addiction [69], [70], [71], anxiety [72], and bipolar disorder [73].

Multimodal Features: In social interaction, affective states are expressed multimodally. 

We considered facial actions, head motion, voice acoustics (e.g., vocal fundamental 

frequency), speech behavior (e.g, pause duration), and language (e.g., sentiment and word 

use, referred to below as text). Because these modalities may carry different messages, 

attention to a single modality can result in ambiguous or misleading results. To increase 

precision and accuracy, multimodal fusion can be performed. Feature-level fusion (or early 

fusion) [74], decision-level fusion (or late fusion), and hybrid-level fusion all may be useful. 

In early fusion, all features across modalities are placed together; and all or subsets are used 

to train a desired model. In decision-level fusion, separate modality-specific models may 

be developed and then fused using majority voting. Multimodal affective analysis can vary 

in the combination of modalities used to detect affective states. Several studies investigated 

how different modalities may complement each other to increase the performance of an 

ensemble model. For instance, combinations of acoustic-visual [54], acoustic-linguistic, or 

all three [4], [64] may be used. Most multimodal affective computing methods, using either 

early- or late fusion, typically outperform unimodal models.
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B. Machine Learning for Internalizing Disorders

Machine learning from behavioral features has been used widely to detect depression [3], 

[75], [76], [77], [78] and to some extent anxiety [54], post-traumatic stress disorder (PTSD) 

[79], [80], and suicidality [3]. Machine learning has been used less often to infer symptom 

severity, which is necessary to learn whether patients are improving or not with treatment.

Conventional machine learning approaches are based on designing and selecting hand-

crafted features and training classifiers to detect disorders. Previous research has trained 

models including support vector machines (SVMs) [81], logistic regression [4], and decision 

trees [82] mostly with the aim of achieving high prediction performance. Deep learning 

approaches that automatically learn important features from the data often realize superior 

performance in detecting depressive [83] and manic episodes [84] compared to conventional 

approaches. However, a major drawback of deep learning based approaches is that large 

numbers of participants are required and features typically lack interpretability that is 

important for clinical science and treatment.

In clinical fields, a common goal is to develop a system that informs assessment, treatment, 

and mechanisms. To achieve a machine learning model with good performance in each of 

these areas, it is crucial to understand why a model has given a particular decision and 

which features are critical in evaluating the degree to which patients are improving or not. 

For that reason, recent works have revisited the use of hand-crafted features. They afford 

interpretable results and high predictive performance.

Shapley analysis has been especially informative in interpreting feature contributions 

to model performance [85]. Recent examples include mothers’ depression in dyadic 

interactions with their adolescent offspring [29], mania prediction in bipolar disorder [64], 

and differentiation of apathy and depression in older adults [86].

As noted above, prior research in behavioral predictors of internalizing disorders often 

neglects to consider repeated assessments over time of the same individuals. When repeated 

assessments have been available, they have been treated as if they were independent [4]. 

When longitudinal assessments are available, attention to within-subject correlation is 

important to control for individual differences. For observations nested within individuals 

or treatment providers, mixed-effects models are needed. In mixed-effects models, each 

individual has their own, unique slope and intercept. Mixed-effects models are well known 

in behavioral statistics [87], [88] as multilevel models, but less so in machine learning. 

When multilevel structure is ignored, prediction may be impaired or confounded [12].

As an example, [10] compared standard random forests and mixed effects random forest 

for multiple observations within participants. Models with mixed effect performed better 

than those that lacked it. In another study [9], clustering of observations within treatment 

providers was the mixed-effect in GLMM and in random forests models. Both models 

provided good prediction but were not compared with models that failed to include a random 

effect. We hypothesized that with their ability to model the clustering of observations within 

participants, mixed-effects random forest regression improve performance compared with 

standard random forest regression.
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We extend mixed-effects random forests three ways. First is to compare random forest 

models with and without random effects in predicting severity of OCD and comorbid 

depression. Second is to compare them in predicting total electrical energy delivered by 

DBS. Third is to evaluate the relative contribution of feature selection strategies for random 

forest models with and without random effects.

C. Novelties and Research Questions

This paper addresses point-wise severity of disorder and extends our preliminary work [46] 

in several ways:

1. Includes additional participants and observations over time.

2. Trains and compares random forest (RFs) models with and without random 

effects for data nested within participants. Participants were observed on 8 to 12 

occasions over as much as 18 months.

3. Predicts OCD severity, comorbid depression severity, and energy delivered by 

DBS; and evaluates relative contributions of each set of features.

4. Uses Shapley analysis to reduce the number of features, optimize prediction, and 

afford interpretable parameters.

To our knowledge, this paper presents the first use of multimodal machine learning from 

affective behavior to assess severity of OCD, severity of comorbid depression, and level 

of DBS stimulation; and one of few to compare models with and without random effects 

for longitudinal data. In a clinical trial of 18 months duration with a single-subjects-with-

replications design, each participant serves as their own control. Participants are a highly 

select group with treatment-resistant OCD that have been implanted with a deep brain 

stimulator The repeated measures design addresses the longitudinal demands of clinical 

research and treatment. A multidisciplinary team of psychiatrists, neuro-surgeons, clinical 

psychologists, neuro-scientists, and engineers is actively involved in all phases of the study. 

Given the nature of the research, program officials from the U.S. National Institutes of 

Health (NIH) and Food and Drug Administration (FDA) are closely involved as well.

We address four research questions.

1. To what extent can severity of OCD and comorbid depression and DBS 

stimulation be predicted by visual (action units, head and face dynamics) and 

audio modalities (voice acoustics and speech behavior and speech content) 

independently? DBS stimulation is quantified as total electrical energy delivered 

(TEED)

2. Does random forest with random effects for participants better predict OCD, 

comorbid depression, and TEED than random forest without random effects?

3. Are multimodal models more predictive than unimodal models?

4. Which features within and across modalities are most predictive of symptom 

severity and TEED?
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II. Methods

A. Study Setup and Protocol

This study is from an ongoing clinical trial of DBs for treatment-resistant OCD. Inclusion 

criteria were: 1) Repeated failure to respond to evidence-based treatments (cognitive 

behavioral therapy and medication); and 2) severe symptoms as measured by a score greater 

than 27 on the Yale-Brown Obsession Compulsion Scale-I (YBOCS-I) (scale of 0–40). 

Consistent with the literature characterizing patients with treatment-resistant OCD [15], 

all participants evidenced some level of comorbid depression as measured by the Beck 

Depression Inventory (BDI-II) [89]. All diagnoses were made by an experienced clinician 

and confirmed by a second experienced clinician.

The first two participants were implanted with the Medtronic Activa PC+S DBS device; the 

other four were implanted with the Medtronic Summit RC+S Percept. With one exception, 

the three men and three women have completed at least 15 months of the study (Table I). A 

brief description of the study protocol follows.

Participants underwent a 1-month pre-implantation baseline evaluation followed by 

implantation of bilateral DBS electrodes in or near the VC/VS. A second baseline was 

observed prior to initial activation and programming of the DBS device. Patients then were 

seen for in-person or virtual visits monthly for open-loop programming of the DBS to 

optimize treatment. Each visit started with an open-ended interview with a clinician. The 

interviews were 3 to 8 minutes in duration and were followed by assessment of symptom 

severity using the YBOCS-II for OCD [90] and the BDI-II [89] for comorbid depression.

Interviews were conducted in a controlled environment free from any extraneous sources of 

noise. They were recorded using a GoPro camera and high-resolution microphone positioned 

about 10 to 15 degrees of frontal view of the patient. A separate GoPro camera recorded 

the interviewer. On the same or following day, the stimulation parameters were titrated as 

needed in what is referred to as a programming session. At approximately six months from 

study start, patients received Exposure and Response Prevention (ERP) therapy, a form of 

Cognitive Behavior Therapy, for two months. Over the course of the trial, we analyzed pre- 

and post-baseline interviews and interviews approximately every 3 months (Table I). To 

consider possible within-session differences, each session was divided into two halves.

B. Total Electrical Energy Delivered (TEED)

DBS has three parameters. These are amplitude, pulse duration, and frequency. To combine 

these parameters as single metric, total electrical energy delivered per second, or power, was 

computed using the formula [91]:

TEED(W ∗ 1 s) = I(A)2 . PW (sec) . f(Hz) . R(Ω),

(1)

where power is expressed in Watts, current in Amperes, pulse width in seconds, frequency 

in Hertz, and resistance in Ohms. Throughout the clinical trial, the stimulation frequency 
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was held constant at 150.6 Hz. Since the purpose of the study was to predict variations 

in total electrical energy delivered, the constant term was omitted. Because measurement 

may be affected by transient fluctuations in battery output, pulse shape, or resistance, actual 

delivered energy may differ slightly from calculated values.

C. Study Setup and Protocol

Fig. 2 depicts the analysis pipeline. Facial action units, head and face dynamics, and eye 

motion are extracted from video; acoustic and linguistic features are extracted from audio. 

Using individual sets of extracted features, models are trained to predict OCD severity, 

comorbid depression severity, and TEED. SHAP analysis is used to evaluate the most 

informative unimodal features. We then aggregate the top-k features from each set and train 

a multimodal model. Finally, with a SHAP analysis on multimodal features, we identify 

the most-informative k multimodal features and the corresponding model. Because subject 

identity was important for mixed effects modeling, we used leave-one-session-out cross 

validation for all our experiments.

D. Multimodal Features

We extract four sets of features namely action units, head and face dynamics, acoustic 

features, and linguistic features.

Action Units: Faces in the video are tracked and normalized using the Zface module of 

AFAR [36]. ZFace [92] is a real-time face alignment software that accomplishes dense 3D 

registration from 2D videos and images without requiring person-specific training. Faces are 

normalized to have an interocular distance (iod) of 80 pixels. AU detector module of AFAR 

is used to detect facial action units (AUs) in the normalized faces.

The version of AFAR, used in this study, was trained on the EB+ dataset (an expanded 

version of BP4D+ [93]), in which participants interact with an experimenter in a variety of 

emotion related tasks. Reliability of AFAR in EB+ was tested using k-fold cross validation. 

Average free-margin kappa was 0.75 and AUC 0.73 [37]. Cross-domain generalization was 

assessed by testing AFAR in Sayette GFT [94]. Average free-margin kappa was 0.49 and 

AUC 0.66, which represent moderate cross-domain generalizability. Because test results in 

GFT were likely attenuated by the larger head motion and lower video resolution in GFT, 

these comparisons provide a conservative estimate of the cross-domain generalizability in 

the current study. EB+ and the clinical trial were more alike than EB+ and GFT. EB+ and 

the clinical trial both used higher resolution video and were more similar in their more 

limited head motion.

AFAR was used to asses intensity of 6 facial AUs: AU1 (inner brow raiser), AU6 (cheek 

raiser), AU10 (upper lip raiser), AU12 (lip corner puller), AU14 (dimpler), AU17 (chin 

raiser). AU 1+2 is typically seen in surprise and affective engagement. An additional feature 

was average intensity of AU 6+12, which comprises the Duchenne smile, a marker of 

positive affect. For each of these, we extract time-series featues using tsfresh [95]. TsFresh 

outputs 794 time series characteristics for each feature for a total of 5,558 (7 × 794) features. 

In case of tracking failure or an AU feature fails to vary throughout the video, all related 
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TsFresh features are set to 0. While the number of features is initially large, the analysis plan 

greatly reduces the number in a number of unimodal and multimodal steps.

Head and Face Dynamics: Head dynamics is defined using the time series of the 3 

degrees of freedom of out-of-plane rigid head movement, which correspond to head nods 

(i.e., pitch), head turns (i.e., yaw), and lateral head inclinations (i.e., roll). Face dynamics is 

defined as time series of per frame eye and mouth openings. Eye opening is calculated using 

the Eye Aspect Ratio (EAR) [96], which is a normalized measure that divides the distance 

between landmarks on the upper and lower eyelids to the distance between inner and outer 

eye corners. Average of left and right EAR is used. Similarly, mouth opening is calculated 

using the Mouth Aspect Ratio (MAR), which is a normalized measure that divides the 

distance between landmarks on the upper and lower lips to the distance between left and 

right mouth corners. After head (pitch, yaw, and roll) and face (EAR, MAR) dynamics are 

calculated, time series characteristics are extracted using TsFresh [95], yielding a total of 

3,970 features.

Acoustic Features: Audio for each speaker is localized and transcribed using 

TranscribeMe [97]. Audio and text are aligned using the Montreal-Forced-Aligner [98]. 

The openSMILE [99] toolkit and Collaborative Voice Analysis Repository (COVAREP) 

[100] are used to extract acoustic features. For openSMILE, we use the Geneva minimalistic 

acoustic parameter set (eGeMAPS [101]), which is a subset of audio features chosen for 

their ability to represent affective physiological changes in voice production. eGeMAPS 

contains 62 features: arithmetic mean and coefficient of variation of 18 low-level descriptors 

(LLD), 8 functionals applied to loudness and pitch LLD, and 6 temporal features. 

COVAREP provides 72 low-level speech acoustic features, which are derived from the 

speech signal, that include pitch, energy, spectral envelope, loudness, voice quality and other 

characteristics. Both eGeMAPs and COVAREP have been used extensively in the analysis of 

psychological disorders [102], [103], [104] and affect recognition [105], [106]

LIWC Features: We use Linguistic Inquiry and Word Count (LIWC) [107], [108], which 

is a text analysis tool that determines the percentage of words in a text that fall into one or 

more linguistic, psychological, and topical categories. We extract 92 features from the verbal 

content of each interview. Approximately 93% of the words used in each interview were 

present in the LIWC dictionary and analyzed. We drop the coverage variable (referred to as 

“Dic” in LIWC) and normalize the word count variable with the duration of interaction.

E. Unimodal Model Training

When measures cluster within persons, as in a longitudinal study, mixed effects models are 

used in statistics and econometrics [109], [110]. In addition to the fixed effect terms, they 

include random effect parameters, which change the model’s assumptions to accommodate 

heterogeneous data with many sources of random variability (e.g., both intra- and inter-

individual). As a result, mixed effects methods allow for more accurate statistical inferences 

about the factors that connect with observed variance.
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Motivated by two previous studies that used mixed effects models to infer depression 

severity in a longitudinal design [10], [46], we use MERF to infer OCD severity, related 

depression severity, and TEED.

MERF [110] is defined as:

Y ij = f(Xij) + bi + εi

(2)

where: i = 1, …, m are the clusters (participants) each with ni observations (j = 1, …, ni); Xij

is the input feature matrix; f(Xij) is the fixed effects random forest; bi is the random effect 

parameter; εij is the measurement error; and Y ij is the regression target variable. In our 

unimodal experiments, the fixed effect parameters are the features derived from individual 

modalities and the random effect parameter is the participant ID. The model is trained using 

expectation maximisation (EM) with a generalised log-likelihood (GLL) function to monitor 

convergence. For each cross- training / testing, the mixed effects random forests were trained 

for 50 iterations. To compare the effectiveness of mixed-effects random forests, we also 

trained standard random forests (RFs) using the same protocols. For standard random 

forests, we performed a grid search to find the best hyperparameters. For consistency of 

results across experiments and folds, the hyperparameters were kept constant (number of 

estimators at 250, criterion as poisson, max depth as none).

F. Unimodal Feature Selection

Shapley values [111] were introduced in game theory to gauge each player’s participation 

in cooperative games. The machine learning and explainable AI communities recently 

have shown interest in Shapley. Shapley value for the jth feature is defined as the 

weighted average of differences in predictions in the presence of the jth feature and 

when it is marginalized, given the ith data instance with m features represented by Xi
m. 

Marginalization is accomplished by leveraging predictions from several feature subsets. 

Calculating Shapley value is computationally expensive due to the laborious marginalization 

procedure. However, the SHAP (SHapley Additive exPlanations) framework can be used to 

estimate Shapley values [112]. Shapley value φj of feature j can be computed as:

φj(v) = ∑
S ⊆ {1, 2, …, m} ∖ {j}

∣ S ∣ ! (m − ∣ S ∣ − 1)!
m!

× (v(S ∪ {j}) − v(S)),

where v is the model, m is the total number of features and S is a subset of features.

We use kernel-based LIME, which combines Shapley values with Local Interpretable 

Model-agnostic Explanations (LIME) [113]. LIME has been widely used to interpret model 

decisions in the explainable AI field. While LIME provides local correctness, the SHAP 

framework improves upon that by ensuring feature consistency and robustness to missing 

features. Missing features have no impact on the contribution of features of interest. The 
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SHAP analysis is done independently of the model training processes. The model itself (not 

the output of the model) is given as input for the analysis.

We use SHAP values to rank characteristics in terms of their relative contribution to 

prediction performance. We then choose the top-k features, where the optimal value of k
is found iteratively based on the mean square error of the model trained with top-k features. 

Optimal k may differ for each set of features (e.g., action units, head and face dynamics, 

acoustic features, and linguistic features). We refer to this stage of feature selection as 

“Feature Selection Stage 1”. Since feature selection is done independent of model training, 

a new model is trained for each distinct set of features. This feature selection methodology 

is consistent with [102], [114], [115], and [29]. Optimal features for all individual modalities 

are concatenated to obtain union of unimodal optimal features (see Fig. 2(c))

G. Multimodal Model Training and Feature/Model Selection

Following unimodal modeling, we train the models using multimodal features. Multimodal 

features comprise the combined top-k features selected from action units, head and face 

dynamics, acoustics, and linguistics. By training models with selected multimodal features, 

we seek to reveal the relative contribution of each modality to performance. We use 

combined features as the fixed effects and participant ID as the random effect parameter.

We use SHAP values to rank the multimodal features based on their relative contribution 

to the prediction performance. Similarly to unimodal feature selection, we choose top-k
multimodal features and optimize the value of k using an iterative approach. We refer to this 

stage of feature selection as “Feature Selection Stage 2”

H. Model Training and Evaluation

We trained separate models to predict OCD severity, comorbid depression severity, and 

TEED. For the multimodal model and each of the unimodal models, we optimized the 

number of features k in the set k ∈ {6, 11, 16, …46}.

To evaluate relative performance of the models we used the following performance metrics:

1. Mean Absolute Error (MAE) is one of the most commonly used performance 

metric for continuous labels. It is defined as the sum of the absolute errors 

divided by the number of observations.

MAE = ∑i = 1
D ∣ xi − yi ∣

D

(3)

where D is the number of observations, xi is the ground truth score, yi is the 

predicted score.

2. Root Mean Squared Error (RMSE) is the root of the mean of the square of 

the errors. RMSE score can never be zero. It is a frequently used metric for 

continuous observations.
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RMSE = ∑i = 1
D (xi − yi)2

D

(4)

3. R Square (R2) is also known as the coefficient of determination. It is always in a 

range (0,1).

R2 = 1 − ∑i = i
D (xi − yi)

∑i = i
D (xi − ȳ)

(5)

where ȳ is mean ground truth score.

4. Intraclass Correlation (ICC) is commonly used to determine the correlation 

between raters. In our case, “raters” are represented by ground-truth and 

predicted scores. ICC may be computed for agreement or for consistency. We 

used ICC(2,1) for consistency. To evaluate the predictive power of the model, we 

performed F-test for ICC scores. Because of the large number of tests (n=24 for 

each predicted measure) p was set as less than 0.001.

5. Normalized mean absolute error is the ratio of MAE to the range of measure 

(ROM), which is the difference between the possible maximum and minimum 

values of the measure. It is calculated as:

Norm_MAE = MAE
ROM

(6)

As the ranges of the OCD, comorbid depression, and TEED measures differ, 

directly comparing MAEs obtained with each of them would not be meaningful. 

By dividing the MAEs by the range of each measure, we obtain a normalized 

measure that is comparable across all of them.

6. Contribution of features is used to find the importance of a modality in the 

prediction of the model. It is based on SHAP values. We define contribution for a 

particular as:

Contribution = ∑j = 1
F ∑i = 1

D SMij

∑k = 1
M ∑j = 1

F ∑i = 1
D Sijk

× 100

(7)

where SM is SHAP value for a particular modality, S are all SHAP values, F  is 

number of features in a modality, M is number of modalities. It is the ratio of 

sum of the all the SHAP values for a particular modality by the sum of all SHAP 

values across all modalities.
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7. Contribution of feature selection is evaluated using the Wilcoxon Test [116]. The 

Wilcoxon Test is a non-parametric statistical test used to compare paired samples 

and assess whether there is a significant difference in their distributions. For 

each of the predicted measures (i.e., OCD, comorbid depression, and TEED), 12 

models used feature selection and 12 models did not use feature selection. We 

tested the hypothesis feature selection would result in a higher ICC score than 

models that lacked feature selection. For each of the three measures, we used a 

p-value of less than 0.05. The Wilcoxon Test statistic is calculated as follows:

W = ∑
i = 1

n
sgn(Xi − Y i) ⋅ min( ∣ Xi − Y i ∣ , 0.5)

(8)

where n is the number of paired observations, Xi and Y i are the paired 

observations from the two groups, and sgn(·) is the sign function. The resulting 

W  statistic is then compared to critical values to determine the statistical 

significance of the observed differences.

8. Contribution of random effects. The contribution of random effects was similarly 

evaluated using the Wilcoxon Test [116]. We tested the hypothesis that models 

with random effects would result in a higher ICC score than models that lacked 

random effects with p-value of 0.05.

III. Results

In Section III-A, we report MERF and RF results for OCD severity, comorbid depression 

severity, and total energy delivered (i.e., YBOCS II, BDI II, and TEED, respectively). These 

include the test statistics (e.g., ICC) for each model and modality. In Section III-B, we 

present the most important SHAP identified features within each modality.

A. Prediction Resultse

OCD Severity: The top of Table II shows the performance of each of the unimodal models; 

MERF and RF, with and without feature selection stage-1.

Among the unimodal models trained without Feature Selection Stage-1, the MERF model 

trained with acoustic features gave the best performance on each of the performance metrics. 

ICC for MERF trained with acoustic features is 0.76 and ICCs for other unimodal models 

ranged from 0.25–0.48. For RFs (i.e., random forests that lack mixed-effects), acoustic 

features performed the best with ICC of 0.51 and other fixed-effects unimodal RFs ranged 

from 0.03–0.21.

Feature selection stage-1 improved performance for each of the unimodal models. MERF 

model with acoustic features was the best among them and required only six features.

By comparing the union of features and unimodal models with feature selection stage-1, 

we can evaluate whether union of features improved performance. For acoustic features, 
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multimodal model afforded no advantage. The acoustic MERF model with feature selection 

stage-1 was equal to or outperformed the multimodal model on all four performance metrics. 

For other nimodal models with feature selection stage-1, the difference between unimodal 

and multimodal were mixed.

By comparing “Union” and “Union with Feature Selection Stage-2” we can evaluate 

whether further SHAP reduction is valuable.

The MERF Model with both feature selection stage-1 and stage-2 achieved the highest 

performance with an ICC of 0.83 and a large reduction in the number of features. Both 

feature selection stages in the multimodal model optimized prediction of OCD severity.

The ICC scores of MERF were significantly higher than those for RF by Wilcoxon Test. 

This finding suggest that random effects significantly contributed towards the prediction.

We compared the ICC score of models with and without feature selection stage-1; 

the resulting p-value was significant, indicating that SHAP reduction boosted model 

performance.

To evaluate MERF’s prediction accuracy for OCD severity in individual participants, we 

computed participant-level ICCs. For 4 of 6 participants (S1, S3, S4, and S5), ICCs were 

statistically significant (p < 0.01) within the range ICC = 0.57 to ICC = 0.79.

Comorbid Depression Severity: Correlation between severity of OCD and comorbid 

depression ranged from moderate (r = 0.53) to strong (r = 0.90). Because the measures were 

not highly correlated for all participants and because predictive features, inclusion or not 

of random effects and feature selection could differ for the two measures, we report results 

separately for severity of comorbid depression.

Table III shows the corresponding results for comorbid depression (BDI II). As for OCD, 

the unimodal model for MERF with acoustics again was the best performing with an ICC 

of 0.80. ICCs for the unimodal models were much lower and similar trends were found for 

other test metrics.

Feature selection stage-1, again, statistically improved performance for both MERF and RF 

models. Unimodal MERF with feature selection stage-1 using acoustics outperformed other 

unimodal models. The number of features required for acoustic MERF, however was larger 

than that for OCD prediction (Table II).

As in Table II, by comparing “Union” and “Union with Feature Selection Stage-2”, we can 

evaluate whether feature selection stage-2 improved performance relative to feature selection 

stage-1. In contrast to the results for OCD, feature selection stage-2 for comorbid depression 

outperformed that for acoustics and other modalities.

Wilcoxon test, for contribution of random effects showed a statistical improvement in 

performance with a p-value of less than 0.05.
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To evaluate MERF’s prediction accuracy for severity of comorbid depression in individual 

participants, we computed participant-level ICCs. For 4 of 6 participants (S2, S3, S4, and 

S5), ICCs were statistically significant (p < 0.01) within the range ICC = 0.52 to ICC = 0.74.

Total Electrical Energy Delivered (TEED): Table IV shows the corresponding 

performance for TEED. Acoustic models achieved the highest prediction. RF performed 

better than MERF. Random effects made no significant contribution (p-value 0.876).

Similar to OCD and comorbid depression, feature selection stage-1 statistically improved 

the performance for both MERF and RF. For TEED, RF using Union with feature selection 

stage-1 and stage-2 performed the best. The next best model was RF using Union with only 

feature selection stage-2.

To evaluate MERF’s prediction accuracy for TEED in individual participants, we computed 

participant-level statistics. For 4 of 6 participants (S3, S4, S5, and S6), ICCs were 

statistically significant (p < 0.01) within the range ICC = 0.73 to ICC = 0.84.

Performance Comparison Across Labels: To further compare performance across 

OCD, comorbid depression, and TEED, we compute the normalized MAE values for each 

individual set of features and their combination as shown in Fig. 3. For MAE, lower 

scores are better. For individual modalities, acoustic features yielded the lowest MAE for 

OCD, comorbid depression, and TEED. Linguistic features yielded the highest. Multimodal 

models with SHAP reduction yielded the smallest MAEs for comorbid depression and 

TEED although not OCD.

Prediction of OCD severity and comorbid depression severity (Fig. 3(a) and (b)) are similar 

for all feature types except for acoustic features, which perform better. TEED prediction 

performances given in Fig. 3(c) are much lower compared to other two for all feature sets.

B. Relative Contribution of Features Within Modalities for the Best-Performing 
Multimodal Model

For OCD severity, comorbid depression severity, and TEED, Table V presents the top-k
multimodal features in predicting their respective values. Red denotes that an increase in 

the value of the feature leads to an increase in the predicted value. Blue indicates that an 

increase in the value of the feature leads to a decrease in the predicted value.

For severity of OCD and comorbid depression, most of the top-k multimodal features 

were acoustic. Of these, MFCCs were especially informative. MFCCs are a non-linear 

transformation of the audio signal that approximate human perception. MFCCs 4, 6, and 

8 were among the most informative for severity of both OCD and comorbid depression. 

While individual MFCCs are difficult to interpret, coefficients from the lower half of the 

range suggest psychomotor retardation, vocal track constriction, and reduced energy [2], 

[86]. Harmonic and phase distortion coefficients were negatively correlated with comorbid 

depression severity.
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Head and face dynamics were related to comorbid depression and TEED but not OCD. With 

increases in TEED, mouth, eye, and brow movement became more frequent. With increases 

in comorbid depression they decreased.

Brow raises (indexed by AU 1) were negatively correlated with OCD severity. Brow raises 

are an affiliative display indicative of interest. Linguistic features did not contribute to OCD, 

comorbid depression or TEED.

C. Individual Differences Among Participants

To visualize individual differences, we plotted the predicted values by ground truth of the 

best multimodal performing model for OCD, comorbid depression, and TEED (Fig. 4(a), 

(b), and (c)). For OCD the best performing multimodal model was MERF with feature 

selections. With exception of S6, the slopes for OCD were closely related in intercepts and 

slopes across participants. For S6, a factor may have the smaller number of observations and 

attenuated variability of OCD for them.

For comorbid depression the best performing multimodal model was MERF with feature 

selection. In the predictions, there was more variability across participants in slopes and 

intercepts. Attenuated variability may have contributed to this finding especially in S6. 

These findings support the importance of mixed-effects modeling for longitudinal machine 

learning.

For TEED the best performing model was RF with feature selection. The slope between the 

predicted and ground truth values for TEED was always positive with some variability in the 

slopes of across participants. As random effects were not considered for TEED prediction, 

number of sessions for the subject was not a contributing factor and the slope of S6 was also 

positive. The slope had high variability.

IV. Discussion

Clinician ratings of OCD and comorbid depression were inferred with high reliability from 

multimodal RF models. For OCD severity, the ICC for the SHAP-reduced ICC model 

was 0.83; for depression, the corresponding ICC was 0.87. These ICCs rival the interrater 

reliabilities of trained clinicians. This strong performance was enabled by including random 

effects in the models. Random effects account for individual differences in participants. 

When random effects were omitted, prediction decreased (ICC = 0.60 to 0.68). This finding 

suggests that individual differences in participants are important to consider for longitudinal 

measures.

Total energy delivered by the DBs electrodes was also strongly predicted by multimodal 

RF. Unlike for symptom ratings, however, inclusion of random effects provided little 

or no advantage. Across individual modalities and in multimodal models, RF performed 

comparable to or marginally better than MERF. The ICC for the SHAP-reduced model was 

0.83. This finding suggests that individual differences in participants are less consequential 

for TEED.
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For OCD, comorbid depression and TEED, feature reduction using SHAP consistently 

outperformed models that omitted feature selection. In most cases the advantage of feature 

selection dramatically improved model performance. These findings are consistent with 

recent research. Alghowinem and colleagues [117] found that feature selection improved 

model performance in independent corpora from three countries; Bilalpur found benefit 

from feature reduction in mothers with depression [29]. Similar gains have been realized 

in affect recognition [118]. Given the consistency of the findings between corpora and 

contexts, we would anticipate similar benefits from feature selection in other clinical 

datasets. This hypothesis requires testing. A related question is what specific features are 

robust to differences in data sources.

With further research, user-in-the-loop systems could be an important outcome. A critical 

problem in clinical trials research is lack of consistency among raters on endpoint measures 

such as the HAM-D and YBOCS interviews. Even when raters are well trained and 

interrater reliability is monitored carefully, agreement tends to drift over time especially 

across different data collection sites. Inadequate reliability leads many clinical trials to be 

under-powered. Because aggregating independent measurements is an effective means to 

increase reliability of measurement [119], aggregating computational and human ratings 

could boost the effective reliability of symptom ratings in clinical trials. Another possible 

user-in-the-loop application would be to flag ratings that are too discrepant from model 

predictions, which would enable review and timely re-interviewing as warranted.

In treatment settings, computational measurement of severity could provide automated 

measurement of symptom severity over the course of treatment to answer the question 

of whether patients are improving or not and to inform therapy. Until now, subjective 

self-report measures and clinical judgment have been the only means to gauge treatment 

response in therapy. In addition to their limitations, noted above, completion rates for 

self-report measures are known to decrease when repeated over time [120].

In the neuroscience community, there is increasing interest in brain-behavior quantification 

and synchronization [121]. That is, how changes in neural activity relate to synchronous 

changes in behavior. For relatively brief interviews that we tested, we found strong 

correlation between total energy delivered by the DBS electrodes in or near the VC/VS and 

session-level multimodal behavior. An exciting next step is to test whether synchronization 

of neural stimulation and multimodal behavior occurs across briefer intervals. Initial work 

with [122] is exploring this question.

The current state of the art in DBS for treatment refractory OCD is open-loop programming. 

That is, patients return to the clinical setting at frequent intervals to evaluate recent 

symptoms and adjust DBS parameters as needed. In these sessions, clinical interviews and 

observations inform determination of DBS parameters through trial and error. Judgments are 

subjective and vary within and between clinicians and over time. A multimodal regressor 

could greatly reduce or eliminate subjective judgment and enable more accurate titration of 

the DBS.
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Because exposure to OCD triggers and the severe symptoms they elicit can vary within and 

across days, more frequent evaluation and adjustment of DBS parameters than is possible 

in periodic office visits would be beneficial. In DBS-treatment for essential tremor, effective 

closed-loop programming has been achieved. The same is a current goal of research in 

DBS treatment for refractory OCD. The current findings suggest that multimodal behavior 

acquired via audio and video could be an effective component of a self-titrating DBS 

system. It also could be effective in detecting hypomania or mania, which are side effects of 

DBS, and automatically down-regulating DBS energy to reduce or eliminate this unwanted 

and potentially dangerous side effect.

An unexpected discovery was made when voice acoustics alone approached the accuracy 

of the best multimodal model. This finding highlights the potential of voice in effectively 

revealing affective states, particularly those associated with OCD and comorbid depression. 

The inherent dynamism of the voice, coupled with its connection to the vagus nerve–the 

longest nerve in the autonomic nervous system and the primary nerve of the parasympathetic 

nervous system—renders it well-suited to capturing variations in arousal and stress levels. 

Notably, voice has been recognized as a reliable predictor of comorbid depression. For face, 

head, and gaze, it is worth noting that dynamic measures (e.g., velocity) contributed more 

than static ones (e.g., action unit duration). Multimodal models afforded increased prediction 

with the potential advantage of greater robustness to signal loss.

OCD and comorbid depression share some but not all features. For OCD five acoustic 

fearures were among the top-k features. For comorbid depression four of these were among 

the top-k as well. Four additional acoustic features were among the top-k for comorbid 

depression but not for OCD. For OCD none of the head and face dynamics features were 

among the top-k but for comorbid depression three head and face dynamics features were 

among the top-k. For OCD, one action unit feature was among the top-k but none for 

comorbid depression. Given the high correlation between OCD and comorbid depression, 

we must be cautious in interpreting these results; they do, however, suggest both similarities 

and differences between OCD and comorbid depression.

In behavioral and clinical science, explanation has historically been more important than 

prediction. Especially when dealing with health, explanation is critical. Recent work has 

called for an integration of explanation and prediction [123]. Our models were informative 

in detecting relative contribution of each modality and of key features within each modality.

A study limitation was the small number of participants. The participant pool from which 

to draw was small. Participants had to meet stringent criteria for severe and chronic treat-

resistant DBS, additional psychiatric and medical criteria, opt for surgical implantation of 

electrodes deep in their brain, and participate in an 18-month trial. The within/participants 

(longitudinal) design with up to 8 assessments from each participant provided some offset 

to the limited numbers of participants. Supporting the validity of the findings was the 

consistency of the findings for depression. Comparable to previous research that had access 

to larger samples of participants, our findings for comorbid depression were quite consistent. 

For OCD and total energy delivered to the DBS, comparative data are unavailable. OCD and 

DBS energy are new research topics in affective computing.
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To compare alternative algorithms or approaches by different investigators, access to 

common databases is essential. This is a problem when data are personally identifiable 

and involve sensitive topics, such as psychopathology. Audio and video as well as text may 

include personally identifiable information that is difficult to eliminate without impairing 

value of the data. In part for this reason, DAIC-WOZ has been one of the few depression 

databases made available to qualified researchers [7]. We will seek IRB permission to 

distribute de-identified and anonymized feature data from this clinical study for use by other 

researchers.

V. Conclusion

An unobtrusive, multimodal regressor based on open-ended interviews measured severity 

of OCD, severity of comorbid depression, and TEED over the course of a clinical trial 

for treatment resistant OCD. The regressor achieved strong consistency with state-of-the 

art clinical measures. With further validation, the proposed system could greatly reduce 

subjective variation in clinical judgment within- and between clinicians and eliminate drift 

over time in assessments for refractory OCD. An unexpected finding was the strength of 

acoustic features in inferring symptom severity and TEED. Facial action units and head and 

face dynamics contributed further predictive power. Linguistic features contributed relatively 

little. A key contributor to the modeling results was use of SHAP reduction in selecting most 

informative features. For the longitudinal data considered here, feature selection consistently 

improved performance. Inclusion of a mixed-effect for participants further contributed to 

improved performance for OCD and comorbid depression but not for TEED.
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Fig. 1. 
(a) Frontal view of an OCD patient’s brain. Implanted DBS leads and their electrodes are 

shown with purple lines and white circles, respectively. The ventral striatum (target area) is 

in yellow. (b) Saggital view of the DBS electrodes in relation to the cortico-striatal-thalamo-

cortical circuit that is implicated in OCD.
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Fig. 2. 
Pipeline. (a) Action units, head and face dynamics, acoustic features, and speech content 

features are extracted. (b) Models (random forest regressions with and without sessions as 

mixed effects) are trained using each of the four feature sets separately. (c) Feature selection 

Stage-1 is completed. The most informative k features are selected from each of the four 

sets of features. Feature selection consists of SHAP analysis to identify informative features 

and rank them by their Shapley values; choose k optimal features for each feature set; 

and aggregate them into a single feature vector. (d) Models are trained with a combined 

multimodal set of optimal features. (e) Optimal multimodal features and the corresponding 

model are found with a multimodal feature selection step at Stage 2.
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Fig. 3. 
Cross-validation normalized MAE performance of top-k features derived from SHAP 

analysis.
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Fig. 4. 
Observed and predicted values for the best performing model.
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TABLE I

SESSIONS AVAILABLE FOR ANALYSIS

Participant S1 S2 S3 S4 S5 S6

Baseline1 ✓ ✓ ✓ ✓ ✓ ✓

Baseline2 ✓ ✓ ✓ ✓ ✓ ✓

3rd Month ✓ ✓ ✓ ✓ ✓ ✓

6th Month ✓ ✓ ✓ ✓ ✓ ✓

9th Month ✓ ✓ ✓ ✓ ✓ NA

12th Month ✓ ✓ ✓ ✓ ✓ NA

15th month ✓ ✓ ✓ ✓ ✓ NA

18th month NA ✓ ✓ ✓ NA NA

Baselines 1 and 2 occurred before and after implantation of DBS electrodes, respectively, and prior to DBS activation.
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