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eLife Assessment
This valuable study provides an experimental paradigm and state- of- the- art analysis method for 
studying the existence of call types and transition differences among Mongolian gerbil families in 
a naturalistic environment. The analyses are convincing, with a thorough treatment of the acoustic 
data and a demonstration of the robustness of the observed effect across days. The work will likely 
be of interest to the auditory neuroscience and neuroethology communities.

Abstract In nature, animal vocalizations can provide crucial information about identity, including 
kinship and hierarchy. However, lab- based vocal behavior is typically studied during brief interactions 
between animals with no prior social relationship, and under environmental conditions with limited 
ethological relevance. Here, we address this gap by establishing long- term acoustic recordings from 
Mongolian gerbil families, a core social group that uses an array of sonic and ultrasonic vocaliza-
tions. Three separate gerbil families were transferred to an enlarged environment and continuous 
20- day audio recordings were obtained. Using a variational autoencoder (VAE) to quantify 583,237 
vocalizations, we show that gerbils exhibit a more elaborate vocal repertoire than has been previ-
ously reported and that vocal repertoire usage differs significantly by family. By performing gaussian 
mixture model clustering on the VAE latent space, we show that families preferentially use character-
istic sets of vocal clusters and that these usage preferences remain stable over weeks. Furthermore, 
gerbils displayed family- specific transitions between vocal clusters. Since gerbils live naturally as 
extended families in complex underground burrows that are adjacent to other families, these results 
suggest the presence of a vocal dialect which could be exploited by animals to represent kinship. 
These findings position the Mongolian gerbil as a compelling animal model to study the neural basis 
of vocal communication and demonstrates the potential for using unsupervised machine learning 
with uninterrupted acoustic recordings to gain insights into naturalistic animal behavior.

Introduction
The field of ethology contains rich descriptions of complex behavioral actions, including a wealth of 
species- specific vocal repertoires. However, natural observations are often incomplete due to limita-
tions in physical access for experimenter observation or behavioral recording. This can be particularly 
severe for family behaviors which occur in protected or remote environments, such as burrows in the 
case of fossorial rodent species like naked mole- rats and Mongolian gerbils (Brett, 1986; Scheibler 
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et  al., 2006). Some of these limitations have been addressed with laboratory environments that 
partially recapitulate real- world features (Shemesh and Chen, 2023). However, these studies gener-
ally focused on relatively short periods of data collection that consider single animals or dyads with 
no prior social relationship.

While our understanding of social aural communication is sparse, even for humans (Pagel et al., 
2013; Mascaro et  al., 2018; Schindler et  al., 2022), we know that many vocal cues are learned 
through social experience, and provide pivotal information about an animal’s identity. For example, 
a human infant’s ability to discriminate between foreign language phonemes can be preserved by 
exposure to a live foreign speaker, but not an audiovisual recording (Kuhl et al., 2003). Evidence from 
swamp sparrows suggests the presence of culturally transmissible ‘dialects’ – a term borrowed from 
linguistics to denote a pattern of vocal behavior that is used by members of a social group (Maler and 
Tamura, 1964). Our study adopts this operational definition of a vocal dialect. Even some rodents, 
such as the naked mole rat, learn colony- specific dialects based on early social experience (Barker 
et al., 2021). The literature for social facilitation of vocal discrimination or production is particularly 
strong for zebra finches (Eales, 1989; Derégnaucourt et al., 2013; Chen et al., 2016; Narula et al., 
2018). Therefore, our study considers the possibility that there is a diversity of vocalizations within the 
gerbil social group that may harbor family specific information.

We chose to focus on families, a canonical social group that has been predominantly studied during 
brief and experimentally restricted social encounters (e.g. mating, pup retrieval, aggression) in relatively 
featureless environments. Our goal was to construct a complete gerbil family social- vocal soundscape 
during a significant period of development under undisturbed, environmentally enriched conditions. 
Unlike many laboratory rodents, gerbils form pair bonds and maintain a family structure across gener-
ations (Ågren, 1984a). These families are composed of a founding adult pair, and up to 15 extended 
family members that live cooperatively in underground burrows (Ågren et al., 1989a; Ågren et al., 
1989b; Milne- Edwards, 1867; Scheibler et al., 2004). Given the darkness and complexity of their 
burrow systems, gerbils are thought to rely heavily on their auditory system for social interactions. 
Sibling bonds established through adolescence facilitate social structure and minimize inbreeding 

eLife digest Every time you speak, the sounds coming out of your mouth may carry more meaning 
that you may have intended; they may reveal, for example, which country, city or even neighborhood 
you may be coming from. Indeed, the vocal patterns that humans use to communicate differ from one 
population to the next, creating an array of languages, dialects and accents.

Such diversity has also been identified in various social species across the animal kingdom. Naked 
mole rats, for instance, which live underground in complex societies, exhibit different ‘dialects’ 
depending on their group of origin. Yet studying the vocal patterns of animals has remained difficult, 
especially for species inhabiting burrows or other environments difficult to access.

Aiming to bypass these limitations, Peterson et al. adopted a ‘naturalistic’ approach that allowed 
them to capture the vocal calls of three families of Mongolian gerbils living undisturbed in enclosures 
that mimic features of their natural environment. These animals spend their lives underground in tight- 
knit families, with multiple groups often being in close proximity. Researchers have speculated that 
individuals may rely on vocal cues to identify whether they are part of the same colony, as they are 
often too far from each other to rely on sight or smell.

Over half a million vocalizations obtained continuously through the course of 20 days were 
analyzed using an artificial intelligence technique known as unsupervised machine learning. The anal-
yses helped add new types of calls to the gerbil vocal repertoire, but also highlighted its complexity. 
In particular, they revealed that the animals could combine individual vocal elements into complex 
sequences. More importantly, this approach showed that gerbil families have vocal dialects that are 
stable across weeks, with each group displaying a preference for certain call types (i.e. words) and 
certain sequential patterns (i.e. phrases).

These findings demonstrate the benefits of the approach developed by Peterson et al. for the 
study of animal vocalizations. Going forward, they also suggest that the Mongolian gerbil could be 
used as an animal model to study the neural basis of vocal communication.

https://doi.org/10.7554/eLife.89892
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(Ågren, 1984b). Natural burrows are found in multi- family neighborhoods with strictly enforced terri-
torial boundaries (Scheibler et al., 2006; Ågren et al., 1989a; Ågren et al., 1989b). Like prairie 
voles, gerbils act cooperatively to hoard food, maintain nests, defend their territory, and care for 
pups (Elwood, 1975; Gromov, 2021). Therefore, gerbils display a range of rodent- typical behaviors 
(Hurtado- Parrado et al., 2017), as well as complex family behaviors. Gerbils also display significant 
vocal communication in both the ultrasonic and sonic ranges (Rübsamen et  al., 2012; Kobayasi 
and Riquimaroux, 2012) which is likely to be integral to social behaviors. Unlike many other rodent 
species, gerbils are able to hear within sonic ranges at sensitivities similar to humans (Ryan, 1976). 
As a result, there is a rich, contemporary literature on the auditory perceptual skills, peripheral and 
central physiology, central anatomy, learning, and genomics in this species (Budinger and Scheich, 
2009; Buran et al., 2014; Happel et al., 2014; Myoga et al., 2014; Pachitariu et al., 2015; Sarro 
et al., 2015; von Trapp et al., 2016; Caras and Sanes, 2017; Cheng et al., 2019; Zorio et al., 2019; 
Yao et al., 2020; Amaro et al., 2021; Paraouty et al., 2021; Yao and Sanes, 2021; Saldeitis et al., 
2022; Penikis and Sanes, 2023).

Here, we made continuous 20- day audio recordings from three separate gerbil families (2 parents, 
4 pups) in an enlarged home cage that was isolated from other gerbils and humans. Specifically, we 
recorded audio over a period beginning at postnatal day 11–13 when auditory cortex is particularly 
sensitive to acoustic experience, and extending to postnatal day 31–32, the time when animals are 
typically weaned. Our goal was to acquire a descriptive dataset of the spectrotemporal structure of 
vocalizations emitted throughout daily family life, and without human intervention. Using emerging 
methods in unsupervised vocalization analysis, we quantitatively describe the spectrotemporal struc-
ture of vocalizations over multiple timescales and demonstrate that vocal repertoire usage differs 
between families.

Results
Longitudinal familial audio recording
We obtained acoustic recordings (four microphones, 125 kHz sampling rate) from three separate gerbil 
families, each containing two adults and four pups (Figure 1A). Continuous recordings began at P11- 
13, lasted 20 days, and pups were weaned at P29 (Figure 1B). As shown in Figure 1C, we extracted all 
sound events (yellow) using amplitude thresholding of acoustic power. To isolate vocalizations (blue) 
from non- vocal sounds (red), we computed the spectral flatness of each sound event and classified 
sounds with a threshold value of <0.3 as vocalizations. A similar approach has previously been used 
in mice (Castellucci et al., 2016), and we verified that a threshold value of 0.3 minimized the number 
of false positives (Figure 1—figure supplement 1). Using this approach, 10,267,972 sound events 
were extracted, containing 583,237 vocalizations and 9,684,735 non- vocal sounds detected across 
the three families. Sound events were produced at an average rate of 6726+/-1260 times per hour 
(Figure 1D), which reveals the rate of auditory object processing (Griffiths and Warren, 2004) for 
gerbil families in an undisturbed setting. Vocalizations represent 6.99+/-3.07% of all sound events 
over the recording period (Figure 1E) and were emitted at an average rate of 405+/-103 times per 
hour (Figure 1F), although this varied with time of day (see below).

Unsupervised discovery of the Mongolian gerbil vocal repertoire
To quantify the full array of vocalizations obtained from the three families, we trained a variational 
autoencoder (VAE) on vocalization spectrograms. The VAE learned a low- dimensional representation 
of latent acoustic features, thereby enabling analysis of such a large dataset with a larger representa-
tional capacity than standard acoustic features (Goffinet et al., 2021). Figure 2A shows a schematic 
of the VAE architecture used (Goffinet et al., 2021), where spectrograms (top; 128x128 pixels) are 
reduced via a deep convolutional neural network ‘encoder’ to a latent vector (middle; 32- dimensional). 
A deep convolutional neural network ‘decoder’ then reconstructs a spectrogram (bottom) from the 
32- dimensional latent representation. The encoder/decoder networks are jointly trained to minimize 
the discrepancy between the original and reconstructed spectrograms (Figure 2—figure supplement 
1A, B), resulting in a low- dimensional latent representation, or ‘code’, which depicts each vocaliza-
tion. To cluster vocalizations into distinct categories, we trained a Gaussian Mixture Model (GMM) on 
VAE latent representations. Using a combination of the elbow method on held- out log likelihood and 

https://doi.org/10.7554/eLife.89892
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established knowledge for how many vocal types gerbils emit (see Methods, GMM clustering), we 
selected a model with 70 vocal clusters as a parsimonious description of the data (Figure 2—figure 
supplement 1C). Figure 2B shows a UMAP embedding of the VAE latents (center), used for visualiza-
tion purposes only, which demonstrates that the gerbil vocal repertoire is more discrete than mouse, 
yet less discrete than zebra finch (Sainburg et al., 2020; Goffinet et al., 2021). Vocalizations occur as 
either single syllables bounded by silence (monosyllabic) or consist of combinations of single syllables 

Figure 1. Longitudinal familial audio recording. (A) Recording apparatus. Four ultrasonic microphones sampled at 125 kHz continuously recorded a 
family in an enlarged environment. (B) Experiment timeline. Three gerbil families with the same family composition (2 adults, 4 pups) were recorded 
continuously for 20 days. (C) Extraction of sound events from raw audio using sound amplitude thresholding (Gray threshold = ‘th_2’, black threshold 
= ‘th_1’ and ‘th_3’; see Methods). Vocalizations (n=583,237) are separated from non- vocal sounds (n=9,684,735) using a threshold on spectral flatness 
(Figure 1—figure supplement 1 see Methods). (D) Summary of total sound event emission and average emission per hour. (E) Proportion of all sound 
events that are vocal or non- vocal sounds. (F) Summary of total vocalization emission and average emission per hour.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Vocalization extraction.

https://doi.org/10.7554/eLife.89892
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without a silent interval (multisyllabic). Representative examples from 12 monosyllabic vocalization 
clusters are shown with their relative position in UMAP space, one of which appears similar in form to 
naked mole rat family specific chirp (blue box with asterisk; Barker et al., 2021). Furthermore, mono-
syllabic vocalizations (56/70 vocal clusters) can be flexibly strung together to create multisyllabic or 
‘composite’ vocalizations (9/70 of vocal clusters; Kobayasi and Riquimaroux, 2012). The remaining 
five clusters contained a mixture of monosyllabic and multisyllabic vocalizations. Figure 2C shows 8 
examples of multisyllabic vocalizations and their monosyllabic component boundaries, some of which 
have been reported previously (Kobayasi and Riquimaroux, 2012) and some of which are newly 
characterized (white asterisks). To assess how family structure influences vocal repertoire usage, we 
compared vocal usage one day prior and one day after pup weaning, showing a drastic decrease in 
vocal emission (Figure 3—figure supplement 1A). A large- magnitude vocal repertoire change is also 
observed, with the repertoire confined to a small region of vocal space following weaning (Figure 3—
figure supplement 1B–D).

Figure 2. Unsupervised discovery of the Mongolian gerbil vocal repertoire. Variational autoencoder and clustering. (A) Vocalization spectrograms (top) 
are input to a variational autoencoder (VAE) which encodes the spectrogram as a 32- D set of latent features (middle). The VAE learns latent features 
by minimizing the difference between original spectrograms and spectrograms reconstructed from the latent features by the VAE decoder (bottom). 
A gaussian mixture model (GMM) was trained on the latent features to cluster vocalizations into discrete categories. (B) Representative vocalizations 
from 12 distinct GMM clusters featuring monosyllabic vocalizations are shown surrounding a UMAP embedding of the latent features. Asterisk denotes 
vocal type not previously characterized. (C) Examples of multisyllabic vocalizations. White vertical lines indicate boundaries of monosyllabic elements. 
Asterisks denote multisyllabic vocal types not previously characterized.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. VAE training and GMM clustering.

https://doi.org/10.7554/eLife.89892
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Family specific usage of vocal clusters
We next asked whether gerbil families display different vocalization usage patterns. First, we visualized 
the entire vocal repertoire usage of each family as a probability density heatmap and determined that 
vocal repertoire usage significantly differed between families (Figure 3A, Figure 2—figure supple-
ment 1D). Next, using GMM vocalization clusters, we compared the proportion usage of each vocal 
cluster for the three families, revealing specific vocal cluster differences between families (Figure 3B). 
All families used each of the 70 vocal types (i.e. no cluster usage is 0), but each family relied more 
heavily on some clusters as compared to others. Importantly, this result is stable across a wide range 
of GMM clusters (Figure 4—figure supplement 1).

Sorting the GMM cluster labels by the pairwise difference in vocal type usage between the three 
families revealed which vocal types differed most (Figure 3C). Examples of top preferred vocal clus-
ters for each family are shown in Figure 3D, along with the position of those vocal clusters in UMAP 
embedding space. Families overexpress dissimilar vocal clusters relative to each other (e.g. clusters 
4 and 8 in Family 2) and similar vocal clusters relative to each other (e.g. cluster 14 in Family 1 and 
cluster 1 in Family 3; cluster 9 in Family 1 and cluster 5 in Family 2).

Vocal usage differences remain stable across days of development
It is possible that the observed vocal usage differences could result from varying developmental 
progression of vocal behavior or overexpression of certain vocal clusters during specific periods within 
the recording. To assess the potential effect of daily variation on family specific vocal usage, we visu-
alized density maps of vocal usage across days for each of the families (Figure 4A). There are two 
noteworthy trends: (1) the density map remains coarsely stable across days (rows) and (2) the maps 
look distinct across families on any given day (columns). This is a qualitative approximation for the 
repertoire’s stability, but does not take into account variation of call type usage (as defined by GMM 
clustering of the latent space). Figure  4B, shows the normalized usage of each cluster type over 
development for each family. Cluster usages during the period of ‘full family, shared recording days‘ 
(postnatal days beneath the purple bars) are stable across days within families – as is apparent by the 
horizontal striations in the plot – although each family maintains this stability through using a unique 
set of call types. This is addressed empirically in Figure 4C, which shows clearly separable PCA projec-
tions of the cluster usages shown in Figure 4B (purple days, concatenated into a 45 day x 70 cluster 
matrix). Finally, we computed the pairwise Maximum Mean Discrepancy (MMD) between latent distri-
butions of vocalizations from individual recording days for each of the families (Figure 4D). This shows 
that across- family repertoire differences are substantially larger than within- family differences. This is 
visualized in a multidimensional scaling projection of the MMD matrix in Figure 4E.

Transition structure, but not emission structure, shows family specific 
differences
To assess whether temporal features also harbor family differences, we analyzed vocalization emission 
over a range of ethologically relevant timescales. First, we summed the total vocal emission for each 
hour of the day over the entire recording period, which revealed a diurnal activity pattern that was 
similar across the three families recorded (Figure 5A). We then analyzed a shorter time scale, the inter- 
vocalization- interval. The distribution of intervals between subsequent vocalizations is broad, with 
some vocalizations occurring rapidly after one another (e.g. within tens to hundreds of milliseconds) 
and others separated by many seconds. The majority of vocalizations occurred in bouts (58.5±0.9%), 
which we extracted using two criteria: (1) vocalizations within a bout display inter- vocalization- interval 
of <2 s, and (2) a bout contains at least 5 vocalizations (based on Rose et al., 2021). The distribution of 
bout durations, inter- vocalization- intervals, and vocalization durations for each family are highly over-
lapping and contain the same peaks (Figure 5B–D), suggesting that the temporal structure of vocal 
emission does not vary by family. Vocalization bouts show striking structure in vocal type sequencing 
(Figure 5E, F), therefore we next assessed whether vocal cluster sequencing varied by family. Vocal 
cluster transition matrices revealed a strong self- transition preference for all vocal clusters across 
families (Figure 5G); however, the proportion usage of different transitions (including self- transitions) 
drastically varied by family (Figure 5H).

To determine whether differences in 1 gram structure contribute to differences in the transition 
(2 gram) structure, we performed a number of controls. Although subtle, vertical streaks are clearly 

https://doi.org/10.7554/eLife.89892
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Figure 3. Family specific vocal usage. (A) UMAP probability density plots (axes same as Figure 2B) show significant differences between family 
repertoires (p<0.01, MMD permutation test on latent space; see Methods). (B) GMM vocal cluster usage by family. Clusters sorted by cumulative usage 
across all families. Families show distinct usage patterns of different vocal clusters. (C) Clusters are resorted by the usage difference between families. 
(D) Spectrogram examples from top differentially used clusters (left) and location of clusters in embedding space (right).

Figure 3 continued on next page

https://doi.org/10.7554/eLife.89892
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present in shuffled transition matrices that correspond to 1 gram usages (Figure 5—figure supple-
ment 1A, B). Given the shuffled data structure, we sought to determine whether the observed tran-
sition probabilities differed significantly from chance levels. We randomly shuffled label sequences 
1000 times independently for each family to generate a null transition matrix distribution. Using these 
null distributions and the observed transition probabilities, we computed a p- value for each transition 
using a one- sample t- test and created a binary transition matrix indicating which transitions happen 
above chance levels (Figure 5—figure supplement 1C, black pixels, P ≤ 0.05 after post hoc Benjamini- 
Hochberg multiple comparisons correction). As is made clear in Figure 5—figure supplement 1C, 

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Pup removal biases vocal repertoire usage.

Figure supplement 2. Acoustic features for GMM clusters.

Figure 3 continued

Figure 4. Vocal usage differences remain stable across days of development. (A) UMAP probability density plots for each day of the recording, across 
families. Purple box indicated recording days that are shared across families. These days are used for subsequent analyses in C- E. (B) GMM vocal cluster 
usage per day. Usages are normalized on a per- day basis. A unique color is used for each cluster type. (C) PCA projection of daily usages within the 
purple (shared recording days) period showing that families use a unique subset of clusters stably across days. (D) Maximum Mean Discrepancy (MMD) 
distance between VAE latent distributions of vocalizations between days and across families. (E) Multidimensional scaling projection of MMD matrix 
from (D). Family vocal repertoires are distinct and remain so across days.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Family specific cluster usages do not depend on GMM cluster size.

https://doi.org/10.7554/eLife.89892
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Figure 5. Transition structure, but not emission structure, shows family specific differences. (A) Vocalizations are emitted in a diurnal cycle. 
(B) Vocalizations consistently occur in seconds- long bouts across families. (C) Vocalization intervals (onset- to- onset) are consistent across families. 
(D) Vocalization durations are consistent across families. (E) Raw data examples of bouts. (F) Bouts typically occupy a similar area of vocal space. 
(G) Vocal cluster transition matrix. Vocalizations strongly favor self- transition. (H) Bigram probability graph. Self and other vocalization transition 
tendencies show family specific transitions (edges > 0.001 usage shown).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Vocalization transitions are non- random and family specific.

https://doi.org/10.7554/eLife.89892
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most transitions for each family occur significantly above chance levels, despite the inherent 1 gram 
structure. Moreover, by looking at transitions from a highly usage cluster type used roughly the same 
proportion across families (cluster 12), we show that families arrange the same sets of vocal clusters 
into unique sequences (Figure 5—figure supplement 1D). We believe that this provides compelling 
evidence that the 1 gram structure does not change the interpretation of the main claim that transition 
structure varies by family.

Discussion
Understanding the neural mechanisms that support natural behaviors depends upon our ability to 
quantify specific actions over a range of ethologically relevant contexts and timescales (Miller et al., 
2022). In principle, this requires continuous, undisturbed, and longitudinal recording that takes place 
in nature or a naturalistic context. This need has led to the emergence of powerful video tools for 
long- term monitoring and machine- learning based analyses (Datta et al., 2019; Pereira et al., 2020; 
Shemesh and Chen, 2023). In contrast, most studies of natural behavior have not acquired and 
analyzed acoustic information over prolonged periods, or from a socially intact cohort. Therefore, to 
characterize vocal communication in a canonical social group, we obtained continuous audio record-
ings from three separate Mongolian gerbil families over a 20- day period (Figure 1). By expanding the 
recording duration, and permitting animals undisturbed interaction with their family unit, we sought 
to capture a more diverse vocal repertoire, and to determine whether vocal attributes were associated 
with family identity.

Capitalizing on advances in computational bioacoustics, which aid in the characterization of 
complex and high- dimensional vocal behavior (Sainburg et al., 2020; Sainburg and Gentner, 2021; 
Goffinet et al., 2021), we extracted vocalization spectrograms and used a VAE to perform unsuper-
vised analysis of a large number of familial gerbil vocalizations (n=583,237). At least one new vocal 
type and numerous multisyllabic vocal types were discovered using this approach (Figure 2). Also, we 
provide evidence that family structure is necessary to elicit the full vocal repertoire (Figure 3—figure 
supplement 1). These findings underscore the advantage of a longitudinal naturalistic approach, and 
suggest that further elaborations (e.g. providing a larger- scale naturalistic environment) could reveal 
new aural communication behaviors.

Social vocalizations can convey pivotal information about an animal’s identity. For example, female 
macaques learn to recognize the vocalizations of their own offspring during the second postnatal 
week, and retain this ability for at least 6 months (Jovanovic et al., 2000; Shizawa et al., 2005). Simi-
larly, kittens learn their mother’s vocalizations, and Australian sea lions can recall their mother’s voice 
up to 2 years after weaning (Pitcher et al., 2010; Szenczi et al., 2016). Furthermore, the meaning 
of vocal cues are often learned through long- term social experience. For example, when exposed 
to a chicken maternal call during development, socially reared mallard ducklings come to prefer it 
over their own species’ call (Gottlieb, 1993). Similarly, wood ducklings must be exposed to sibling 
vocalizations in order to remain selectively responsive to its mother’s assembly call (Gottlieb, 1983). 
Horseshoe bats, naked mole rats, and dolphins each model their calls based on early social experience 
(Jones and Ransome, 1993; Fripp et al., 2005; Favaro et al., 2016; Barker et al., 2021). Finally, 
rodent vocalizations can also harbor information about the individual identity and colony membership 
of the vocalizer (Barker et al., 2021). In fact, research on song learning in zebra finches shows that 
a reward learning mechanism may support the transmission of vocal repertoires: exposure to a live 
singing tutor, but not song playback, selectively activates dopamine neurons in the juvenile periaque-
ductal gray which is thought to mediate learning (Tanaka et al., 2018). Therefore, there is a compel-
ling rationale for exploring the diversity of vocalizations within the gerbil family social group, and to 
pursue the underlying neural mechanisms in the future.

To address whether gerbils also exhibit family specific vocal features, we compared GMM- labeled 
vocal cluster usages across the three recorded families and showed differences in vocal type usage 
(Figure 3). Although we chose 70 clusters for our analyses, the general finding was robust across a 
wide range of GMM clusters (Figure 4—figure supplement 1). The differences in this study align with 
the definition of human vocal dialect, which is a regional or social variety of language that can differ 
in pronunciation, grammatical, semantic and/or language use differences (Henry et al., 2015). This 
definition of dialect is inclusive of both pronunciation differences (e.g. a Bostonian’s characteristic 
pronunciation of ‘car’ as ‘cah’) and usage differences (e.g. a Bostonian’s preferential usage of the 
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words ‘Go Red Sox’ vs. a New Yorker’s preferential usage of the words ‘Go Yankees’). In our case, 
vocal clusters can be rarely observed in some families yet highly overexpressed in others (e.g. anal-
ogous to language usage differences in humans), or highly expressed in both families, but contain 
subtle spectrotemporal variations (Figure 3D, Family 1 cluster 11 vs. Family 3 clusters 2, 18, 30; for 
example analogous to pronunciation differences in humans). Like another fossorial species, the naked 
mole- rat, it is possible that gerbils may also possess the ability to acquire family specific vocal behavior 
through experience (Barker et al., 2021). Unlike the naked mole- rat which showed the presence of a 
colony- specific vocal dialect in a single vocal type, the soft chirp, we show that fine spectrotemporal 
variations in multiple different gerbil vocal types could harbor dialects (Figure 3D).

The described family differences collapse data from multiple days into a single comparison; 
however, it is possible that factors such as vocal development and/or high usage of particular vocal 
types during specific periods of the recording could explain family differences. Therefore, we took 
advantage of the longitudinal nature of our dataset to assess whether repertoire differences remain 
stable across time. First, we visualized vocal repertoire usage across days as either UMAP probability 
density maps (Figure  4A) or daily GMM cluster usages (Figure  4B). Though qualitative, one can 
appreciate that family repertoire usage remains stable across days and appears to differ on a consis-
tent daily basis across families. To formally quantify this, we first projected GMM cluster usages from 
Figure 4B into PC space and show that family GMM cluster usage patterns are highly separable, 
regardless of postnatal day (Figure 4C). If families had used a more overlapping set of call types, 
then the projections would have appeared intermixed. Next, we performed a cluster- free analysis by 
computing the pairwise MMD distance between VAE latent distributions of vocalizations from each 
family and day (Figure 4D). This analysis shows very low MMD values across days within a family (i.e. 
the repertoire is highly consistent with itself), and high MMD values across families/days (greater than 
would be expected by chance; see shuffle control in Figure 2—figure supplement 1D). The relative 
differences in this matrix are made clear in Figure 4E, which provides additional evidence that family 
vocal repertoires remain stable across days and are consistently different from other families. Taken 
together, we believe that this is compelling evidence that differences in vocal repertoires between 
families are not driven by dominating call types during specific phases in the recording period; rather, 
families consistently emit characteristic sets of call types across days. This opens up the possibility to 
assess repertoire differences over much shorter time periods (e.g. 24 hr) in future studies.

Vocalization emission statistics and behavioral syllable transition patterns can signify differences 
between groups of animals (Castellucci et al., 2018; Wiltschko et al., 2015; Markowitz et al., 2018). 
Therefore, it is possible that vocal emission patterns or vocal cluster transition patterns may be family 
specific. To address this, we first compared vocalization emission rates over multiple ethologically 
relevant timescales, which revealed highly consistent emission patterns across families (Figure 5A–D). 
First, we observed that vocal emission follows a diurnal pattern, with peaks of activity in the morning 
and afternoon. This result complements prior work in gerbils showing diurnal activity patterns in gerbil 
groups for non- vocal behaviors (Pietrewicz et al., 1982), but extends our understanding to vocal 
behavior. Vocalizations are rarely emitted in isolation. Rather, they are emitted in sequences (‘bouts’) 
with a modal duration of 4 s and a duration distribution that does not vary between families. These 
emission statistics are somewhat consistent with the common phoneme rate in humans (Edwards and 
Chang, 2013; Ding et al., 2017). Also, the distributions of inter- vocalization interval and vocalization 
duration did not differ between families. Taken together, the temporal emission structure is highly 
consistent across families and suggests that these features are likely not exploited for kinship identifi-
cation. However, this does not rule out the possibility that the sequential organization of vocalizations 
could vary. Vocalization bouts (Figure 1C, Figure 5E–F) show that temporal sequencing of vocalization 
clusters is non- random and has a compelling transition structure with potential to vary across families. 
To formally quantify this, we calculated vocalization transition matrices for each family, which revealed 
that all families strongly favor vocalization self- transitions (Figure 5G), although hinted that non self- 
transitions (off- diagonal) vary by family. To visualize this, we generated bigram transition graphs of 
highly expressed vocalization transitions, which provides evidence that vocalization transition struc-
ture varies by family (Figure 5H, Figure 4—figure supplement 1). Importantly, families arrange the 
same sets of vocal clusters into unique sequences (Figure  4—figure supplement 1D). There are 
limitations to this study that deserve consideration. First, a fully realized assessment of vocalization 
usage should be integrated with continuous sub- second synchronized videographic data from which 
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one can extract animal pose estimation and behavioral categorization. For example, such data could 
allow us to control for the total number and type of social interactions, which may explain differences 
in the amount or usage of specific syllables. Second, although we used four microphones, it was 
not possible to localize the majority of vocalizations with sufficient spatial resolution (using Mouse 
Ultrasonic Source Estimation software; Neunuebel et al., 2015). To properly address whether indi-
vidual animals emit a unique vocalization repertoire, we will require significant advances in the field of 
computational bioacoustics. In anticipation of future research in this area, we have computed acoustic 
features of vocalizations in each of the GMM clusters as a reference (Figure 3—figure supplement 2).

Although we were not able to attribute vocalizations to individual family members, we did seek to 
determine the importance of family structure by comparing audio recordings before and after removal 
of the pups at P30. The results show a clear effect of family integrity, and the sudden reduction of 
sonic calls following pup removal (Figure 3—figure supplement 1) could suggest that these vocal-
izations are produced selectively by pups. However, there is ample evidence that adult gerbils also 
produce sonic vocalizations. For example, a number of low- frequency call types are used by adults 
during a range of social interactions (Rübsamen et al., 2012; Furuyama et al., 2022), some of which 
are similar to a low- frequency call type used by pups (Silberstein et al., 2023). Vocalization patterns 
of developing gerbils depend on isolation or staged interactions. Thus, when gerbil pups are recorded 
during isolation, ultrasonic vocalization rate declines and sonic vocalizations increase for animals that 
are in a high arousal state (De Ghett, 1974; Silberstein et al., 2023). As gerbils progress from juvenile 
to adolescent development (P17- 55) a significant increase in ultrasonic vocalization rate is observed 
during dyadic social encounters, with a distinct change in usage pattern that depends upon the sex 
of each animal (Holman and Seale, 1991; Holman et al., 1995). The development of vocalization 
types has been assessed in another member of the Gerbillinae subfamily, called fat- tailed gerbils 
(Pachyuromys duprasi), during isolation and handling. Here, the number of ultrasonic vocalization 
syllable types increase from neonatal to adult animals (Zaytseva et al., 2019), while some very low 
frequency sonic call types were rarely observed after P20 (Zaytseva et al., 2020). By comparison, 
mouse syllable usage changes during development, but pups produced 10 of the 11 syllable types 
produced by adults (Grimsley et  al., 2011). In summary, our understanding of the maturation of 
vocalization usage remains limitted by our inability to obtain longitudinal data from individual animals 
within their natural social setting. For example, when recorded in their natural environment, chimpan-
zees display a prolonged maturation of vocalization complexity, such as the probability of a unique 
utterance in a sequence, with the greatest changes occuring when animals begin to experience non- 
kin social interactions (Bortolato et al., 2023).

These results reveal that Mongolian gerbil families possess a rich repertoire of vocalizations used 
during day- to- day communication. Our findings indicate that long- term behavioral monitoring of a 
core social unit (i.e. the family) reveals richer vocal behavior than has previously been reported in the 
species. Leveraging unsupervised machine learning to quantify vocalizations, we reveal family- specific 
vocalization usage and transition structure. Taken together, these findings establish the Mongolian 
gerbil as a useful model organism for studying the neurobiology of vocal interactions in complex social 
groups.

Methods
Experimental animals
Three gerbil families (Meriones unguiculatus, n=6 per family: 2 adults, 4 pups) were used in this study 
(Charles River). All procedures related to the maintenance and use of animals were approved by the 
University Animal Welfare Committee at New York University (protocol 2020–1112), and all experi-
ments were performed in accordance with the relevant guidelines and regulations.

Audio recording
Four ultrasonic microphones (Avisoft CM16/CMPA48AAF- 5V) were synchronously recorded using 
a National Instruments multifunction data acquisition device (PCI- 6143) via BNC connection with a 
National Instruments terminal block (BNC- 2110). The recording was controlled with custom python 
scripts using the NI- DAQmx- python library version 0.5.7; (https://github.com/ni/nidaqmx-python; 
National Instruments, 2017) which wrote samples to disk at a 125 kHz sampling rate. In total, 13.084 
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TB of raw audio data were acquired across the three families. For further analyses, the four- channel 
microphone signals were averaged to create a single- channel high- fidelity audio signal.

Audio segmentation
Audio was segmented by amplitude thresholding using the Autoencoded Vocal Analysis (AVA) python 
package (see Goffinet et al., 2021). First, sound amplitude traces are calculated by computing spec-
trograms from raw audio, then summing each column of the spectrogram. The ‘get_onset_offsets’ 
function, which performs the segmenting, requires the selection of a number of parameters which 
affect segmenting performance. The following values were tuned via an interactive procedure which 
validated that the segmenting could detect low amplitude vocalizations and capture individual vocal 
units apparent by eye:

seg_params = { 
'min_freq': 500 # minimum frequency 
'max_freq': 62500, # maximum frequency 
'nperseg': 512, # FFT'noverlap': 256, # FFT 
'spec_min_val': –8, # minimum STFT log- modulus 
'spec_max_val': –7.25, # maximum STFT log- modulus 
'fs': 125000, # audio sample rate 
'th_1': 2, # segmenting threshold 1 
'th_2': 5, # segmenting threshold 2 
'th_3': 2, # segmenting threshold 3 
'min_dur':0.03, # minimum syllable duration (s) 
'max_dur':0.3, # maximum syllable duration (s) 
'smoothing_timescale': 0.007, # amplitude 
'softmax': False, # apply softmax to the frequency bins to calculate 
amplitude 
'temperature':0.5, # softmax temperature parameter 
'algorithm': get_onsets_offsets 
}

Sound onsets are detected when the amplitude exceeds 'th_3' (black dashed line, Figure 1C), and 
sound offset occurs when there is a subsequent local minimum for example amplitude less than 'th_2' 
(gray dashed line, Figure 1C), or 'th_1' (black dashed line, Figure 1C), whichever comes first. In this 
specific use case, th_2 (5) will always come before th_1 (2), therefore the gray dashed line will always 
be the offset. A subsequent onset will be marked if the sound amplitude crosses th_2 or th_3, which-
ever comes first. For example, the first sound event detected in Figure 1C shows the sound amplitude 
rising above the black dashed line (th_3) and marks an onset. Subsequently, the amplitude trace falls 
below the gray dashed line (th_2) and an offset is marked. Finally, the amplitude rises above th_2 
without dipping below th_3 and an onset for a new sound event is marked. Had the amplitude dipped 
below th_3, a new sound event onset would be marked when the amplitude trace subsequently 
exceeded th_3 (e.g. between sound event 2 and 3, Figure 1C). The maximum and minimum syllable 
durations were selected based on published duration ranges of gerbil vocalizations (Rübsamen et al., 
2012; Kobayasi and Riquimaroux, 2012).

Vocalization extraction
We computed the spectral flatness of each detected sound event using the python package librosa 
(https://github.com/librosa; McFee et al., 2024). Consistent with prior literature (Castellucci et al., 
2016), we used a threshold on spectral flatness to separate putative vocal and non- vocal sounds. 
This threshold value was determined empirically, by calculating the false positive vocalization rate 
(Figure 1—figure supplement 1) of groups of randomly sampled vocalizations. For each spectral 
flatness value in Figure 1—figure supplement 1B, 100 randomly sampled vocalization spectrograms 
less than the working threshold value were assembled into 10x10 grids and visually inspected for false 
positives (e.g. non- vocal sounds; Figure 1—figure supplement 1C). This procedure was repeated 10 
times for spectral flatness thresholds of 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, and 0.4. We quantified the false 
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positive vocalization rate for each threshold value and selected 0.3, which had a 5.5+/-1.96% false 
positive rate.

Variational autoencoder training
Extracted vocalizations were converted to 128x128 pixel spectrograms using the ‘process_sylls’ func-
tion from AVA with the following preprocessing parameters:

preprocess_params = { 
'get_spec': get_spec, # spectrogram maker 
'max_dur': 0.3, # maximum syllable duration'min_freq': 500, # minimum 
frequency 
'max_freq': 62500, # maximum frequency 
'nperseg': 512, # FFT 
'noverlap': 256, # FFT 
'spec_min_val': –8, # minimum log- spectrogram value 
'spec_max_val': –5, # maximum log- spectrogram value 
'fs': 125000, # audio sample rate 
'mel': False, # frequency spacing, mel or linear 
'time_stretch': True, # stretch short syllables? 
'within_syll_normalize': False, # normalize spectrogram values on a 
                       # spectrogram- by- spectrogram basis 
'max_num_syllables': None, # maximum number of syllables per directory 
'sylls_per_file': 100, # syllable per file 
'real_preprocess_params': ('min_freq', 'max_freq',  
     'spec_min_val',’spec_max_val', 'max_dur'), # tunable parameters 
'int_preprocess_params': ('nperseg','noverlap'), # tunable parameters 
'binary_preprocess_params': ('time_stretch', 'mel', 
      'within_syll_normalize'), # tunable parameters 
}

A VAE was trained for 50 epochs using a model precision of 40. We removed additional false posi-
tive vocalizations by inspecting a 2D UMAP embedding of the VAE latent space and removing UMAP 
clusters containing non- vocal sounds from further analysis.

Gaussian mixture model
GMMs were fit to cluster VAE latent feature vectors. To reduce computation time, we fit the model 
on 7 of 32 VAE latents (Figure 2—figure supplement 1E), as these explained 99.5% of the variance 
in the original feature space. The model was implemented in Stan (https://mc-stan.org/cmdstanpy), 
however similar clustering results were achieved using the scikit- learn Gaussian Mixture model class 
with a diagonal covariance matrix (https://scikit-learn.org/stable/modules/generated/sklearn.mixture. 
GaussianMixture.html). We fit the model using stochastic variational inference, an approximate 
Bayesian inference technique that recasts the task of learning a posterior distribution as an optimi-
zation problem and enables vast speedups (Hoffman et al., 2013). GMMs typically assume that the 
whole population selects clusters with the same probabilities, however we modified this assumption 
to allow, although not enforce, the model to learn different cluster usage patterns for each family. 
Specifically, we used the following model:

Let D be the dimensionality of the VAE latents used (in our case, D=7) and K be the number of 
clusters. Denote our parameters by:

Mixture means ( β ) for cluster j:  βj ∈ RD
 

Mixture covariance matrix ( Σ ) for cluster j:  Σj = [diag(σj)]2
 , for  σj ∈ RD

 
Cluster usage probabilities for cohort  i :  θi ∈ RK,  with  

∑K
j=1 θi,j = 1 

Cluster assignment for vocalization k of cohort i:  zik ∈
{

1, ..., K
}
 

We selected our hyperparameters according to Stan’s guidelines for weakly informative priors, 
yielding the model:
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Mixture means for cluster j:  βj ∼ NormalD
(
0, 5

)
 

Mixture standard deviations ( σ ) for cluster j:  σj ∼ HalfNormalD
(
3
)
 

Cluster usage probabilities for cohort  i :  θi ∼ Dirichlet
(
1, ..., 1

)
 

Cluster assignment for vocalization k of cohort i:  zik Categorical
(
θi
)
 

VAE feature embedding for vocalization k of cohort i: 
 
xik Normal

(
β(zik

),Σ(
zik
)
)
 

To select the number of clusters, K, we held out 25% of our data, trained models with varying values 
for K, and calculated the log probability of seeing the held- out data under each model (Figure 2—
figure supplement 1C). Using the elbow method, we determined that ~70 clusters was a reasonable 
selection for K. Previous work documenting the Mongolian gerbil repertoire (Rübsamen et al., 2012; 
Kobayasi and Riquimaroux, 2012) has revealed ~12 vocalization types that vary with social context. 
It is likely that we are capturing these ~12 (plus a few more, as illustrated in Figure 2C) as well as 
individual or family- specific variations of some call types. Although the number of discrete call types is 
likely less than 70, it is plausible that variation due to vocalizer identity pushes some calls into unique 
clusters. This idea is supported by the fact that both naked mole rats and Mongolian gerbils have 
been shown to exhibit individual- specific variation in vocalizations, though only in single call types 
(Figure 1 from Barker et al., 2021; Table I from Nishiyama et al., 2011). Importantly, the core result 
is not affected by cluster size (Figure 5—figure supplement 1).

Maximum mean discrepancy permutation test
Clustering analyses are notoriously challenging (Kleinberg, 2002). Thus, we performed a comple-
mentary analysis to investigate whether different gerbil families utilize different vocal repertoires. In 
particular, we pursued an approach that makes no assumptions about the number, character, or even 
existence of vocalization clusters.

Specifically, we used Maximum Mean Discrepancy (MMD) to quantify the difference between 
two latent distributions of vocalizations. This test considers two sets of observed data points (e.g. 
N vocalizations from Family 1 and N vocalizations from Family 2), which are assumed to be inde-
pendent and identically distributed random variables from underlying probability distributions, and 
returns a distance metric corresponding to the equality of the two distributions (Gretton et al., 2012). 
Lower values suggest distributions are more similar and higher values suggest distributions are more 
dissimilar. We investigated the null hypothesis that the gerbil families used the same vocal reper-
toire—that is the probability distribution over VAE latent space for each family was identical, corre-
sponding to a MMD2 distance of zero. To test this null hypothesis, we computed the MMD2 distance 
between the empirical distributions of family pairs in batches of 1000 randomly sub- sampled vocal-
izations. This yielded a histogram of empirically observed MMD2 distance values for each family pair, 
which we compared a null distribution generated by randomly permuting the family label attached 
to each vocalization. The empirically observed MMD2 distances were much higher than the shuffle 
control, favoring the alternative hypothesis that gerbil families utilize distinct syllable usage statistics 
(Figure 2—figure supplement 1).

Transition analysis
Vocalization transition sequences were generated by concatenating vocal cluster labels chronolog-
ically for each family and calculating the number of transitions for all possible transition types. The 
resulting transition matrix was normalized such that each row sums to 1, thus reflecting the probability 
that vocalization  i  transitions to vocalization  i + 1 , that is  pi

(
j
)
  (Figure 5G). The transition matrix used 

to generate the bigram probability graph in Figure 5H was normalized such that edge and node 
widths correspond to the probability of each vocalization pair, that is  p

(
i, j
)
  (Shannon, 1948).

Acoustic feature calculations
First, raw audio from the most probable vocalization samples (n=100) from each vocal cluster were 
extracted. Next, using the VocalPy (Nicholson, 2023) ‘similarity_features’ function (a python imple-
mentation of the Sound Analysis Pro Sound Analysis Tools library: http://soundanalysispro.com/ 
matlab-sat), the following acoustic features were calculated: fundamental frequency (pitch), ampli-
tude, entropy, frequency modulation, goodness of pitch. In addition to these features, spectral flat-
ness was computed using librosa (https://librosa.org/doc/latest/generated/librosa.feature.spectral_ 
flatness.html), and duration was computed from the raw audio itself. Finally, start and stop frequencies 
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were computed by taking the median fundamental frequency within the first third and last third (time) 
of each vocalization, respectively.

The following spectrogram parameters were used: nfft = 512, noverlap (a.k.a hop_length)=256, 
Fs = 125000, min_freq = 65, max_freq = 62,500. Features are computed on a spectrogram frame- 
by- frame basis. Single values for each vocalization were extracted by taking the median acoustic 
feature value across all spectrogram frames. The single exception to this was spectral flatness (to 
remain consistent with the spectral flatness calculation used for amplitude thresholding), which took 
the mean across all spectrogram frames and used the following spectrogram parameters: n_fft = 256, 
hop_length = 128, win_length = 256, center = False, power = 2.0.

Detailed description of the units associated with each feature are located here: http://soundanaly-
sispro.com/manual/chapter-4-the-song-features-of-sap2. Code to compute acoustic features is avail-
able on GitHub (https://github.com/ralphpeterson/gerbil-vocal-dialects, copy archived at Peterson, 
2024).
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