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Abstract

Background: The Normalized Difference Vegetation Index (NDVI) is a measure of greenness 

widely used in environmental health research. High spatial resolution NDVI has become 

increasingly available; however, the implications of its use in exposure assessment are not well 

understood.

Objective: To quantify the impact of NDVI spatial resolution on greenness exposure 

misclassification.

Methods: Greenness exposure was assessed for 31,328 children in the Greater Boston Area 

in 2016 using NDVI from MODIS (250m2), Landsat 8 (30m2), Sentinel-2 (10m2), and the 

National Agricultural Imagery Program (NAIP, 1m2). We compared continuous and categorical 

greenness estimates for multiple buffer sizes under a reliability assessment framework. Exposure 

misclassification was evaluated using NAIP data as reference.

Results: Greenness estimates were greater for coarser resolution NDVI, but exposure 

distributions were similar. Continuous estimates showed poor agreement and high consistency, 

while agreement in categorical estimates ranged from poor to strong. Exposure misclassification 

was higher with greater differences in resolution, smaller buffers, and greater number of exposure 

quantiles. The proportion of participants changing greenness quantiles was higher for MODIS 

(11%–60%), followed by Landsat 8 (6%–44%), and Sentinel-2 (5%–33%).

Significance: Greenness exposure assessment is sensitive to spatial resolution of NDVI, 

aggregation area, and number of exposure quantiles. Greenness exposure decisions should ponder 

relevant pathways for specific health outcomes and operational considerations.
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Introduction

Research across multiple disciplines has drawn attention to the critical role of vegetation 

in maintaining environmental quality, facilitating social cohesion, and promoting healthy 

behaviors in urban areas (1–4). Vegetation can moderate exposures to environmental 

hazards by reducing ambient concentrations of air pollution (5,6), acting as a physical and 

psychological buffer for noise (7,8), and reducing heat exposure (9). Accumulating evidence 

suggests predominantly beneficial associations between exposure to vegetation and multiple 

mental and physical health outcomes (10–15). While there is growing consensus on the 

salutatory effects of vegetation, research findings on the greenness-health relationship are 

mixed for several outcomes, including birth outcomes (16–18), academic performance (19–

22), and asthma and allergic respiratory diseases (23–25). These inconsistencies might arise 

from differences in study area and population, or differences in study design, including how 

exposure to green spaces is conceptualized and measured. In fact, the heterogeneity in green 

space data and spatial methods used to assess exposure have been pointed as potential driver 

behind the conflictive evidence observed in the literature (26,27).

Many environmental health studies rely on greenness data –a measure of relative abundance 

and spatial distribution of vegetation– to characterize exposure (28–30). Greenness 

is generally assessed with spectral indices that identify vegetation using reflectance 

measurements taken by instruments on satellites and planes. Among the many vegetation 

indices available, the Normalized Difference Vegetation Index (NDVI) is the most 

commonly used in urban green space assessment (31) and environmental health studies 

(26,27,32). NDVI applications have increased due to the availability of satellite data over 

long periods of time and geographic extents at increasingly higher spatial and temporal 

resolution (24,27,33). Coarser resolution data (pixel size of 250 m2 or more) are more likely 

to include a mix of land cover classes (e.g., impervious, water, vegetation, etc.) within the 

extent of each pixel (34–37). The mix of signals from different surfaces dilutes the spectral 

signal of vegetation, hampering the identification of small green spaces such as backyards, 

pocket parks, and street trees, which account for a large share of greenness exposure in 

urban contexts (38). Oppositely, the smaller pixels in high-resolution NDVI data (pixel size 

of 10 m2 or less) are more likely to capture pure land cover classes, and therefore can 

better identify small-scale green cover. This is especially relevant for exposure assessment in 

urban areas where land cover presents high variability (39). Moreover, NDVI presents strong 

spatial scale dependencies when assessing vegetation over mixed surfaces, suggesting that 

NDVI derived from data at different spatial resolutions might not be directly comparable 

in such settings (36). While this issue is less relevant for pixels of pure vegetation, such as 

forests (40), the majority of epidemiologic studies are set in urban areas, where land cover 

is highly heterogeneous. Together, these conditions suggest that spatial resolution of NDVI 

data might affect exposure estimates.
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Greenness exposure is typically assigned to individuals by averaging NDVI within radial 

buffers centered on residential addresses or locations of interest (25,28,41–43). Buffers 

of different radii are used to represent a variety of spatial scales and exposure contexts 

where interactions with natural green space occur. Smaller buffer sizes capture vegetation 

in the immediate surroundings of individuals, such as private yards and street trees, and 

larger buffer sizes account for neighborhood-level greenness that might be encountered 

during commuting or recreational activities (26,27,44). Studies exploring the interactions 

between scale of analysis and NDVI resolution have observed changes in effect size and 

statistical significance of associations across buffer sizes for several health outcomes (45–

47). While these differences might owe to the definition of aggregation areas or reflect 

the fact that different ecosystem services of vegetation occur at different scales, they also 

suggest that the associations between greenness and health might be susceptible to scale 

problems. However, few studies have explicitly analyzed how greenness data resolution and 

aggregation areas might impact estimates of greenness exposure (48), and more studies are 

needed to understand the extent to which scales of analysis and NDVI resolution impact 

greenness exposure assessment.

Overall, there is limited understanding on the impact of methodological decisions regarding 

aggregation scale and spatial resolution of NDVI data on greenness exposure estimates. 

NDVI derived from multiple sensors at different spatial resolutions are usually treated as 

interchangeable in their ability to characterize exposure to vegetation in the environmental 

health literature. Furthermore, the implications of using NDVI at a specific spatial resolution 

in relation to different scales of analysis are rarely addressed in the greenness-health 

literature. In this study, we illustrate the impact of NDVI resolution and scale of analysis on 

greenness exposure misclassification in a cohort of urban children.

1. Materials and methods

1.1. Study area and population.

The study area corresponds to the Greater Boston Area (GBA), a predominantly urban 

region comprising the easternmost third of the state of Massachusetts. The GBA presents 

humid continental climate with hot, humid summers and cold winters. We used addresses 

from a database of electronic health records of patients between 5 and 18 years who received 

medical attention at the Boston Medical Center (BMC), located in Boston, Massachusetts, 

USA. BMC is the largest urban safety net hospital in New England and primarily serves 

a low-income and vulnerable population. For this study, we selected a subset of the 

cohort corresponding to 31,328 children whose addresses were registered during visits to 

BMC in 2016. Addresses were geocoded using a cascading matching method using both 

the MassGIS Statewide Master Geocoder (49) and the ESRI ArcGIS World Geocoder in 

ArcMap version 10.7. (50). Protocols were approved by the Institutional Review Board at 

Boston University. Figure 1 shows the distribution of NDVI in the GBA and the City of 

Boston, where 63% of the study population is located. NDVI greater than zero is indicative 

of live vegetation, whereas negative values indicate highly reflective surfaces, such as water, 

ice, or impervious surfaces.
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1.2. Greenness data sources and data processing

NDVI for the GBA was derived from four remote sensing datasets: Moderate Resolution 

Imaging Spectroradiometer (MODIS), Landsat 8, Sentinel-2, and the National Agricultural 

Imagery Program (NAIP). We selected remote sensing data collected during a five-week 

period during top-growth season in the Northern Hemisphere in 2016, as this is the most 

recent year in which NAIP data was available for the study area. Table 1 provides the 

technical specifications of remote sensing instruments associated to each dataset, overpass 

time in study area, and date range of selected images.

(i) MODIS (250 m2): The Terra MODIS Vegetation Indices version 6 is a post-processed 

data product developed by the U.S. National Aeronautics and Space Administration. A 

dataset of NDVI estimates with global coverage is generated every 16 days at 250 m2 

spatial resolution using an algorithm that chooses the best available pixel value from all the 

acquisitions from the 16-day window, selecting low cloud cover and the highest NDVI value 

(51). This dataset is readily available for download or use in web-based GIS platforms and it 

is widely used in environmental health studies.

(ii) Landsat 8 (30 m2): Surface reflectance data from the Operational Land Imager 

instrument on the Landsat 8 satellite is available every 16 days at 30 m2 resolution with 

global coverage. We selected images for the study area with cloud cover less than 10%.

(iii) Sentinel-2 (10 m2): The Multispectral Instrument on board of the Sentinel-2 

satellite collects multispectral images at 10 m2 resolution with global coverage every 5 

days. To minimize the influence of atmospheric disturbances, the inclusion of images was 

restricted to those cloud cover less than 10%.

(iv) NAIP - National Agricultural Imagery Program (1 m2): Multispectral aerial 

imagery acquired during the agricultural growing season in the continental United States. 

NAIP data are collected, managed, and validated by the U.S. Department of Agriculture (52) 

and it is used as the base for the development of high-resolution land cover maps in several 

states of the U.S. Reflectance measurements at 1 m2 resolution for each state are available 

every 3 to 5 years (53). All images from the 2016 campaign in the study area were included, 

yielding minor overlap of images and complete spatial coverage of the study area.

MODIS, Landsat 8, Sentinel 2, and NAIP data were retrieved and processed in Google Earth 

Engine, a cloud-based computer platform that leverages publicly available remote sensing 

data repositories and Google’s computational capabilities to perform large scale spatial 

analysis that typically challenge computational infrastructure due to processing requirements 

(54). First, NDVI for each Landsat 8, Sentinel-2, and NAIP scene was calculated from 

reflectance measurements in the red (R) and near infrared (NIR) bands using the following 

equation: (NIR−R)/(NIR+R). Large water bodies and cloudy pixels were masked from 

NDVI calculations to reduce misclassification of non-vegetated pixels. Then, we created a 

greenest pixel composite (i.e., selecting the highest pixel value observed during the study 

period) for each NDVI dataset, integrating all available imagery into a single raster file with 

continuous coverage for the study area.
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1.3. Greenness exposure assessment

Greenness exposure was assigned using Euclidean buffers of 50 m, 250 m, 500 m, and 

1,000 m radii centered at participant’s geocoded residential addresses, following exposure 

assessment methods traditionally used in the greenness-health literature (14,25,28,41–43). 

Residential greenness was estimated as the pixel area-weighted average NDVI for each 

buffer size. Negative NDVI values were included in calculations, as setting negative NDVI 

values to zero prior aggregation in buffers would bias exposure distributions by truncating 

its left tail, thus artificially reducing its variance. Nevertheless, we calculated greenness 

exposure estimates from the four NDVI datasets setting negative NDVI pixels to zero, to 

evaluate the sensitivity of our findings to this methodological decision.

1.4. Statistical analysis

Using a reliability assessment framework, we evaluated continuous and categorical (two, 

three, four, and five quantiles) estimates of NDVI, matching how greenness exposure is 

operationalized in environmental epidemiology studies. Reliability is defined as the extent to 

which greenness exposure estimates for the study population can be replicated using NDVI 

data at different spatial resolution. We considered each NDVI sensor as a rater, thus, the 

inter-rater reliability assessment measures how alike are exposure estimates from different 

sensors for the same set of subjects. Agreement and consistency in continuous NDVI 

exposure estimates were evaluated using Intra-Class Correlation Coefficients (ICC). The 

ICC provides a measure of the magnitude of the relationship between multiple assessments 

of the same variable across raters, while taking into account rater bias (55). ICC ranges 

between 0 and 1, where greater values indicate higher reliability. We use mixed models to 

derive the ICC (56), incorporating subjects’ variability using a random effect, and between-

rater variability using a fixed effect for raters. Following the model definitions by McGraw 

and Wong (57), we used two-way mixed models to estimate ICC for consistency (ICC(C,1)) 

and absolute agreement (ICC(A,1)).

Reliability in categorical estimates was assessed in terms of agreement in participants’ 

exposure quantiles across combinations of buffer size and number of classes in categorical 

variables. Light’s kappa (κ), a multi rater generalization of Cohen’s κ (58,59), was used 

to assess agreement in exposure quantiles derived from all NDVI datasets. Cohen’s κ was 

used to evaluate pairwise agreement in categorical estimates from Sentinel-2, Landsat 8, and 

MODIS data using NAIP data as reference, under the assumption that the most granular 

data is less prone to be affected by the mixed pixel problem and therefore provides the best 

representation of ground vegetation. Values of κ are interpreted as follows: 0–0.20 indicates 

no agreement, 0.21–0.39 minimal, 0.40–0.59 weak, 0.60–0.79 moderate, 0.80–0.90 strong, 

and >0.9 indicates almost perfect agreement (58). Finally, using NAIP data as reference, 

we evaluated the magnitude of misclassification by quantifying the proportion of the study 

population that shifts greenness quantiles across buffer size.

We replicated statistical analyses using exposure estimates from the four datasets where 

pixels with negative NDVI values were set to zero prior aggregation in buffers, in order 

to evaluate the sensitivity of our results to the decision of keeping negative values in our 

calculations. Sensitivity analyses are presented in Supplementary Information (SI).
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2. Results

2.1. Continuous greenness exposure estimates

Figure 2 presents the final NDVI datasets in relation to a true color image in the study area, 

emphasizing the differences in spatial resolution of the data.

Figure 3 presents the distributions of greenness exposure estimates derived from the four 

NDVI datasets by buffer size. A comparison of the exposure distributions excluding and 

including negative NDVI values in calculations is provided in SI Figure 1. Summary 

statistics are presented in Table 2. Greenness exposure estimates were greater for coarser 

resolution data and decreased with higher spatial resolution of NDVI. Exposure distributions 

followed similar trends within and across buffer sizes, where estimates from NAIP were 

consistently lower than Sentinel-2, Landsat 8, and MODIS data, respectively. In general, 

narrower ranges and higher mean and median values were observed at coarser pixels and 

larger buffers. For all buffer sizes, the mean and median of NAIP estimates were negative, 

while for Sentinel-2, Landsat 8 and MODIS, were greater than zero.

Table 3 shows ICC coefficients of agreement and consistency for continuous NDVI exposure 

variables by buffer size. Overall, agreement in continuous exposure estimates was poor, 

with small, statistically significant coefficients and wide confidence intervals across buffer 

sizes. Consistency ranged from good to excellent, indicating that exposure estimates from 

the four NDVI data products yield similar distributions of exposure estimates in terms 

of participant’s ranked order. Agreement and consistency increased with buffer size, 

indicating that exposure estimates are more alike in larger aggregation areas. Agreement and 

consistency between estimates where negative NDVI pixels were set to zero followed similar 

trends; however, agreement was higher and consistency was lower compared to estimates 

where negative NDVI values were included (SI Figure 2)

2.2. Categorical greenness exposure estimates

Figure 4 shows Light’s κ for combinations of greenness exposure quantiles and buffer sizes. 

The results show agreement increases with buffer size and less number of quantiles, and that 

differences in agreement between categorical variables decrease with buffer size. The lowest 

level of agreement was κ = 0.39 (five quantiles, 50 m buffer), while the highest was κ = 

0.88 (two quantiles, 1,000 m buffer). Agreement in categorical greenness estimates where 

negative NDVI values were set to zero followed similar trends (SI Figure 3).

2.3. Greenness exposure misclassification

Figure 5 shows agreement between NDVI exposure estimates from Sentinel-2, Landsat 8, 

and MODIS compared to NAIP across buffer size and NDVI quantiles. The highest levels 

of agreement were observed for Sentinel-2, followed by Landsat 8, and MODIS, suggesting 

that differences in exposure estimates relative to the high resolution NAIP data decrease 

with reduced differences in spatial resolution of NDVI data. The greatest discrepancies 

were observed at 50 m buffers, with differences in κ decreasing with greater buffer size, 

especially between Landsat 8 and Sentinel-2. Exposure estimates from MODIS data present 
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the lowest agreement in relation to NAIP estimates for 50 m buffers, with κ values ranging 

from minimal (κ = 0.28, five quantiles) to weak (κ = 0.48, two quantiles).

The plot series in Figure 6 shows the proportion of participants assigned to a different 

greenness quantile using Sentinel-2, MODIS, and Landsat 8 NDVI compared to NAIP 

NDVI across buffer sizes and number of quantiles in categorical variables. The proportion 

of the study population who changed at least one position in their greenness category ranged 

between 11% and 60% for MODIS, between 6% and 44% for Landsat 8, and between 5% 

and 33% for Sentinel-2 for the combinations of 50 m buffer and five quantiles, and 1000 m 

buffer and two quantiles, respectively. The proportion of participants who changed greenness 

quantiles and the magnitude of change (i.e. the number of positions of the shift) increased 

with greater number of quantiles in categorical variables and smaller buffer size. Larger 

differences in spatial resolution of data led to greater movement in greenness categories for 

any given buffer size and quantiles. For example, when variables structured using quintiles 

are applied to 50 m buffers (top right plot in Figure 6), 60%, 44%, and 33% of participants 

changed at least one position; 22%, 7%, and 2% change at least two positions; 6%, 0.7%, 

and 0.07% change at least three positions in the categorical distribution of MODIS, Landsat 

8, and Sentinel-2, respectively. In that same combination of 50 m buffer and quintiles, 

changes of four positions in the exposure categories relative to NAIP data were observed 

for Landsat 8 (0.04%) and MODIS (0.8%), but not in Sentinel-2. While misclassification for 

exposure quantiles where negative NDVI were set to zero was higher, the results followed 

similar trends across buffer size and number of exposure quantiles (SI Figure 4).

3. Discussion

In this study, we quantified greenness exposure for a large urban cohort of children 

using NDVI data at varying spatial resolutions following exposure assessment methods 

used in epidemiological analysis, and compare them across multiple buffer sizes and 

quantile classifications to illustrate how the spatial scale of data might lead to greenness 

exposure misclassification. The use of coarser NDVI data led to substantial differences in 

categorical greenness exposure, and the severity of exposure misclassification depended 

on the spatial scale of analysis in relation to the quantile classification. The proportion of 

individuals who shifted exposure categories increased with coarser data, greater number of 

quantiles, and smaller buffers. These results indicate that exposure misclassification related 

to differences in NDVI spatial resolution is sensitive to buffer size and number of classes in 

categorical variables, adding to a limited body of literature analyzing the impact of NDVI 

data resolution and aggregation area in the context of environmental health studies. Our 

results are in line with previous studies which have, to varying extents, found that spatial 

resolution influences the magnitude or statistical significance of observed greenness-health 

associations (45–47).

The decision on which scale and resolution of NDVI to use when analyzing associations 

between greenness and health is not straightforward. First, researchers should identify the 

ecosystems services at play for the hypothesized exposure pathways in relation to the 

outcome of interest, in order to define the relevant area of exposure. For example, if 

greenness is thought to influence mental health through direct views of greenery from 
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windows (60), or acting as a psychological or physical buffer from ambient noise at night 

(7,8), then small buffers should be used to represent residential exposure. If greenness is 

thought to influence mental health through increased physical activity (61), then larger 

buffers should be used to account for neighborhood-level exposure, as the assumption would 

be that greener neighborhoods are more inviting to perform physical activity. Once the 

aggregation area or buffer size is defined, the decision on spatial resolution of NDVI data 

should be driven primarily by the characteristics and spatial structure of vegetated spaces 

in the area of interest in relation to the relevant exposure pathways. In urban areas, a 

large share of greenness exposure comes from vegetation in backyards, pocket parks, large 

planters on sidewalks, and street trees. Given the small extent of vegetated features in urban 

settings, high resolution NDVI should be used to estimate exposure, as coarser resolution 

data might not be able to adequately characterize the distribution of greenness. This is 

particularly relevant for smaller buffers, as using MODIS or even Landsat 8 NDVI in a 50 m 

buffer might substantially increase exposure misclassification. However, coarser NDVI can 

be used for larger aggregation areas (buffers of 500 m, 100 m) if high-resolution data is not 

available, as the differences in the magnitude of misclassification between NDVI at coarser 

resolution is attenuated at larger buffers. In general, researchers should avoid using buffers 

that are smaller than pixels of the greenness data.

It is worth to note, however, that exposure pathways are complex, intertwined, and often 

unknown for various health outcomes, and that exposure areas will likely capture multiple 

pathways that might occur simultaneously. Furthermore, the decisions on aggregation 

area and spatial resolution of data have practical implications for statistical inference in 

epidemiological analyses. For example, it has been shown that the variance of greenness 

estimates declines with larger aggregation areas (48,62,63), which can negatively affect the 

ability of epidemiological models to detect statistical associations between greenness and 

health. Furthermore, several studies have illustrated the impacts of the Modifiable Areal 

Unit Problem when working with remote sensing data on greenness estimates and the 

observed associations between greenness and health (26,45,46,62). These challenges add to 

the complexity of selecting the appropriate scale for aggregation and resolution of greenness 

data and highlight the need of evaluating the sensitivity of analytical results towards 

methodological decisions regarding the units of analyses in greenness exposure assessment. 

The most common approach found in the epidemiological literature is performing sensitivity 

analysis using exposure estimates derived for multiple aggregation areas and data at different 

spatial resolutions to assess changes in the observed green space-health associations derived 

from statistical models (45,46,64,65). Alternatively, researchers should consider evaluating 

the sensitivity of buffer limits based on NDVI data resolution to better understand the 

implications of data decisions on exposure variance (see Labib et al. in (48)). Analyses 

where the effect of zoning and spatial resolution decisions on the variability of greenness 

exposure estimates are evaluated jointly can help researchers identify the appropriate buffer 

size for a given research question and analysis plan.

In addition to theoretical considerations, researchers should bear in mind the tradeoffs 

between ease of access and use, temporal and spatial availability, and accuracy of greenness 

data. High resolution NAIP data provides a more accurate appraisal of greenness, however, 

processing 1 m2 data even for relatively small geographic extents is computationally 
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intensive and thus processing requirements might constitute a practical constraint for 

researchers. Additionally, it is available only in the United States for the summer season, 

precluding its use to assess seasonal exposure or other parts of the world. Sentinel-2 and 

Landsat data are collected periodically, have global coverage, and are available starting 

2015 and 1972, respectively; however, both require some degree of preprocessing to 

estimate NDVI. Precalculated MODIS NDVI data products have global coverage, are easily 

accessible for download, and are available since the year 2000, nevertheless, its coarse 

resolution increases the potential for exposure misclassification. Future studies should 

explicitly state the rationale for the selection of greenness data, provide complete references 

for NDVI data, and detailed methods used for NDVI data treatment in preparation to 

assess exposure (e.g.: cloud masking, compositing, treatment of missing and negative NDVI 

values) in order to improve comparability between studies, evaluate generalizability of 

findings, and enable replicability of methods.

The use of NDVI for greenness exposure assessment presents multiple advantages for 

environmental health research, such as broad spatial and temporal coverage across the 

globe, increasing availability at higher temporal and spatial resolutions, numerous NDVI 

data products being publicly accessible, and it being a standardized, validated measure of 

greenness exposure (31,66). However, NDVI does not provide information on vegetation 

species, green space structure, or green space use, and therefore is limited in its ability to 

characterize the personal contact or experience of greenness. Some studies have used other 

exposure metrics such as additional spectral indices and spectral unmixing (67), composite 

indices that incorporate multiple dimensions of natural spaces (68,69), or harmonize 

multiple green space metrics (48) to acknowledge the multiple scales and pathways by 

which vegetation impacts health. Studies have measured participants’ perceived greenness 

exposure using surveys to characterize the subjective experience of greenness, observing 

significant associations with health outcomes and healthy behaviors and differences between 

perceived and objectively measured greenness using NDVI (70–72). Finally, there is a 

growing body of studies that used street-level imagery to characterize ground vegetation 

and views of greenery in public health studies (73). In general, these studies apply 

machine-learning methods to street view images to classify eye-level features of the built 

environment, including vegetation (33). Interestingly, studies have observed low correlations 

between exposure estimates derived from NDVI and street view data (74–78). Together, 

these findings suggest that the different measures of greenness might be capturing different 

attributes of the urban greenscape, and that the use of multiple metrics is necessary to 

comprehensively assess the relationship between urban greenness and health.

Our analyses are limited by our inability to control for factors that influence spectral 

measurements from different sensors when comparing NDVI exposure estimates, beyond 

differences in spatial resolution of the data. There is a set of factors that influence the 

reflectance measurements used to estimate NDVI, including differences in the technical 

specifications of instruments related to spectral resolution of bands, the platform in which 

sensors are mounted (aircraft versus satellites), and variations in overpass time, which 

might lead to differential influence of shadows from trees and tall buildings by sensor. 

Additionally, there are differences in data manipulation when calculating NDVI for the study 

area and period: a greenest pixel approach was used to composite overlapping images from 
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satellites captured repeatedly over the study period, compared to a mosaic approach used for 

the aircraft data, where a single image captured on specific dates within the study period 

is available for each segment of the study area. However, selecting data for the same time 

window and masking cloudy pixels from our calculations addressed these limitations and 

renders the data comparable. Furthermore, we replicated methods for processing NDVI used 

to assess greenness exposure in epidemiologic and environmental health studies, framing 

our results in the context of current applications of NDVI data. Finally, as greenness 

exposure estimates were not linked to a health outcome, we were not able to appraise the 

effects of exposure misclassification on the observed effect estimates or to assess whether 

misclassification due to resolution and scale is differential or non-differential. Nevertheless, 

we hypothesize that exposure misclassification is non-differential, as nothing indicates that 

the measurement error stemming from technical specifications of a sensor that determine 

spatial resolution of NDVI data would be associated with a health outcome. Additional 

research is needed in other populations, geographic settings, and health studies to evaluate 

the generalizability of our results and better understand the impact of NDVI data on 

greenness misclassification.

Conclusion

Our results demonstrate the impact of NDVI spatial resolution, aggregation area, and 

quantile classification on estimates of greenness exposure in an urban cohort. We 

recommend using fine spatial resolution NDVI data to estimate greenness exposure in 

small aggregation areas in order to minimize exposure error, especially in urban areas 

where land cover is highly heterogeneous at small scale. NDVI product selection and 

processing decisions in future work should take into account hypothesized exposure 

pathways, physiological mechanisms, the spatial structure of vegetated areas driving the 

exposure in the area of study, as well as operational constrains, such as data processing 

demands.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Greenness in the Greater Boston Area and city of Boston, Massachusetts in summer 2016. 

NDVI was derived from Landsat 8 surface reflectance data.
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Fig 2. 
Comparison of spatial resolution of NDVI from NAIP, Sentinel-2, Landsat 8, and MODIS. 

The figure shows NDVI from the four data products next to a true color image of the Boston 

Common and Public Garden in Massachusetts during the summer season of 2016.
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Fig 3. 
Greenness exposure distributions for the study population (an = 31,328) across different 

buffer sizes. Panels show the distributions of continuous greenness exposure estimates 

derived from NAIP, Sentinel-2, Landsat 8, and MODIS in residential buffers of 50 m, 250 m, 

500 m, and 1000 m radii.
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Fig 4. 
Agreement between greenness exposure quantiles from NAIP, Sentinel-2, Landsat 8, and 

MODIS. The plot shows values of Light’s κ for multi rater agreement in categorical 

greenness exposure estimates across buffer sizes and quantile cutoffs.
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Fig. 5. 
Agreement in greenness exposure quantiles from Sentinel 2, Landsat 8 and MODIS relative 

to NAIP NDVI. Panels show values of Cohen’s κ for pairwise agreement in categorical 

exposure estimates across buffer sizes and greenness quantiles.
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Fig. 6. 
Greenness exposure misclassification relative to NAIP NDVI across buffer size and exposure 

quantiles. This plot series shows the proportion of participants that change positions in 

the categorical distribution of greenness exposure derived from Sentinel-2, Landsat 8, and 

MODIS data in relation to NAIP data. Plots are organized by buffer size in rows and number 

of classes of categorical variables in columns. The color legend indicates the magnitude of 

change in quantile positions relative to NAIP NDVI.
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Table 1.

Technical specifications of remote sensing instruments

Remote 
sensing data Instrument Platform

Band wavelength, μm
Ground pixel 
resolution, m

Overpass 
time2

Temporal range of images

Red Near 
Infrared Start date End date

NAIP1
Leica Geosystem’s 
ADS100/SH100 
digital sensors

Aircraft 0.62–
0.65 0.81–0.88 1 15:00–

19:00 3/7/2016 3/8/2016

Sentinel-2 Multispectral 
instrument Satellite 0.63–

0.70 0.73–0.93 10 15:41 7/7/2016 3/8/2016

Landsat 8 Operational Land 
Imager Satellite 0.64–

0.67 0.85–0.88 30 15:30 4/7/2016 22/7/2016

MODIS
Moderate 
Resolution Imaging 
Spectroradiometer

Satellite 0.62–
0.67 0.84–0.88 250 15:44 11/7/2016 27/7/2016

1
National Agricultural Imagery Program (NAIP).

2
Overpass time for Sentinel 2, Landsat 8, and Terra satellite obtained from Spectator.earth. Available at https://app.spectator.earth/. Overpass time 

for NAIP imagery derived from metadata.
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Table 2.

Summary statistics of greenness exposure distributions.

Buffer size NDVI data Min Max Median Mean SD Variance Skewness Kurtosis

50 m

NAIP −0.47 0.46 −0.05 −0.04 0.12 0.015 0.30 3.27

Sentinel-2 −0.05 0.79 0.27 0.28 0.13 0.017 0.42 3.14

Landsat 8 −0.42 0.89 0.42 0.43 0.14 0.019 0.26 3.05

MODIS 0.06 0.89 0.43 0.45 0.13 0.016 0.60 3.24

250 m

NAIP −0.37 0.46 −0.02 −0.02 0.12 0.014 0.45 3.41

Sentinel-2 −0.03 0.77 0.29 0.30 0.12 0.015 0.67 3.47

Landsat 8 0.08 0.87 0.44 0.45 0.13 0.015 0.58 3.32

MODIS 0.10 0.89 0.43 0.45 0.12 0.014 0.64 3.27

500 m

NAIP −0.35 0.46 −0.02 −0.01 0.12 0.014 0.41 3.17

Sentinel-2 0.01 0.76 0.29 0.31 0.12 0.015 0.62 3.24

Landsat 8 0.08 0.87 0.43 0.45 0.13 0.016 0.56 3.16

MODIS 0.11 0.88 0.44 0.45 0.12 0.014 0.61 3.19

1,000 m

NAIP −0.28 0.43 −0.01 0.00 0.12 0.015 0.24 2.73

Sentinel-2 0.03 0.75 0.31 0.31 0.13 0.017 0.37 2.78

Landsat 8 0.11 0.86 0.45 0.45 0.14 0.017 0.31 2.74

MODIS 0.14 0.86 0.44 0.46 0.12 0.015 0.42 2.89

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2024 December 16.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Jimenez et al. Page 23

Table 3.

Intra-class correlation coefficients (ICC) for continuous NDVI exposure variables

Absolute Agreement Consistency

Buffer size (m) ICC (A,1)ᶧ 95% CI ICC(C,1)ᶧ 95% CI

50 0.181** 0.025 – 0.356 0.799* 0.796 – 0.802

250 0.206** 0.029 – 0.401 0.942* 0.941 – 0.942

500 0.214** 0.031 – 0.414 0.964** 0.964 – 0.965

1,000 0.235** 0.035 – 0.443 0.978** 0.977 – 0.978

ᶧ
Model specifications by McGraw and Wong, 1996

**
Significant at p < 0.001.

*
Significant at p<0.01.

ICC <0.5 poor, 0.5–0.75 fair, 0.75–0.9 good, >0.9 excellent. Criteria from Koo and Li, 2016
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