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INTRODUCTION
Breast augmentation causes biomechanical implant-

breast tissue interactions, causing tissue deformation 

and stretching, depicted by a nonlinear stress–strain 
curve. This process, especially prominent with higher 
implant volumes, thin soft-tissue coverage, and changes in 
breast structures, is predisposed to complications such as  
“bottoming-out,” “double bubble,” tissue atrophy, and vis-
ible implant edges.1,2

Clinically significant capsular contracture is 
reported in up to 45% of cases after silicone implant 
placement, predominantly within the first-year post-
surgery necessitating implant exchange.3 Notably, 
a study highlighted an inverse correlation between 
polyurethane porous coating on silicone implants and 
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Summary: Current breast augmentation options face limitations and potential asso-
ciated complications. Implant-based augmentation introduces risks such as cap-
sular contracture and malpositioning, whereas fat grafting poses issues such as 
induration and infections, necessitating revisions. Tissue engineering, integrating  
3-dimensional (3D) printing and biomaterials science, aims to overcome these chal-
lenges. However, the clinical translation of these advancements remains challenging, 
with many approaches falling short in demonstrating the necessary volume regenera-
tion. A 28-year-old yoga instructor with a disinterest in traditional options sought an 
alternative solution. Custom-made biocompatible thermoplastic copolyester implants 
were proposed, approved, and implemented. Our approach utilized artificial intelli-
gence, magnetic resonance imaging, computer-aided design, and lattice structure engi-
neering for customizing the implant design. Three-dimensional printing and plasma 
technology surface treatment  created implants of 300 and 315 cm3 volumes, weighting 
around 33 g with biomimetic properties. Implants were placed in the subglandular 
plane; an 8-month follow-up revealed well-maintained implants without complications, 
except for a conservatively managed hematoma, and excellent cosmetic outcomes. 
Magnetic resonance imaging analysis revealed revascularization and new tissue forma-
tion within the implant, demonstrating tissue integration without complications. The 
study addresses biomechanical issues and foreign body reactions that cause capsular 
contracture in breast augmentation and proposes a novel 3D-printed implant with 
ultralight weight, tissue integrative porous structure, and biomimetic environments 
for scaffold-guided tissue regeneration. In conclusion, the presented solution shows 
promise in overcoming current breast augmentation limitations, demonstrating safety, 
biocompatibility, and patient satisfaction. Further adoption and long-term studies 
with larger cohorts are needed to validate its clinical effectiveness and feasibility. (Plast 
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contracture occurrence, suggesting the exploration of 
nontoxic, nonbiodegradable alternatives with similar 
properties.3

PATIENTS AND METHODS

Patient Characteristics
A 28-year-old woman, gravida 1, para 1, 167 cm in 

height, and 52 kg in weight, a yoga instructor, sought 
assistance for breast enhancement and correction of 
a slight asymmetry. Upon examination and discussion 
of available options, the patient expressed a disinter-
est in silicone implants, especially subpectoral or in 
a dual-plane manner, due to concerns about her thin 
physique and active lifestyle. The patient’s low body 
mass index, which corresponded to the 15th percen-
tile, ruled out the use of autologous fat grafting. No 
preexisting breast conditions or medical comorbidities 
were reported (Fig. 1). Given this scenario, a personal-
ized solution was needed. In response, we proposed, 
discussed, and obtained her approval for custom-made, 
lightweight, and biocompatible thermoplastic copoly-
ester (TPC) implants.

Ethical Approval and Informed Consent
The study adhered to the ethical principles of the 

Declaration of Helsinki. Written informed consent was 
obtained from the patient for the procedure of breast aug-
mentation using custom-made TPC implants, radiological 
evaluation at three months postoperatively, and for scien-
tific publication.

Designing Customized Implants
The design process integrated the artificial intel-

ligence software Crisalix (Crisalix S.A., Lausanne, 
Switzerland) and magnetic resonance imaging (MRI) to 
refine anatomical implant characterization. Proposed 
implant volumes (300 and 315 cc) were used to generate 
a computer-aided design file for the implant frame using 
SolidWorks (Dassault Systèmes, SolidWorks Corporation, 
Boston, MA).

The computer-aided design file was transferred to nTo-
pology (nTopology, Inc, New York, NY) for lattice struc-
ture design, aiming for lattice with mechanical properties 
similar to breast tissue. Standard tessellation language 

Takeaways
Question: Can tissue engineering bring forth a clinically 
applicable substitute to tackle the fundamental issues tied 
to the complications of the silicone implants currently 
used in breast augmentation?

Findings: Through the optimization of biomaterial selec-
tion, scaffold architecture mechanics and biological 
microenvironment, 300-cm3 thermoplastic copolyester 
porous implants weighing 33 g successfully regenerated 
the patient’s autologous tissue. This was achieved through 
a single-stage, cell-free procedure, as evidenced by the fat 
digital subtraction function in contrast-enhanced mag-
netic resonance imaging, with no clinical or radiological 
signs of capsule formation or other complications.

Meaning: Scaffold-assisted breast augmentation emerges 
as a promising innovation in future personalized plastic 
surgery, seamlessly replacing like with like.

Fig. 1. Preoperative photograph of the patient. Fig. 2. Postoperative result.
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files for the implants were produced after optimization 
and testing.

Fabrication of 3D-printed Implants
Standard tessellation language files were sent to 

a custom-made medical device manufacturer (Alive 
Biotechnology Solutions UK, London, England) for 3D 
printing and surface activation using plasma technology per 
ISO13485 (Medical Device Manufacturing Quality System). 
Medical-grade biostable TPC passed ISO10993-relevant bio-
compatibility tests (Alive Biotechnology Solutions UK) were 
used. Details of the chemical formulation, lattice structure, 
printing technology, and postprinting surface functional-
ization are confidential to the manufacturer. Implants were 
sterilized in an autoclave according to the manufacturer’s 
instructions. All processes adhered to the final document 
of the International Medical Device Regulators Forum 2020 
concerning personalized medical devices.4

Surgical Procedures
Under general anesthesia, 200 mL of fat tissue was lipo-

suctioned by superwet technique via power suction and 

divided into 2 sterilized jars. Implants were immersed in 
separate jars after discarding the oil layer, following man-
ufacturer’s instructions, to initiate surface functionaliza-
tion. An inframammary incision, subglandular dissection, 
and radial scoring for breast fat contact were performed. 
Implants were extracted from the lipoaspirate and inserted 
in the respective pockets after irrigation. Hemostasis was 
ensured, and wound closure was finalized without suction 
drains. (See Video [online], which displays custom-made 
TPC breast implant design, manufacturing, implantation, 
and clinical result 8 months postoperatively.)

MRI Analysis
Implant assessment at 3 months postoperatively using 

MRI involved a device with a minimum 1.5 T magnetic 
field strength and a dedicated coil. Pulse sequences for 
T1-weighted and T2-weighted imaging were incorporated. 
Water and fat saturation signals were selectively imaged 
using distinct pulse sequences. Intravenous paramagnetic 
contrast was recommended for enhanced implant evalua-
tion and identification of inflammatory processes linked 
to implant complications.5

Fig. 3. MRI of breast axial planes using the short-tau inversion recovery sequence, showing bilateral augmentation of both breasts by 
subglandular porous implants. soft-tissue regeneration within the pores of the implant is evidenced.
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RESULTS

Clinical Outcomes
The implants were well maintained during the 8-month 

follow-up period. No complications, such as wound dehis-
cence, infection, or soft tissue vascular compromise, were 
observed, only bilateral breast hematoma, conservatively 
managed with close monitoring. The cosmetic outcome 
was highly satisfactory for the patient, displaying no dis-
cernible breast asymmetry or implant malposition (Fig. 2; 
see Video [online]).

MRI-based Analysis
MRI analysis revealed evidence of revascularization 

and tissue regeneration within the implant. No signs of 

implant-associated complications were detected, showcas-
ing tissue integration without encapsulation (Figs. 3–4).

DISCUSSION
Recently, tissue engineering enabled a novel approach, 

integrating 3D printing technology with biomaterial sci-
ence for scaffold-guided tissue regeneration. This involves 
careful modulation of biomaterials, architecture, surface 
chemistry, and mechanical properties. Despite recent 
promising research, challenges remain in clinical trans-
lation. Various published approaches to adipose tissue 
engineering are defective in demonstrating the neces-
sary volume regeneration for clinically feasible breast 
augmentation.6,7

Fig. 4. Postcontrast sagittal t1-weighted fat suppression images of the right breast, showing the porous structure of the implant and 
demonstrating the suppressed signal of the contents after digital fat subtraction, thus indicating fat regeneration within the pores of the 
implant.
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Thermoplastic elastomers have well-proven safety and 
biocompatibility and utilization in vascular tissue engi-
neering and synthetic vascular grafts.8 Lattice structures 
are promising in engineering tissue scaffolds, with control-
lable mechanics and tunable functions.9 Plasma surface 
modification is a powerful tool to increase the bioactiv-
ity and biocompatibility of medical implants by increasing 
the hydrophilicity of the surface and functional coating 
deposition.10

The newly proposed 3D-printed implant addresses 
concerns of breast augmentation through its ultralight 
weight design (33 g), significantly lighter than the 300-
cm3 silicone implant (approximately 350 g), reducing 
stress on the soft-tissue envelope and lowering the risk 
of malposition by soft-tissue attenuation.1,2 Its engi-
neered porous structure, with full interconnection 
between pores, creates a persistent porous implant–tis-
sue interface, promoting tissue integration instead of 
encapsulation.3,6,7 Functioning as a scaffold, it provides 
a biomimetic environment, supporting vasculariza-
tion, tissue regeneration, and sequential remodeling.6,7 
Manufactured without a gel component, it eliminates 
the risk of rupture.

In terms of study limitations, we need a larger number 
of cases and a longer follow-up period to assess the long-
term safety, like biofilm formation and managing com-
plications that may necessitate explantation with bloody 
dissection due to tissue integration.

CONCLUSIONS
The presented solution is the first successful transla-

tion of scaffold technology for breast augmentation in a 
real clinical scenario; it represents a promising tool for 
personalized plastic surgery, after demonstrating safety 
and clinical adaptability, along with patient satisfaction 
with the shape and the implant feel.
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