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Abstract

The use of auditory stimuli in rehabilitation to target walking has been evidenced in persons

with neurological conditions. The methodologies focus on the synchronisation of persons’

steps to auditory stimuli showing that the type of stimuli and tempi significantly affect the

synchronisation. However, the dynamic of the interaction over time between the motor sys-

tem and the auditory stimuli, i.e., when steps are aligned (termed as locking) and not aligned

(termed as unlocking) to the beat of the stimuli, remains unclear. Quantifying these dynam-

ics would assist in the development of personalised rehabilitation. Nevertheless, it is cur-

rently challenging given the variability of responses per individual over time. We propose a

methodological solution to quantify the dynamics of the step-to-beat coupling over time

within an experimental paradigm where healthy (n = 7) and neurological impaired (n = 6)

participants walk three minutes to music and metronomes at various tempi. We applied win-

dow partitioning within the time series to account for the changing pattern. To classify data

into locked and unlocked events, features of fluctuation and trend were derived on which

two statistical tests (circular statistical test and slope test) were done, respectively. Based

on the ground truth, the performance of our proposed method yielded high accuracy (91%),

precision (90%) and recall (97%). The standard deviation of the inter-step intervals was then

modelled across the label and experimental factors. The proposed method is suitable for

quantifying fine-grained observation of the dynamics of auditory-motor coupling in adult

healthy and neurological impaired participants, with the potential of designing personalised

rehabilitation.
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Introduction

The use of auditory stimuli in rehabilitation to target walking has been evidenced in persons

with neurological conditions, for example, in persons with Parkinson’s disease [1], stroke [2]

and multiple sclerosis [3]. These methodologies are based on sensory-motor synchronisation,

where persons are requested to synchronise their steps in time to the beats of music or metro-

nomes. Changes in walking parameters (such as spatiotemporal parameters, e.g., cadence,

speed, and stride length) in these studies evaluate the effect of the application of these tech-

niques on the study participants. On the other hand, measuring the synchronisation consis-

tency and accuracy of the step relative to the beat when engaging in such a task also provides

abundant information in addition to the changes and dynamics of the walking itself [4].

In a study on neurological patients, our research group previously showed that synchroni-

sation to auditory stimuli significantly differs when walking to music compared to metro-

nomes for different auditory tempi [3,5]. The results obtained per trial of three minutes were

summarised into one average value per trial—as commonly done to report on central tenden-

cies in statistical reporting [6]. Albeit these results are comprehensive and provide valuable

clinical insights, they still fail to report on the dynamics of the interaction over time. To elabo-

rate, that is the investigation of the dynamics of the interaction occurring between the motor

system (intrinsic oscillator) and the auditory stimuli (and extrinsic oscillator) when engaging

sensorimotor synchronisation. This study aims to address this gap by quantifying the dynam-

ics of auditory-motor interactions over time, rather than solely focusing on statistical metrics

such as averages. Understanding these dynamical processes over time can advance both funda-

mental and clinical applications. For instance, a clinician, with the help of assistive technolo-

gies, can intervene and adjust the components of the auditory-motor paradigm in real time

when suboptimal dynamics are detected, enabling in this way a more personalised and effec-

tive intervention.

However, quantifying these dynamics over time across participants and trials is challenging

given the differences, not only across participants but also within participants [7]. We propose

a methodology to tackle this challenge during a task when persons are instructed to synchro-

nise their steps during walking to auditory stimuli (music and metronomes). The relative

phase angle (rPA), a measure of an individual’s step and the closest beat in the auditory stimuli

[4], is an outcome to quantify step-to-beat synchronisation. If one applies a classification logic

[8], two possibilities arise: a) participants are locked in phase (i.e., synchronising: their steps

are aligned with the beat), and b) participants are not locked in phase (i.e., not synchronising:

their steps are not aligned with the beat).

Given the challenges mentioned above, we proposed a methodological framework that

takes into account the time domain of the signal. It also avoids specifying arbitrary thresholds

for mean and variance in the classification of periods of locking and unlocking. The method

includes partitioning the trial into time windows and classifying each window into locked and

unlocked states by a systematic statistical evaluation. Afterwards, the time series specific to the

walking (gait interval variability) can be merged into the partitioned windows. We hypothe-

sised that this methodological framework will enable the investigation of auditory-motor cou-

pling dynamics over time thereby allowing answering the following research questions. Does

locking or unlocking over time within a trial affect the variability of inter-step interval across

stimuli and tempi. Answers to such questions can guide the rehabilitation community in

developing targeted and individualised rehabilitation plans. As well as contribute to the

advancement of assistive technologies, enabling the implementation of personalised rehabilita-

tion strategies that optimise auditory-motor dynamics. We applied this methodology in adult

populations with and without neurological impairments.
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Methods

Experimental procedure and data

This experiment is part of a larger-scale project, medical ethical approval (B1152021000003)

and clinical trial registration (NCT04887753) investigating sensorimotor synchronisation in

persons with cerebellar impairments. The recruitment period for the large-scale project started

in 29th of April 2021, and ended on the 3rd of May 2024. Recruited participants provided a

written consent for study participation by signing the informed consent documentation

approved by the medical ethical committee. The following inclusion criteria was used for cere-

bellar-impaired persons: the presence of a cerebellar impairment diagnosed by a neurologist

evidence from MRI imaging (presence of a lesion and/or degeneration), or a minimum score

of 1 on the Scale of Assessment and Rating of Ataxia. Participants were excluded if they exhib-

ited cognitive impairment impeding understating the instructions, uncorrected hearing

impairment, beat amusia, or pregnancy.

Each participant was equipped with an interactive music player called the D-jogger [9]. The

D-jogger consists of headphones (Sennheiser RS 127–8 headphones), inertial measurement

unit sensors (NGIMU,x-io technologies limited) strapped to the ankles, and a laptop ((Dell

Latitude laptop, Core i5-1145, Windows 10 Pro, ASIO low-latency soundcard).) with a cus-

tom-made software. The D-jogger provided auditory stimuli at any given tempo by changing

the frequency of the musical beats and metronome ticks and logged all auditory and gait data

for calculating outcome measures of gait-music synchronisation discussed in the following

paragraphs.

The D-jogger technology has been applied in previous studies to provide and quantify step-

beat synchronisation during walking and/or running on adult healthy controls [9–11] and

neurological populations [3,5,12–14] as well as in children with developmental coordination

disorder [15]. The NGIMU sensors have been validated with gold standard gait analysis meth-

ods [16].

Each participant was asked to walk to different trials of 3 minutes each. The trials consisted

of two blocks of stimuli (music and metronomes) at seven tempi: -12%, -8%, -4%, 0, +4%,

+8%, and +12% of baseline comfortable cadence. Thus, each participant underwent 14 differ-

ent trials.

Outcome measures

As seen in Fig 1, two time series measurements are processed: the inter-step interval and rela-

tive phase angle. The measurements were derived for each participant and each trial.

A. The inter-step interval. The inter-step interval describes the participant’s walking pat-

tern and was derived from the inertial measurement unit sensors (NGIMU, UK) recordings of

the step-time. Stepj denotes the time at which the j-th step occurs. We define the time variable

tj which denotes the timing of the j-th step (tj = Stepj). The inter-step interval δj at time tj is cal-

culated by subtracting the (j+1)-th step with the j-th step.

dj ¼ Stepjþ1
� Stepj; j ¼ 1; 2; . . . ; J:

Note that the number of observations of the inter-step interval is J−1 since there is no step

occurring after the last step Stepj.

B. Relative phase angle (rPA). The relative phase angle (rPA), measured in degrees,

describes the participant’s interaction with the auditory stimuli. It quantifies the difference

between the step and the closest auditory beat (i.e., measures the timing of the footfall relative

to the closest beat), ranging from -180 to +180. This is either a negative (footfall before the
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beat) or a positive (footfall after the beat) angle. The rPA is calculated as follows:

rj ¼ 360∗
Stepj � Beatj
Beatjþ1 � Beatj

 !

; j ¼ 1; 2; . . . ; J;

where Beatj is the time of the beat prior to Stepj. One can calculate the average rPA using circu-

lar statistics [17].

Data pre-processing

As shown in Fig 1, each outcome measure underwent a separate processing step. We carefully

examined the time series of the inter-step intervals to identify any technical sensor glitches or

faulty observations. To accomplish this, we analysed data from the inertial sensors by visually

assessing the gyroscopic sensor data to detect distinct points corresponding to gait events such

as mid-swing and initial contact. A very large and very small inter-step interval—such as three

seconds and 0.1 second—are likely to be outliers and invalid. Generally, there is no fixed

threshold to determine whether the inter-step interval is invalid. For this reason, observations

larger than (median +3sd) or smaller than (median −3sd), where sd denotes the standard devi-

ation, were considered outliers and removed from the analysis [18].

Fig 1. Pipeline of the analysis.

https://doi.org/10.1371/journal.pone.0315607.g001
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Next, the inter-step interval and the rPA time series were verified and adjusted to contain

180 seconds of recording by removing the observations above the 180-second mark. Next, the

time series were divided into nine windows, each spanning 20 seconds. On average, these

20-second intervals included 20–30 steps.

rPA time series. In this section, we describe the methodological solution where we pro-

cess the quantification of synchronisation over time. The method allows the capture of the

dynamic behaviour of synchronisation that varies across and within participants and trials.

The proposed solution was to label each partitioned window within the time series with two

labels: locked (good synchronisation occurring) or unlocked (i.e., synchronisation not occur-

ring). To perform the labelling, the fluctuation and the trend of rPA are evaluated in two dif-

ferent manners separately with an interchangeable order. The fluctuation and the trend of rPA

evaluation give label results after which we combine both with an "if else" logic for the final

labels. Below, we provide the details:

a. Evaluation of fluctuation (circular uniformity test)

In evaluating the fluctuation, one may consider calculating the variability (e.g., standard

deviation) of the rPA and determine that high variability indicates an unlocking phase and

vice versa. However, this approach requires an arbitrary threshold of variability, which can-

not be specified by the highly variable individual observations of the participants across

trials.

Therefore, circular statistical test [17] is applied since rPA can be seen and analysed as cir-

cular data. Circular statistics deals with data that has no true zero where the beginning and the

end of the measurement coincide. The distribution of data is different from the linear case. An

example of circular data is the von Mises distribution which is comparable to the normal dis-

tribution in the linear case. We refer to Jammalamadaka & SenGupta (2001) [19] for further

explanation on circular statistics.

The rPA with slight fluctuation is equivalent to circular data concentrated towards a mean

direction. On the other hand, high fluctuation implies that the observations are spread over a

circle. Thus, the circular uniformity test on the RPA was performed to evaluate the fluctuation.

The null hypothesis is that the data is uniformly distributed, which implies high fluctuation,

and the alternative is that the data is concentrated without any preferred mean direction,

which implies low fluctuation. Therefore, if the null hypothesis is rejected, we label the window

as the locking phase.

b. Evaluation of trend (window-specific slope test)

One approach to evaluate the trend is to obtain the slope of the rPA over time in each win-

dow. Since no general threshold existed, an average trend (slope) over all windows in each trial

had to be calculated. We approached this evaluation using a linear mixed model (LMM).

LMM is often used in longitudinal studies involving repeated measurements that feature two

sources of variation, i.e., between and within individuals. LMM accounts for both sources of

variation by the inclusion of a random effect. We refer to Verbeke & Molenberghs (2009) [20]

for a detailed explanation on LMM.

The model was fitted with the rPA against the time relative to the starting point of the win-

dow and including window-specific random intercept and slope. Then, the estimate and the

standard error for every window-specific deviation from the overall slope was obtained using

best linear unbiased predictor (BLUP) [21]. Finally, based on the estimate and the standard

error, we tested the significance of each window-specific deviation from the overall slope. We

labelled the window as the unlocking phase in each trial if the window-specific slope deviated

significantly from the overall slope.
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c. Final labelling of each partitioned window

We combined the results of labels from the above evaluations: a. the circular uniformity test

and b. the window-specific slope test.

• A final label of ’locked’ was given to the window where both evaluations indicated ’locked.’.

This indicated a stable rPA derived from low fluctuation and flat trend features.

• Otherwise, the window was given a final label of ’unlocked’. This indicated unstable rPA

derived from high fluctuation and non-flat (slope) trend features.

Ground truth verification of the final attributed labels was conducted by computing confu-

sion matrix [22]. The matrix was scored into its four components as follows:

• A true positive (TP) was defined when the label indicated ’locked’ and was coupled with the

outcome "correct".

• A true negative (TN) was defined when the label indicated ’unlocked’ and was coupled with

the outcome "correct".

• A false positive (FP) was defined when the label indicated ’locked’ and was coupled with the

outcome "incorrect".

• A false negative (FN) was defined when the label indicated ’unlocked’ and was coupled with

the outcome "incorrect".

After that, the values were counted per outcomes (TP, TN, FP, FN) per partitioned window,

and a sum of all was computed; this was used to calculate the recall (TP/TP+FN), precision

(TP/TP+FP) and accuracy (TP+TN/Total) of the labels. Two independent reviewers con-

structed the confusion matrix, and a third reviewer was consulted in case discrepancies arose.

The reliability of the ratings was assessed using Cohen’s kappa, which measures the agreement

between two initial reviewers. Kappa value of 0.60–0.79 indicates a moderate agreement and

kappa value of 0.80–0.90 indicates a strong agreement [23].

Merging datasets of inter-step interval and RPA

As seen in Fig 1, at this stage, both time series feature nine labelled partitioned windows

merged to create a dataset for modelling. Since window partitioning was done in the same

manner for both datasets, merging the datasets was essentially transferring the information

of the labels from rPA dataset to the inter-step interval dataset. This results in a dataset con-

taining the outcome measure of inter-step interval together with the label ’locked’ or

’unlocked’, as well as the subject identifier (ID) and experimental factors (i.e., stimuli and

tempi).

Modelling inter-step-interval variability

Modelling inter-step interval variability is the final step of the proposed methodology, which

leads to applying a statistical model to answer the research question: “Does locking or unlocking
within a trial affect the variability of inter-step interval across stimuli and tempi.” The variability

of inter-step interval over time is modelled as a function of time (i.e., window), factors (i.e., sti-

muli and tempi), and accounting for the different labels (locked/unlocked). To model the vari-

ability in steps, we calculated the standard deviation of the inter-step interval in each window.

The standard deviation was then used as the response variable for the modelling. Thus, we

have a repeated outcome measure of standard deviation for each trial.
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Let δijklm denote the inter-step interval for subject i, measured at time tijk in window ωk with

Tempil and Stimulim. For each window, the standard deviation was calculated, given by

Siklm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPJk
j¼1
ðdijklm � miklmÞ

2

Jk

s

where μiklm is the mean of the inter-step interval and Jk is the number of steps in k-th window.

From the equation, it can be seen that the standard deviation does not include the index j and

the information of time is no longer carried by tijk. Instead, window ωk is the only variable that

carries the time information. Now, the standard deviation Siklm can be seen as a repeated mea-

sure over the window ωk, where the variable window ωk is now taken as an ordinal variable. In

modelling, the ordinal variable of the window is denoted by Windowk which takes integer val-

ues from 1 to 9.

The standard deviation can be modelled as Gaussian data and non-Gaussian data with

gamma distribution since it can take any non-negative value. Therefore, the modelling was

done using LMM with possibly transformed data. The variance-covariance matrix is set to be

unstructured [21].

Software

The software used in this study were R version 4.3.2, SAS 9.4, and Python 3. As illustrated in

Fig 1, data processing and merging of datasets were conducted in Python. The estimation and

the test of the components of random effects using BLUP in LMM was performed in SAS soft-

ware using PROC MIXED [24] by adding ’solution’ in the ’random’ statement. The circular

uniformity test was done in R using the function circ.range(., test = TRUE) in CircStats pack-

age [25]. Fitting LMM was done in R using lmer() function in lme4 package [26].

Results

1.1 Participants

In this methodological study, we present data collected on seven healthy controls (age: mean

61 ± 9 years, sex: 5 female, 2 male) and six patients with cerebellar impairments (age: mean

58 ± 17 years, sex: 3 female, 3 male). Table 1 presents the clinical information of each patient,

including their diagnosis, year of diagnosis, MRI results, and scores from the Scale for the

Assessment and Rating of Ataxia [27]. Assistive devices were not used by the participants.

1.2 Step-interval time series

Processing and removal of invalid observations from the raw data recordings.

As illustrated in Fig 2, invalid observations shown on the left were processed to obtain a

clean inter-step-interval time series as shown in the right.

1.3 Relative phase angle time series

Labelling of the partitioned windows

a. Evaluation of fluctuation (circular uniformity test)

This evaluation was able to catch the phase with high and low fluctuation, although not

with full accuracy at all time points. Fig 3, illustrates the time series of rPA during one experi-

mental trial of 180 seconds partitioned into nine windows. The trial has been colour-coded

(green and red indicate locked and unlocked window respectively) after undergoing the
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circular uniformity test. Note that high fluctuation of rPA indicates unlocking phase and, con-

versely, low fluctuation indicates locking phase. In Fig 3, the rPA in window 1, 2, and 8 fluctu-

ate highly between the values around -150 and 150. It suggests that the steps in these windows

were unsynchronised, and thus classified as unlocked. In contrast, the rPA in window 4, 5, and

6 fluctuates between the values around -100 and 0 which suggests that the steps were synchro-

nised and thus classified as locked.

The example illustrates that the unlocked phase was correctly identified in window 1 and 2

and correctly identified ’locked’ label in windows 3 to 6. However, it failed to identify windows

7 and 8 as ’unlocked’.

b. Evaluation of trend (window-specific slope test)

Table 1. Descriptive clinical information of each patient, including diagnosis, year of diagnosis, MRI findings, and scores from the Scale for the Assessment and

Rating of Ataxia.

Diagnosis Year of

diagnosis

MRI findings Gait

(0–8)

Stance

(0–6)

Sitting

(0–4)

Speech

disturb-

ance (0–6)

Finger

chase

AVG_L,R

(0–4)

Nose-finger

test AVG_L,

R (0–4)

Fast alternating

hand movement

AVG_L,R (0–4)

Heel-shin

slide

AVG_L,R

(0–4)

Cerebellar Stroke 2021 Right posterior stroke

(posterior inferior

cerebellar artery)

1 0 0 0 0 0 0 0

Cerebellar stroke 2021 Multiple lesions of

bilateral cerebellar

hemisphere

1 0 0 0 0 0.5 0 0.5

Arterior-venous

stenosis

malformulation

2009 Bilateral posterior

cerebellar hemispheric

lesions and mild

cerebellar atrophy

1 0 0 0 0 0 0 0

Cerebellar stroke 2019 Left hemisphertic

cerebellar stroke

2 1 0 1 0.5 0.5 0.5 0.5

Cerebellar stroke 2019 Bilateral posterior

inferior cerebellar artery

stroke

1 2 0 0 0 0 0 0

Cerebellar stroke 2019 Ischemia in Left

posterior cerebellar

hemisphere (ASCA)

1 0 0 0 1 0 0 0

https://doi.org/10.1371/journal.pone.0315607.t001

Fig 2. Example of inter-step-interval of a trial, stimuli: Music, tempi: -8% before outlier removal (left) and after outlier

removal (right).

https://doi.org/10.1371/journal.pone.0315607.g002
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Fig 4, illustrates the time series of rPA during one experimental trial of 180 seconds parti-

tioned into nine windows. The top panel of the figure shows the rPA from window 1 through

window 9. The middle panel shows the rPA of nine 20-second windows stacked on each other.

The bottom panel shows the label based on the result of LMM slope test. A LMM was fitted

with window-specific random intercept and slope on the stacked 20-second windows. Each

window-specific slope was tested to determine whether it deviates significantly from the aver-

age slope, which is the fixed effect, of the overall 20-second windows. When a significant devia-

tion was absent, the window was labelled ’locked’ (as seen in the first eight windows on the

bottom panel of Fig 4). When a deviation was present, the window was labelled ’unlocked’ (as

seen by the last window on the bottom panel of Fig 4).

A combination of both evaluations

Each test captures the locking/unlocking pattern, but not always. With a simple decision

rule, the two evaluations were combined. The decision rule was that the window was labelled

as unlocked if either of the two evaluations resulted in an unlocked label. Combining both

tests improved the performance in capturing the correct labelling. Fig 5 shows a trial where the

Fig 3. Relative phase angle with colour label for each window based on circular uniformity test: Unlocked (red)

and locked (green).

https://doi.org/10.1371/journal.pone.0315607.g003

Fig 4. Relative phase angle (rPA) from window 1 to 9 (top panel), rPA in all windows stacked on top of each other

(middle panel), and rPA with the locking/unlocking label with green indicating a locking window and red otherwise

(bottom panel).

https://doi.org/10.1371/journal.pone.0315607.g004
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first window was inaccurately labelled as unlocked with the circular uniformity test, but the

slope test was able to provide it with the correct ’unlocked’ label. The opposite case occurred in

the last two windows, where the label ’unlocked’ was correctly attributed based on the circular

uniformity test but not with the slope test. Nevertheless, the window was attributed to the cor-

rect label by combining both pieces of information.

Ground truth verification

The reliability of ratings between the two assessors. The Cohen’s Kappa statistics indicated

that the initial two raters demonstrated a moderate agreement (Kappa = 0.744). Out of 1,571

total ratings, the raters disagreed on 82 instances, which were subsequently resolved by the

third rater, ensuring consensus.

The results of the confusion matrix. The confusion matrix calculations of the combined

methodology, accounted for an accuracy of 91%, a precision of 90% and a recall of 97%. Thus,

the proposed methodology was deemed valid for statistical modelling in the next steps.

Modelling inter-step interval variability

The inter-step-interval variability was computed in terms of the standard deviation of the

inter-step-interval per window for participant and per trial before moving to model fitting.

Fig 6 shows that the data was right-skewed. Therefore, the data was log-transformed (bottom

panel) and used in the modelling steps described below.

Linear mixed model (LMM). The log standard deviation changes over the window line-

arly. For this reason, the log standard deviation was modelled as a linear function of the ordinal

variable Windowk. Additionally, for software convenience (related to the convergence of the

model), Windowk was rescaled by dividing it by 10. Since it was of interest to investigate the

effect of the locked/unlocked windows and the effect of tempi, the model includes the

Fig 5. Labelling based on the circular uniformity test (top), slope test (middle), and final label combining both tests (bottom).

https://doi.org/10.1371/journal.pone.0315607.g005
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interaction of these two variables and the two-way interactions of each of them with the other

covariates. All main effect of each covariate was also included.

In modelling, model reduction was done on the covariance structure (i.e., random effects)

and the mean structure (i.e., covariates). Note that only the interaction effect was reduced

while the main effect of each covariate remained in the model regardless of the insignificance.

Eventually, the final model only included random intercept and covariates shown in Table 2.

Based on Table 2, the clinical research questions could be answered, a short summary of

such answers is listed below. Note that the answer to specific clinical research questions is not

in the scope of the current work.

• There was a significant difference in inter-step interval standard deviation between locked

and unlocked windows within Tempi: 0.

• There was a significant effect of Tempi on inter-step interval standard deviation, and the

effect was different between the locked and unlocked labels for the two stimuli.

Discussion

We proposed a methodology to quantify steps-to-beat coupling dynamics of participants over

time. This is relevant given the individual differences present during such tasks over time, and

more so in neurological populations.

Methodologically, we have quantified the phase in which the subjects were locking or

unlocking their step to the beat of stimuli with the proposed method. This approach is differ-

ent than other studies applying methodologies deriving features of the complete time series

[28,29], or specific to gait datasets, features extracted by the means segmentation and feature

extraction derived from video recordings of whole body silhouettes [30,31]. Here, the

approach we selected was a window partitioning approach -similar to the window segmenta-

tion [32]—allowing us to quantify the phase over time for each trial by deriving features in

Fig 6. Standard deviation of inter-step-interval from all participants for a specific stimuli and tempi in each

window, in original scale (top) and log-transformed (bottom).

https://doi.org/10.1371/journal.pone.0315607.g006
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each window. The features could be any measurements that tell us the characteristics of the

window. Here, we have derived the slope and the circular statistic in each window to represent

the trend and the fluctuation, respectively. These features have been evaluated separately and

then combined with a simple decision rule. The features were able to distinguish between the

locked and the unlocked window.

The window length of 20 seconds was opted to partition the time series for the method to

be more flexible in capturing the dynamic of the synchronisation over time. We do however

acknowledge the limitation of this choice, as this may compromise the number of observations

of step per window. In this study, given that the observations where of gait data, sufficient

number of steps were present within each time window for the application of the circular uni-

formity and slope tests.

After applying our proposed method and having the label of locking/unlocking in each win-

dow (by the combined methodology), the inter-step interval variability has been modelled by

an LMM as a function of the locking and unlocking phase, tempi, stimuli, and time repre-

sented by the window. This methodology allows us to answer the clinical research question—

although out of scope of this work—about the differences in inter-step interval variability

between the locking and unlocking phase across groups, tempi and stimuli. It thus provides a

more fine-grained understanding on the dynamics of the coupling, which could lead to per-

sonalised use of rhythm-based interventions in neurological populations [33].

Regarding the final choice to model the inter-step-interval variability, besides LMM, one

can also consider using Generalized Linear Mixed Model (GLMM) or Generalized Estimating

Equation (GEE) [34]. These models take into consideration that the observation follows a

non-Gaussian distribution. In this study, the response variable was the standard deviation of

Table 2. Parameter estimate of Linear mixed model.

Parameter Estimate Std. error t p-value

(Intercept) 2.9725 0.0726 40.964 0.000

Tempi: n12 0.1601 0.0378 4.241 0.000

Tempi: n4 0.0125 0.0377 0.333 0.739

Tempi: n8 0.1276 0.0386 3.305 0.001

Tempi: p12 -0.1970 0.0425 -4.637 0.000

Tempi: p4 -0.0562 0.0399 -1.406 0.160

Tempi: p8 -0.1241 0.0431 -2.876 0.004

Stimuli: music 0.2254 0.0383 5.888 0.000

Window_lab_resc 0.0000 0.0283 -0.001 0.999

Lock_lab: unlocked 0.0594 0.0479 1.240 0.215

Tempi: n12 * Stimuli: music -0.1945 0.0551 -3.533 0.000

Tempi: n4 * Stimuli: music -0.0200 0.0526 -0.380 0.704

Tempi: n8 * Stimuli: music -0.1196 0.0562 -2.128 0.034

Tempi: p12 * Stimuli: music 0.0016 0.0542 0.030 0.976

Tempi: p4 * Stimulimusic -0.1282 0.0558 -2.296 0.022

Tempi: p8 * Stimulimusic -0.0432 0.0562 -0.769 0.442

Tempi: n12 * Lock_lab: unlocked 0.0518 0.0662 0.783 0.434

Tempi: n4 * Lock_lab: unlocked 0.0162 0.0647 0.250 0.803

Tempi: n8 * Lock_lab: unlocked -0.0304 0.0699 -0.436 0.663

Tempi: p12 * Lock_lab: unlocked 0.2790 0.0619 4.506 0.000

Tempi: p4 * Lock_lab: unlocked 0.0703 0.0658 1.069 0.285

Tempi: p8 * Lock_lab: unlocked 0.2064 0.0656 3.147 0.002

https://doi.org/10.1371/journal.pone.0315607.t002
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the inter-step interval. Since it can take value from zero to infinity and has a right-skewed dis-

tribution, gamma distribution can be used in GLMM and GEE with log link function. The

choice of the model for future analysis depends on the interpretation of interest, as well as the

software availabilities and capabilities. In general, for population average interpretation, GEE

is practically less software-intensive than GLMM. GLMM requires additional computation to

obtain the marginal estimates. On the other hand, GLMM also provides subject-specific inter-

pretation, which can be used to investigate each individual further, e.g., by detecting a subject

with an extreme pattern. While the LMM (as was applied here) can also be used for marginal

and subject-specific interpretation.

The methodology proposed in this work complements existing metrics of auditory-motor

synchronisation which primarily measures synchronisation precision and accuracy [4,35].

While the latter metrics remain crucial for capturing important changes across trials (espe-

cially when complemented with the gait spatiotemporal parameters) as shown by studies on

Parkinson’s [1,36], multiple sclerosis [3,12,14,37,38] and stroke, our approach offers a more

fine-grained analysis. It allows us to quantify changes in dynamics, distinguishing between

periods of locked (well-synchronised), and unlocked (poorly synchronised) states. This

approach has the potential to enable continuous monitoring and classification. A future step

could involve the modification of these dynamics through biofeedback, using auditory signals

to adjust behaviour according to clinical needs. These auditory-biofeedback strategies have

already been applied in the field of sport science to reduce injuries or enhance performance

[39,40] and can now complement personalised music therapy or personalised auditory feed-

back in rehabilitation [33,41].

The method holds broad potential and warrants future investigations, as it could be applied

to quantify auditory-motor dynamics not only in neurological populations with motor impair-

ments, but also in those with cognitive or attentional deficits. For example, these investigations

can be extended into the field of paediatric rehabilitation for children with attentional deficits,

such as ADHD, autism and developmental coordination disorder and other related patholo-

gies, as auditory-motor coupling strategies have demonstrated effects in these populations

[15,42–44]. Given the positive attitude towards technology in healthcare across continents

[45–48], this approach has the potential to be effectively integrated into clinical practice.

The sample size justification in this study is inherently tied to the proposed methodology.

The proposed methodology can be impacted by the presence of different gait patterns or

responses on the rPA, rather than sample size. This is because the classification takes as input

the number of steps per defined window and accordingly classifies the window to ‘locked’ or

‘unlocked’ based on the set of pre-defined features. In this context, the important factor of the

methodology is the number of observations available per time-window rather than number of

participants included in the sample. With our sample, we can confirm that first, the majority

of the included patients were diagnosed with cerebellar stroke, and had similar gait character-

istics (SARA gait sub-score, median 1) as seen in the Table 1. Second, in the included sample,

each time-window contained a median of 33 steps, and was sufficient for the classification to

be accurate and precise, as indicated by the results of the ground truth verification. Thus our

proposed classification method performs very well and is feasible to apply in both populations.

However, when testing other neurological populations with varied gait patterns, the win-

dow length may have to be adapted in order to ensure appropriate number of observations as

well as considering the adaptation features for the evaluation of rPA in each window. Classifi-

cation approaches in other fields such as neuroimaging [49] and biomechanics [50] rely on

appropriate multi-feature selection to enhance the accuracy and overall success of the classifi-

cation algorithms. Future work is thus warranted to identify additional relevant features that
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could increase the accuracy of time-window labelling within our proposed classification

algorithm.

Noteworthy, is that the scope of this study was the proposed methodological framework.

Given its successful implementation, future work can apply this to investigate relevant clinical

research questions, taking into account clinical factors (such as medication use, motor

impairment, etc.). Moving forward, sample size calculations would be necessary to determine

statistical power when modelling the data after its classification. This will ensure sensitivity to

infer the effects of interest, providing robust conclusions to be drawn in response to the clinical

questions.

Conclusion

Our proposed classification methodology demonstrated high accuracy, precision and recall in

classifying and quantifying the dynamics of step-to-beat coupling over time. The method has

the potential to contribute to the monitoring and assessment of individual differences step-to-

beat dynamics over time in adult populations, both with and without neurological impair-

ments. Future studies are warranted to validate this approach in larger cohorts across a range

of neurological conditions. Ultimately, this methodology can facilitate the development of

assistive technologies for clinicians, enabling real-time interventions to adjust the auditory-

motor paradigm when suboptimal dynamics are detected, thereby fostering more personalised

and effective approach to rehabilitation.
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