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Abstract
Background: Medications currently used to treat pain are frequently associated with 
serious adverse effects and rapid development of tolerance. Thus, there is a need to 
develop more effective, and safer medicines for the population. Blocking NMDA receptors 
(NMDAR) has shown to be a promising target for the development of new drugs. That 
statement is due to NMDAR activation and glutamate release in the spinal cord which 
affects chronic pain modulation. Therefore, the aim of this study was to evaluate the 
possible spinal antinociceptive activity of PnTx4(5-5) toxin. The peptide is purified 
from the venom of the spider P. nigriventer and its affinity for NMDAR and sodium 
channels Nav1.2-1.6 has already been established. Methods: We compared its effect and 
safety with MK-801 (NMDAR antagonist) and evaluated its influence on glutamate and 
reactive oxygen species (ROS) levels in CSF. PnTx4(5-5) was administered intrathecally 
in the Formalin test and co-administered with NMDA in the Spontaneous pain test. 
After three minutes of observation, mice cerebrospinal fluid was collected to measure 
glutamate and ROS levels. Results: The spider peptide inhibited nociception as post-
treatment in the inflammatory phase of the Formalin test. Furthermore, it inhibited 
spontaneous nociception induced by NMDA, being more potent and effective than MK-
801 in both models tested. A glutamate rise level in the CSF of mice was significantly 
reduced by the toxin, but ROS increase was not affected. The animals’ motor skills were 
not affected by the tested doses of NMDAR inhibitors. Conclusion: In conclusion, the 
results suggest PnTx4(5-5) may mediate its antinociceptive effect in the spinal cord not 
only by inhibiting postsynaptic receptors but probably also by acting on autoreceptors. 
This effect does not affect the motricity of mice at the highest dose tested, which suggests 
that it has therapeutic potential and safety for use as a painkiller.
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Background 
Chronic pain has been defined as pain lasting beyond normal 
tissue healing time, generally taken to be 12 weeks [1]. It has been 
a few years now, and the Life Sciences have been very interested 
in finding new molecular targets and therapeutic agents capable 
of inhibiting or blocking the transmission of painful stimuli 
and jointly minimizing the appearance of adverse effects [2, 3]. 
Among these new molecular targets are NMDA (N-methyl-D-
aspartate) receptors (NMDAR). In turn, NMDAR antagonists 
would be candidates for new therapeutic agents [4, 5], and are 
the subject of this study.

L-glutamate is the main excitatory neurotransmitter of the 
central nervous system (CNS) – including primary afferents [6]. 
It is directly involved in signaling nociceptive transmission in 
the dorsal horn of the spinal cord. In addition to involvement 
in neurotransmission, it also carries out different functions 
including synaptogenesis, synaptic plasticity, connection 
refinement, and cell death [7, 8]. NMDARs are a type of 
ionotropic glutamate receptor that was discovered in the 1980s. 
Their discovery occurred when it was demonstrated that the 
antagonist MK-801 (dizocilpine) prevented the hyperexcitability 
of nociceptive neurons in the dorsal horn of the spinal cord. 
Since then, they have been detected in the brain, where they 
are associated with learning, memory, behavior, and motor 
coordination processes [9]. 

At the end of the 1970s, studies with ω-conotoxins obtained 
from the venom of marine snails of the genus Conus [10] 
boosted basic and clinical research into new treatments for 
chronic pain. After more than two decades of research, the 
synthetic version of ω-conotoxin MVIIA extracted from Conus 
magus venom, ziconotide, was approved for use in patients with 
chronic pain refractory to other treatments. Peptides purified 
from spider toxins have also been widely studied as they have 
an analgesic effect [11–13]. An example of that is the Phα1β, 
a toxin purified from Phoneutria nigriventer venom [14, 15]. 
Several studies have demonstrated its antinociceptive effect in 
its natural and recombinant form [15–17]. The present paper 
refers to the PnTx4(5-5) toxin, a peptide also purified from P. 
nigriventer venom with antinociceptive effect [18]. The study 
by De Figueiredo et al. [19] described its biochemical structure, 
which has a sequence of 47 amino acids and a molecular 
weight of 5175 Da. Furthermore, the work also demonstrated 
that PnTx4(5-5) had the ability to inhibit currents generated 
by NMDA-type channels using “whole-cell voltage-clamp” 
techniques in cultured rat hippocampal neurons [19]. Innovative 
evidence has also demonstrated the affinity of PnTx4(5-5) for 
voltage-sensitive sodium channels (VSSC). The recombinant 
toxin rPnTx4(5-5) showed the following decreasing order of 
affinity for mammalian VSSC: Nav1.3 > Nav1.6 > Nav1.5 > Nav1.4 
≥ Nav1.2 [20]. Apparently, the role of these sodium channels 
in pain mechanisms has been studied since de first decade of 
the 21st century [21].

Thus, the objective of this study is to evaluate whether the 
peptide PnTx4(5-5) has an antinociceptive action on CNS. 
Moreover, we hypothesize an effect of toxin on spinal cords 
NMDA autoreceptors and extrasynaptic NMDAR, by discussing 
its outcome on glutamate and ROS release. 

Methods
Animals
Male Swiss mice (25–30 g) were used. The mice were housed in 
plastic cages with free access to water and food and maintained 
on a 12 h/12 h light-dark cycle (lights on from 7:00 to 19:00). 
The experiments were performed in accordance with the current 
guidelines for the care of laboratory animals and the ethical 
guidelines for investigations of experimental pain in conscious 
animals [22]. The Ethics Committee of the Federal University of 
Minas Gerais, CEUA, authorized the studies (Protocol number 
347/2012). We followed the guidelines for the Use and Care of 
Animals for Research issued by the NIH.

Drugs
PnTx4-(5-5) toxin was isolated from the spider P. nigriventer 
venom by reverse phase high-performance liquid chromatography 
(HPLC) and anion exchange HPLC, according to De Figueiredo 
et al. [19]. NMDA, MK-801, Glutamate dehydrogenase type II, 
NADP+, glutamic acid and 2',7'-dichlorofluorescein diacetate 
(DCF-DA) (Sigma-Aldrich – St. Louis, MO, USA) were purchased 
from Sigma Aldrich. Minocycline hydrochloride was obtained 
from Tocris Bioscience. Morphine and formaldehyde for the 
formalin preparation were purchased from Cristália. The 
lyophilized toxin and stock solutions of the drugs were prepared 
in Phosphate-buffered saline (PBS) in siliconized plastic tubes, 
maintained at – 18 ºC, and diluted to the desired concentration 
just before use. Na2HPO4, KH2PO4, and NaCl are the salt content 
of the PBS solution. All other reagents were of analytical grade.

Intrathecal injections 
The intrathecal (i.t.) injections were performed according to 
previously described methods [23]. Briefly, a volume of 5 μL/
site was administered using a 28-gauge needle connected to 
a 10-μl Hamilton micro syringe while the animal was lightly 
restrained to maintain the position of the needle. Puncture of 
the dura was indicated behaviorally by a slight flick of the tail. 
Behavioral evaluation was carried out by researchers who were 
blind to the drug administration.

Formalin test 
Acute neurogenic and persistent inflammatory nociception were 
evaluated using the Formalin test [24] with minor modifications. 
Twenty microliters of saline containing 2.5% formalin were 
injected subcutaneously (s.c.) into the right dorsal hind paw. The 
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mice were immediately placed in a polycarbonate box positioned 
in front of a mirror for behavior observations. Nociceptive 
behavior was quantified by counting the time of licking, flinching, 
and lifting of the injected hind paw. The measurements were 
taken in two phases: the first phase (neurogenic) was evaluated 
during the period from zero to five minutes and the second phase 
(inflammatory) from 15 to 30 minutes after formalin injection. 
Time rodents spent licking, and raising their paws was recorded 
in seconds (s), during each phase. The dose bars for the drugs 
have been shown in the figure for the neurogenic phase to make 
it possible to ascertain that all the mice started from the same 
first-phase formalin response conditions. Therefore, the drug’s 
effect was indeed evaluated only in the inflammatory phase.

Intrathecal administration of the test agents was performed 
using a 5 μL of vehicle (PBS), MK-801 (3-100 nmol/site) or 
PnTx4(5-5) (100–500 pmol/site). The drugs were i.t. administered 
nine minutes after formalin injection to evaluate the 
antinociceptive action only in the anti-inflammatory phase.

NMDA-induced Spontaneous nociception model
The procedure was carried out according to Urca and Raigorodsky 
[25], and its objective was to confirm the participation of the 
NMDA receptor in the inhibition of antinociceptive responses 
induced by the PnTx4(5-5) toxin. Mice were subjected to 
intrathecal administration of NMDA (3 nmol/site), in addition 
to MK-801 (3-100 nmol/site), PnTx4(5-5) (10-300 pmol/site), and 
Minocycline (2 nmol/site) co-administered with NMDA (3 nmol/
site) each. The reaction time in “s” of biting the tail or scratching 
the hips was recorded, these being indicative of nociception. The 
animals were observed for a period of three minutes.

Measurements of glutamate levels in cerebrospinal 
fluid 
The mice were subjected to a puncture in the cisterna magna – 
immediately after halothane euthanasia – to collect cerebrospinal 
fluid (CSF) after the end of three minutes of observation of the 
NMDA-induced Spontaneous nociception model. An average of 
20 μL of CSF was extracted from animals. Centrifugation occurs 
at 10,000 ×g for one minute, and 5 μL of the supernatant was 
analyzed for glutamate content. The objective would be to verify 
whether the antinociceptive effect of PnTx4(5-5) (300 pmol/
site) and MK-801 (100 nmol/site) would involve a reduction of 
glutamate levels in the animals’ spinal cord by blocking NMDAR. 
Glutamate measurements were performed enzymatically by 
measuring the increase in fluorescence due to the production 
of NADPH in the presence of glutamate dehydrogenase and 
NADP+ [26]. To initiate the assay, NADP+ (1.0 mM) and glutamate 
dehydrogenase (50 U) were added to the CSF samples and 10 
minutes after the emitted fluorescence was measured [27]. The 
excitation wavelength was 360 nm, and the emission wavelength 
was 450 nm. The experiments were performed using an RF-
5301PC spectrofluorometer (Shimadzu, Barueri, SP, Brazil).

Reactive oxygen species content of the CSF
The CSF samples leftovers from the glutamate assay were assessed 
for ROS measurements. The method was performed using 
2',7'-dichlorofluorescein diacetate (DCF-DA) (Sigma-Aldrich 
– St. Louis, MO, USA), a fluorescent probe for the assay [28]. 
Briefly, 2 μL of the CSF supernatant was incubated with 100 μL 
of 125-μM DCFH-DA stock solution at 37 ºC for 30 minutes and 
protected from light. The formation of the oxidized fluorescent 
derivative DCF-DA was monitored at excitation and emission 
wavelengths of 488 and 525 nm, respectively, in a fluorescent plate 
reader (PerkinElmer, Waltham, MA, USA). The levels of DCHF-
DA in the CSF of the animals were determined as an indicator 
of peroxide production from the cellular components of the 
spinal cord because the influx of calcium through the NMDAR 
contributes to the production of reactive oxygen species.

Open-field test 
The effect of drugs on spontaneous locomotor activity and 
exploratory behavior was assessed by the Open-field test, as 
previously reported [29]. The apparatus was an open field for 
mice (20 x 12 x 20 cm) where motor activity was measured using 
an activity monitor that uses three infrared light detectors, 
each located in a photocell. The animals received intrathecal 
administration of 5 μL of vehicle (PBS), or PnTx4(5-5) (500 
pmol/site), or MK-801 (100 nmol/site). They were placed in 
the open field and evaluated for five minutes, two hours after 
i.t. drugs injections. The total distance covered in centimeters 
(cm) was measured to assess horizontal exploration. The time 
of “rearings” in seconds was the index for vertical exploration 
and, the number in units (u) of horizontal detachments from 
the animal’s center of gravity was established as the index for 
“crossing”.

Rotarod performance test
This test was carried out with the aim of evaluating changes in the 
animals’ motor coordination due to ataxia or the sedative effect 
of intrathecal administration of the drugs. The procedure was 
performed as described by Tsuda et al. [30]. Twenty-four hours 
before the experiment, mice were trained on the rotarod (3.7 cm 
in diameter, 12 rpm) for two periods of 60 seconds, with a 60-s 
interval between them. On the day of the experiment, animals 
were i.t. injected with 5 μL of vehicle, PnTx4(5-5) (500 pmol/
site), and MK-801 (100 nmol/site). Each mouse in each group 
was subjected to the cylinder rotary two hours after intrathecal 
administration of NMDAR inhibitors. The number of falls and 
the latency of the 1st fall were recorded for four minutes.

Statistical analysis
GraphPad Prism™ software was used to analyze data for statistical 
significance and curve fitting. The results were expressed as 
mean ± SEM, and the ID50 – 50% inhibitory dose (ID50) 
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values are reported as geometric means accompanied by their 
respective 95% confidence limits. Animal behavior data were 
analyzed by one-way analysis or two-way analysis of variance 
(ANOVA) followed by Student–Newman– Keuls or Bonferroni 
when appropriate. For the in vitro experiments, the results were 
expressed as mean ± SEM, and analyzed by one-way ANOVA 
followed by Student–Newman–Keuls test. At last, adverse effects 
were expressed as median ± interquartile ranges. Then, non-
parametric analyses were carried out using the Kruskal-Wallis’s 
test, followed by the Dunn’s Multiple Comparison test when 
appropriate. Probabilities less than 5% (p < 0.05) were considered 
statistically significant.

Results
PnTx4(5-5) has antinociceptive activity in the 
inflammatory phase of the Formalin test

Drug-response bar graphs were constructed for PnTx4(5-5) 
and MK-801 in the Formalin test with the aim of evaluating 
their possible effects in reversing a previously established 

nociceptive condition. The intrathecal administration of MK-
801 (3-100 nmol/site) nine minutes after formalin injection 
was able to reduce the inflammatory phase (Figure 1B), with a 
calculated ID50 of 21.9 (9.28 to 51. 57 nmol/site) and Imax of 67.34 
± 6.58%. The calculated ID50 for PnTx4(5-5) (100-500 pmol/
site) was 104.1 (67 to 161.8 pmol/site) and Imax was 76.9± 5.28%. 
Toxin i.t. administration nine minutes after formalin injection 
was able to significantly reduce response latency in all tested 
doses (Figure 1D). Bars shown in Figures 1A and 1C refer to 
the response evoked by formalin in the neurogenic phase, for 
each selected group, prior to drug administration. The mean ± 
SEM is very close for all groups, as expected for animals that 
just s.c. formalin.

PnTx4(5-5) is more potent in a model of 
spontaneous nociception induced by NMDA than in 
the Formalin test

Previous studies have demonstrated that PnTx4(5-5) is 
capable of inhibiting currents evoked by NMDA in hippocampal 
neurons [19], which corroborates its glutamatergic system-

Figure 1. Effect of intrathecal administration of MK-801 and PnTx4(5-5) in the Inflammatory phase of the formalin test. (A, C) Control groups of the 
neurogenic phase of the formalin test in which no drugs were tested. (B) Inflammatory phase after administration of MK-801 (3-100 nmol/site). (D) 
Inflammatory phase after administration of PnTx4(5-5) (100-500 pmol/site). Each bar represents the mean ± standard error of 6-8 animals, depending on the 
group. *p < 0.05, ***p < 0.001 represents the level of significance when compared to animals treated with PBS (one-way ANOVA followed by the Bonferroni 
test).
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mediated antinociceptive effect in models of peripheral 
nociception in rats [18]. PnTx4(5-5) has been evaluated in a 
model of Spontaneous nociception induced by i.t. administration 
of NMDA because glutamate receptors – specially NMDAR, 
are important mediators of nociception at the spinal level 
[31]. The MK-801 (3–100 nmol/site), a blocker of NMDAR, 
significantly reduced NMDA‐induced nociception at most 
doses tested (Figure 2A). Its calculated ID50 was 4.37 (2.4-7.9 
nmol/site) and Imax was 69.39 ± 7.47%. PnTx4(5-5) (10-300 
pmol/site) also significantly reduced nociception (Figure 2B), 
with an ID50 of 47.25 (29.77-74.9 pmol/site) and with an Imax of 
98.2 ± 0.92% (Table 1).

The antinociceptive effect of PnTx4(5-5) is related 
only to the reduction of glutamate release in CSF
The i.t. administration of only NMDA (3 nmol/site) promoted 
a 166 ± 54% increase in glutamate release when compared to 
vehicle administration. In turn, co-administration of MK-
801 (100 nmol/site) or PnTx4(5-5) (300 pmol/site) was able to 
significantly reduce the NMDA (3 nmol/site)-induced release 
of glutamate in the CSF (Figure 3A). MK-801 inhibited 70.33 
± 6.76% of the glutamate release induced by NMDA injection, 
meanwhile, PnTx4(5- 5) inhibited the release of glutamate 
in 58.15 ± 8.86%. There was no statistical difference when 
comparing glutamate levels among the MK-801, the PnTx4(5-5), 
and the PBS group. This result indicates the possible inhibition 
of NMDA autoreceptors located in the presynaptic terminals of 
the primary afferents [32]. In addition, it was also investigated 
whether the reduction in the nociceptive behavior of mice 
treated with MK-801 and PnTx4(5-5), in the NMDA nociception 
model, would be related to the decrease in the release of ROS 
in the CSF. The i.t. administration of NMDA (3 nmol/site) 
resulted in a 114 ± 44% increase in ROS levels in the CSF, data 
normalized in relation to PBS. Both MK-801 (100 nmol/site) and 
PnTX4(5-5) (300 pmol/site) were not able to significantly inhibit 
the release of ROS in the NMDA nociception model (Figure 3B). 
Minocycline is an antibiotic from the tetracycline class known 
to be a potent inhibitor of microglia [33]. Minocycline (2 nmol/
site) was used as a positive control because microglia are an 
important source of glutamate and reactive oxygen species 

[34, 35]. The tetracycline antibiotic inhibited 60.82 ± 8.25% 
of glutamate release, as well as inhibited 61.19± 7.51% of ROS 
production.

Table 1. MK801 and PnTx4(5-5) inhibition indexes on the models of Formalin test and Spontaneous nociception test.

Formalin test Spontaneous nociception test

MK801 PnTx4(5-5) MK801 PnTx4(5-5)

3-100 100-500 3–100 10-300

unit (nmol/site) (pmol/site) (nmol/site) (pmol/site)

Imax 67.34 ± 6.58% 7.9 ± 5.28% 69.39 ± 7.47% 98.2 ± 0.92%

ID50 21.9 (9.28 – 51.57) 104.1 (67 – 16.8) 4.37 (2.4-7.9) 47.25 (29.77-74.9)

Figure 2. Effect of intrathecal administration of MK-801 and PnTx4(5-5) 
co-administered with NMDA (3 nmol/site). (A) Drug response bar graph 
of MK-801 (3-100 nmol/site). (B) Drug response bar graph of PnTx4(5-5) 
(10-300 pmol/site). Each bar represents the mean ± standard error of 6-9 
animals, depending on the group. *p < 0.05 represents the level of significance 
when compared to animals treated only with NMDA (3 nmol/5 μL) (one-way 
ANOVA followed by the Bonferroni test).
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PnTx4(5-5) does not affect Open field tests in higher 
antinociceptive dose
The parameters evaluated were “Rearing” in seconds, the total 
distance covered in centimeters (cm), and “Crossing” in units. 
The animals were evaluated two hours after receiving intrathecal 
administration of MK-801 (100 nmol/site) and PnTx4(5-5) (500 
pmol/site). The time of motor activity assessment was chosen 
based on the peak of Phα1β action in the Hot plate test (SOUZA 
et al., 2008), and on the motor coordination study with MK-
801 performed by Carter [36]. None of the NMDAR inhibitors 
induced changes in the distance traveled (Figure 4A), in the 
“rearing” (Figure 4B), or in the “Crossing” (Figure 4C).

Forced locomotor activity is not affected by the 
highest antinociceptive dose of PnTx4(5-5) 
The evaluation of forced locomotor activity in a rotating 
cylinder was carried out using the parameters latency of the 
1st fall and number of falls. It is possible to observe that the 
doses of MK-801 (100 nmol/site) and of PnTx4(5-5) (500 pmol/
site) did not cause sedation or significant reduction in motor 
performance in the observed time range for the latency of 
the 1st fall (Figure 5A) neither for the number of the falls 
(Figure 5B). The same doses were used at the same intervals 
as in the open-field test.

Figure 3. Release of glutamate and ROS in the CSF three minutes after drug intrathecal administration. MK-801, PnTx4(5-5), and Minocycline were co-
administered with NMDA (3 nmol/site). (A) Measurement of glutamate released in the CSF after treatments. (B) Measurement of ROS released in the CSF 
after treatments – data were normalized in relation to the PBS group. Each bar represents the mean ± standard error of 4-6 animals. #p < 0.05, ##p < 0.01 
represents the level of significance when compared to animals treated with PBS. *p < 0.05, **p < 0.01 represents the level of significance when compared to 
animals treated only with NMDA (one-way ANOVA followed by the Newmann-Keuls test).
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Discussion
The venom of the armed spider has toxins with proven 
antinociceptive potential in different painful modalities [16, 
37–41]. Thus, it is a source of pharmacological tools and drugs 
with potential for clinical use. According to De Figueiredo et 
al. [19], the toxin PnTx4(5-5) inhibits currents generated by 
NMDARs, which participate in nociceptive neurotransmission 
from peripheral structures to higher brain centers [42, 43]. 
Pharmacological and molecular studies indicate that these 
ion channels play an important role in controlling nociceptive 
processes in the spinal cord and contribute to the phenomenon of 
central sensitization in certain types of neuropathic pain [44, 45]. 

The study began using the model of nociception induced by 
intraplantar injection of formalin, which is one of the most used 
tools in screening new compounds with analgesic potential [46, 
47]. The Formalin test is characterized by producing a biphasic 

Figure 4. Assessment of exploratory activity two hours after administration 
of PBS (5 μL/site), MK-801 (100 nmol/site), and PnTx4(5-5) (500 pmol/
site). (A) Distance covered, (B) “Rearing” and (C) “Crossing”. Each group 
represents the mean ± standard error of 6-8 animals. (B) Each group 
represents the median ± 75% interquartile range of 6-8 animals. There was no 
significant difference between the groups in any of the parameters evaluated 
((A) and (C) one-way ANOVA followed by the Newmann-Keuls test, and 
(B) Kruskal-Wallis’s test followed by Dunn’s multiple comparison).

Figure 5. Assessment of forced locomotor activity in a rotating cylinder 
two hours after administration of PBS (5 μL/site), MK-801 (100 nmol/site), 
and PnTx4(5-5) (500 pmol/site). (A) Latency of the first fall. Each group 
represents the mean ± standard error of 6-8 animals. (B) Number of falls. 
Each group represents the median ± 75% interquartile range of 6-8 animals. 
There was no significant difference between the groups. (A) One-way 
ANOVA followed by the Newmann-Keuls test and (B) Kruskal-Wallis’s test 
followed by Dunn’s multiple comparison).
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behavior with a transition from the neurogenic phase – first 
phase – to the inflammatory phase – second phase – or a state 
of persistent nociception. There is evidence of the involvement 
of NMDARs in the development of central sensitization. Its 
activation is associated with the maintenance of nociceptive 
impulses in animal models of inflammatory pain, particularly 
in the second phase of the formalin test [31]. Then, formalin 
was administered and after nine minutes, PBS, PnTx4(5-5), 
and MK-801 were i.t. injected. MK-801 was used as a control 
for blocking the NMDA receptor [48]. It is part of the first 
generation of NMDA receptor antagonists and was developed 
in the early 1980s [43].

The objective of this first experiment was to verify the effect 
of PnTx4(5-5) on a model of nociception involving the NMDA 
receptor and to verify if this effect would be dose-dependent. 
As seen in Figures 1B and 1D, both the toxin and MK-801 
show antinociceptive effects on the inflammatory phase of the 
Formalin test. Drugs were administered nine minutes after the 
subcutaneous injection of formalin due to the possibility of 
carrying out a first screening, exclusively of the second phase 
of the test. This phase has greater clinical reproducibility since 
medication is used to reverse a previously set pain condition. 
According to the literature, MK-801 is a non-competitive 
NMDAR inhibitor that has an effect only in the inflammatory 
phase of the Formalin test. Its effect occurs both in pre-treatment 
[49–51] and in post-treatment. PnTx4(5-5) also had an effect 
in the second phase of the aforementioned model, promoting 
evidence that its antinociceptive effect could be credited to a 
possible blockade of NMDAR.

Next, the effect of the toxin was tested in a model of nociception 
induced by intrathecal administration of the NMDA pore 
blocker. The aim of this second experiment was to confirm the 
hypothesis that the antinociceptive effect occurred through the 
inhibition of spinal cord NMDA receptors. MK-801, as well as 
PnTx4(5-5), were co-administered with NMDA. Figures 2A and 
2B confirmed that the antinociceptive effect of the drugs was 
mediated by NMDAR blockade. As seen in Table 1, PnTx4(5-5) 
not only inhibited nociception induced by the NMDA but was 
also more effective and more potent in this model compared 
to the Formalin test. This can be explained by the fact that the 
inflammatory phase of the test depends on the participation of 
other targets, receptors, and ion channels, not only of NMDAR 
[46, 47]. Besides, PnTx4(5-5) was more potent and effective than 
MK-801 in both the Spontaneous nociception model and the 
Formalin test. This suggests that the toxin may have affinity for 
other targets [20], or for the NMDAR channel in its activated 
state, just like Memantine – an extrasynaptic NMDAR pore 
blocker. 

Pain-related synaptic plasticity in the spinal cord is mediated 
by the activation of postsynaptic NMDA receptors under 
physiological conditions [52], but this phenomenon is also 
subject to the influence of presynaptic NMDARs. These receptors 
once activated contribute to the influx of extracellular Ca2+ into 
the presynaptic terminal, which further stimulates exocytosis. 

Then, there is an increase in the release of glutamate and 
substance P in the synapses of the dorsal horn of the spinal 
cord. We evaluated whether i.t. administration of PnTx4(5-5) 
would be able to reduce the increase in CSF glutamate levels. 
The PnTx4(5-5) and MK-801 significantly reduced the increase 
in glutamate release evoked by spinal administration of NMDA 
into the CSF. This result (Figure 3A) raises the hypothesis the 
antinociceptive effect of the drugs would possibly be mediated 
by blocking presynaptic NMDAR and reducing the levels of the 
receptor’s endogenous agonist.

The literature has also demonstrated that the artificial elevation 
of ROS in the spinal cord induces pain-related behaviors in mice 
without nerve and inflammatory damage [53–56]. There is also 
an increase in the production of ROS when NMDAR is activated 
in central sensitization. These reactive oxygen species promote 
changes in the phosphorylation of AMPA receptors, which 
contributes to central sensitization, and painful behaviors. Lee 
et al. [57] suggest that the reduction of these species would be 
able to prevent the molecular changes in AMPA receptors and 
alleviate pain. Therefore, we investigated whether there would be 
an increase in ROS levels in the CSF of animals after induction of 
spontaneous nociception by NMDA. We also assessed whether 
the coadministration of MK-801 and PnTx4(5-5) would be able 
to prevent its increase. There was a significant increase in ROS 
in the CSF of animals that received i.t. administration of NMDA 
compared to PBS. However, MK-801 and PnTx4(5-5) were 
not able to inhibit the release of ROS induced by NMDA. The 
hypothesis that MK-801 would have an antioxidant action like 
Minocycline was based on the proven effect of its metabolites in 
electron transference [58]. CSF was collected three minutes after 
the drug’s co-administration, an allegedly very short period to 
affect ROS’s production pathways. In the present manuscript, 
authors also presume the quick effect of Minocycline is due to 
the inhibition of microglia – which contributes to 60% of ROS 
fast-releasing induced by NMDA. PnTx4(5-5) binds sodium 
channels Nav1.6 and NMDAR expressed in spinal cord cell 
membranes. However, it seems necessary to wait longer to 
collect CSF and verify how channel inhibition by toxins affects 
ROS production.

Intraperitoneal and intrathecal administration of NMDA 
receptor antagonists such as MK-801 can cause hyperactivity, 
hyperreactivity, and sensorimotor deficits [59, 60]. MK-801 is not 
indicated for clinical use as its adverse effects occur in therapeutic 
doses and interfere with the animal’s physical integrity. Side 
effects were evaluated using the “Versamax” and “Rotarod” 
devices, respectively. PnTx4(5-5) (500 pmol/site) and MK-801 
(100 nmol/site) did not present side effects such as changes in 
spontaneous locomotor activity or motor incoordination (Figures 
4 and 5). The absence of motor side effects is consistent with the 
findings of De Figueredo et al. [19], in which mice that received 
an intracerebroventricularly injection of 30 µg of PnTx4(5-5) – 
equivalent to 58 nmol/site) did not show any indicative sign of 
visible toxicity. The administration time was chosen according 
to the results of the studies of Carter and De Souza et al. [36, 37]. 
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It was expected to observe motor deficits in animals subjected 
to i.t. administration of MK-801 within two hours. Carter et al. 
[36] observed that such motor impairments tended to disappear 
120 minutes after administration of the non-selective NMDAR 
antagonist. The motor deficit would probably have been detected 
if the tests were performed at intervals of 30 and/or 60 minutes. 

According to D’Mello and Dickenson [61], glutamate released 
by primary afferent fibers in the spinal cord acts on AMPA and 
NMDA receptors, respectively. Given the high and persistent 
stimulation of C fibers, there is amplification and prolongation 
of the responses of neurons located in the dorsal horn of the 
spinal cord. So, this increase in activity is the result of the 
activation of NMDA-type glutamatergic receptors. However, 
when there is only a low frequency of noxious or tactile stimuli, 
there is no possibility of NMDAR activation. This occurs in 
acute pain – the first phase of the Formalin test or hot plate 
test, for example. In this condition, the NMDAR ion channel is 
blocked by physiological levels of Mg2+. This ionotropic receptor 
requires membrane depolarization, thus allowing the activation 
of NMDARs to occur and consequently the opening of the 
calcium channel. Without a doubt, the most intriguing results of 
this study concern the relationship between the data in Figure 3 
and the phenomena of central sensitization and oxidative stress. 
Neurons and glia are the source of the glutamate and ROS found 
in the CSF. NMDA, under the described conditions, stimulated 
an increase in both glutamate and ROS levels in a short period 
of time. Then, NMDAR was the target that triggered those 
outcomes, and we could suggest that both MK-801 and PnTx4 
(5-5) possibly blocked neuronal NMDA autoreceptors due to the 
similar result found in glutamate and ROS content. Note that the 
inhibition values presented in the results of this manuscript are 
quantitatively very close. Still following this line of reasoning, 
the influence of Nav1.2-1.6 on the PnTx4(5-5) outcomes may 
be minimal. After all, the higher decline in glutamate level 
was caused by MK-801, which, as we know, does not bind to 
sodium channels. The glial role has been widely described in 
the literature [62, 63]. It is known that astrocytes, as well as 
microglia, can contribute to the release of glutamate and ROS, 
and to the control of pre and post-synaptic activity [62–64]. 
However, those cells’ contribution to neuroinflammation takes 
time [64]. and as neither MK-801 nor PnTx4(5-5) affected ROS 
content, further research is necessary to clarify) antinociceptive 
mechanisms of PnTx4(5-5). Therefore, in the present study, it 
was found that the spinal antinociceptive activity of PnTx4(5-5) 
coincides with states of central sensitization, in which there is a 
recognized participation of NMDAR and VSSC from neurons 
as well as from glia [31, 65–68]. 

Conclusion
MK-801 and PnTx4(5-5) toxin showed an antinociceptive effect in 
nociception models due to inhibition of NMDAR. This receptor 
is activated in cases of central sensitization in the spinal cord 

in which there is pain of difficult treatment. The activation of 
NMDAR makes pain management challenging with the drugs 
currently available. Therefore, the search for more effective 
painkillers continues [69, 70]. PnTx4(5-5) inhibits both the 
NMDAR and the VSSC, probably contributing to some extent 
to its analgesic effects. PnTx4(5-5) did not present adverse motor 
effects at the highest therapeutic dose tested. Mice did not exhibit 
any adverse motor effect after receiving the highest therapeutic 
dose of PnTx4(5-5). Thus, the spider peptide becomes a candidate 
as a new drug for the treatment of persistent and difficult-to-treat 
chronic pain. At last, we highlight the need for further studies 
to investigate in depth the mechanisms related to the analgesic 
effects of the peptide on the CNS, as well as its effectiveness in 
clinically relevant pain models.
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