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The present study utilized large-scale genome-wide association studies (GWAS) summary data (731 immune cell subtypes and
three primary sclerosing cholangitis (PSC) GWAS datasets), meta-analysis, and two PSC transcriptome data to elucidate the pivotal
role of Tregs proportion imbalance in the occurrence of PSC. Then, we employed weighted gene co-expression network analysis
(WGCNA), differential analysis, and 107 combinations of 12 machine-learning algorithms to construct and validate an artificial
intelligence-derived diagnostic model (Tregs classifier) according to the average area under curve (AUC) (0.959) in two cohorts.
Quantitative real-time polymerase chain reaction (qRT-PCR) verified that compared to control, Akap10, Basp1, Dennd3, Plxnc1, and
Tmco3 were significantly up-regulated in the PSC mice model yet the expression level of Klf13, and Scap was significantly lower.
Furthermore, immune cell infiltration and functional enrichment analysis revealed significant associations of the hub Tregs-related
gene with M2 macrophage, neutrophils, megakaryocyte-erythroid progenitor (MEP), natural killer T cell (NKT), and enrichment
scores of the autophagic cell death, complement and coagulation cascades, metabolic disturbance, Fc gamma R-mediated
phagocytosis, mitochondrial dysfunction, potentially mediating PSC onset. XGBoost algorithm and SHapley Additive exPlanations
(SHAP) identified AKAP10 and KLF13 as optimal genes, which may be an important target for PSC.
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INTRODUCTION
Primary sclerosing cholangitis (PSC) is a chronic, progressive liver
disease due to a combination of immunological, inflammatory,
and genetic causes, ultimately resulting in liver failure [1]. There is
a global variance in the incidence and prevalence of PSC exhibit
global variation, with rates ranging from 0.07 (Spain) to 1.3
(Norway) cases per 100,000 people per year for incidence, and
from 0.2 (Spain) to 13.6 (US) cases per 100,000 persons for
prevalence [2]. Roughly 70–80% of PSC patients also suffer from
inflammatory bowel disease, which is a risk factor for cholangio-
carcinoma and colorectal cancer [3]. The clinical manifestations
and course of PSC are varied. After excluding other causes, the
diagnosis of PSC relies mainly on bile duct imaging and liver
histopathology. While PSC has a more indolent course in some,
the diagnosis carries significant long-term health implications,
with a median transplant-free survival of 13.2 years [4]. However,
because of advancements in imaging technology, less invasive
diagnostic methods utilizing magnetic resonance (MR) have
replaced invasive procedures like endoscopic retrograde cholan-
giopancreatography and liver biopsies for the safe and accurate
identification of PSC [5]. Further optimization of the diagnostic
method may be achieved by the identification of cost-effective
PSC-specific biological markers in the future. Additionally, there

are currently no effective drugs to treat PSC, and liver
transplantation is the only effective treatment. Hence, diagnosing
PSC, determining individualized risk, discovering treatment
targets, and improving our knowledge of its pathophysiology
require the urgent identification of new biomarkers.
There are several theories about the etiology of PSC, but the

most popular one is that it is an immune-mediated illness that is
initiated by an environmental stimulus, which ultimately results in
hepatocyte damage and inflammation in members of the
population who are genetically susceptible to the condition [6].
A significant correlation was observed between immune cell
infiltration and the progression of fibrosis and damage to
cholangiocytes [7, 8]. Several different types of immune cells,
such as neutrophils and macrophages, have been found close to
the bile ducts of individuals who have PSC [9]. One of the most
distinguishing features of PSC is the presence of T cell infiltration;
nevertheless, the composition and roles of these infiltrating T cells
are observed to differ [9, 10]. For instance, Schoknecht et al. found
that CD4+ T cells from PSC patients exhibited decreased
apoptosis sensitivity but not CD8+ T cells in peripheral blood
[11]. In their study, Lampinen et al. found that patients with PSC
exhibited a greater proportion of CD8+ T cells that were positive
for CXCR3, but they had fewer CD25-positive CD4+ T cells [12].
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There is a certainty that these few observational studies were
predisposed to reverse causation and confounding bias. It is
important to ascertain if such links indicate spurious correlations
or causal relations as a result of bias. Randomized controlled trials
(RCTs) are important in determining if targeting specific immune
cells can lead to the discovery of novel avenues for treatment.
There is an unmet need to further understand the immune cellular
composition that affected PSC and how it underlies disease
pathogenesis. In light of the lack of RCTs, Mendelian randomiza-
tion (MR), conquers the bias because of two factors (reverse
causation and confounding). Recently, MR has been a markedly
acknowledged technique to assess more robust causal inferences
between exposure and clinical outcomes by utilizing genetic
variants like instrumental variables (IVs) [13].
Additionally, research on PSC is limited because of the

following reasons: the cholangiocyte is challenging to obtain;
there are relatively few of these cells in the liver; in vitro culture
techniques are unstable; and samples are taken from patients
with advanced illness. The availability of high-throughput RNA
sequencing datasets provides an unprecedented opportunity to
discover novel biomarkers. With the development of bioinfor-
matics, massive machine-learning approaches have been devel-
oped, and become a routine tool for selecting feature variables
and constructing a predictive model. At present, LASSO-Cox is
the mainstream algorithm used for generating massive pre-
dictive signatures [14, 15]. The uniqueness and inappropriate-
ness of certain modeling methodologies have resulted in some
models with significant inadequacies, which restricts their use in
clinical contexts. The discovery of novel biomarkers for the
application of transcriptome data combined with advanced
machine-learning (ML) algorithms for PSC is limited. An
integrated approach based on a combination of various ML
algorithms that can fit a consensus model for diagnosing PSC
has not yet been exploited.
Here, firstly, we executed MR analyses to establish the causal

relationships between the 731 immune cells and PSC, from the
extensive genome-wide association studies (GWAS) to date.
Replicating the findings in another PSC GWAS and then pooled
with meta-analysis. Through a search of the Gene Expression
Omnibus (GEO) database, the expression profiles of two PSC
mRNAs (GSE119600, and GSE159676) were downloaded. IOBR
(CIBERSORT, TIMER, xCell, MCPcounter, ESTIMATE, EPIC, Quantiseq)
and ssGSEA were used to quantify immune cell infiltration levels.
Weighted gene co-expression network analysis (WGCNA) was
applied to identify significant Treg modules in two GEO cohorts.
Then, we developed a novel machine learning framework that
incorporated 12 machine learning algorithms and their 107
combinations to construct a consensus Tregs classifier and
validate it in another cohort. The hub Tregs-related genes’
expression in the PSC mice model was confirmed utilizing qRT-
PCR. Subsequently, the crucial immune cell infiltration and
molecular pathways implicated in the initiation of PSC and their
association with hub Tregs-related genes were explored. Lastly,
the SHapley Additive exPlanations (SHAP) and XGBoost algorithm

were used to identify optimal Tregs-related genes, and the Mantel
test was executed to investigate the link between pivotal
molecular pathways. We hypothesize that the developed Tregs
classifier may effectively diagnose PSC. Moreover, the discovery of
the hub Tregs-related gene, pivotal molecular pathways, and
immune cells will provide insights into the pathogenesis
mechanisms of PSC, uncovering druggable targets for its
treatment.

MATERIALS AND METHODS
GWAS Data sources for PSC and immune cell traits
Three large-scale GWAS data on PSC (GWAS ID: ieu-a-1112, finn-b-
K11_CHOLANGI_STRICT, finn-b-K11_CHOLANGI) were obtained from
the IEU OpenGWAS project (https://gwas.mrcieu.ac.uk/). Two PSC
GWAS datasets (GWAS ID: ieu-a-1112, and finn-b-K11_CHOLANGI_S-
TRICT) were set as discovery cohorts, another PSC GWAS dataset (GWAS
ID: finn-b-K11_CHOLANGI) as a validation cohort. Table 1 highlights
basic data extracted from PSC GWAS datasets.
GWAS summary statistics of immunological traits are available publicly

from the GWAS Catalog (accession numbers GCST90001391 to
GCST90002121) [16]. This dataset includes 731 distinct immune pheno-
types, such as morphological parameters (MP) (n= 32), relative cell (RC)
counts (n= 192), absolute cell (AC) counts (n= 118), and median
fluorescence intensities (MFI) expressing surface antigen levels (n= 389)
were incorporated. In particular, the RC, AC, and MFI features have B cells,
myeloid cells, dendritic cells (DCs), monocytes, mature stages of T cells,
TBNK (T cells, B cells, natural killer cells), and Treg panels, whereas MP have
TBNK and DC panels. Table 1 highlights the basic data collected via GWAS
on immune cells.
The STROBE-MR (Strengthening the Reporting of Observational Studies

in Epidemiology using Mendelian Randomization) checklist was completed
for this observational study (Supplementary material 1).

Selection of IVs and data harmonization
In MR, the IVs indicate genetic variations that are highly related to the
exposure and are not confounded by other factors that impact the
outcome, which may adequately suppress the effect of confounders. For
an MR study to be valid, the IVs ought to fulfill three essential criteria: (1)
SNPs markedly (P < 5 × 10−8 or P < 1 × 10−5) linked to exposures are
utilized as IVs, to eliminate the impact of weak IV bias, we incorporated
SNPs whose F-statistic was >10; (2) Independence Assumption: Significant
confounding factors, such as those related to the exposure and the
corresponding outcome, exhibit no link to SNPs (IVs); (3) Exclusivity
Assumption: SNPs (IVs) influence outcome directly susceptibility via
exposure and are not otherwise linked to outcome.
SNPs linked to immunological traits were determined at the

P < 1 × 10−5, as used in previous MR studies (given that only a small
number of SNPs attained a degree of genome-wide significance
(P < 5 × 10−8)) [17]. Further, the examination of the linkage disequili-
brium (LD) among SNPs relied on 1000 Genomes Project-obtained
European ancestry reference information. We picked SNPs utilizing an
LD coefficient (r2 < 0.001) and situated over 10 Mb, to identify SNPs
with independent genetic effects.
Additionally, in cases where there were no common SNPs between the

outcome and exposure, proxies SNPs in LD (r2 ≥ 0.8) were added [18]. To
eliminate the impact of weak IV bias, we incorporated SNPs whose
F-statistic was <10 (a measurement of these IVs’ strength).

Table 1. Genome-wide association studies summary statistics datasets used for genetic analyses.

GWAS ID Year Consortium Population Ncase/Ncontrol Number of SNPs Phenotypes

ieu-a-1112 2017 IPSCSG European 2871/12,019 7,891,603 PSC

finn-b-K11_CHOLANGI_STRICT 2021 FinnGen European 238/207,873 16,380,417 PSC

finn-b-K11_CHOLANGI 2021 FinnGen European 778/195,144 16,380,407 PSC

ebi-a-GCST90001391 to ebi-a-
GCST90002121

2020 NA European Sample size:
3757

Nearly
22,000,000

Immune cells

GWAS genome-wide association studies, SNP single-nucleotide polymorphism, PSC primary sclerosing cholangitis, IPSCSG International PSC Study Group,
NA not available.
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Primary MR analysis
MR analysis with package TwoSampleMR (version 0.5.6) was applied to
ascertain the causal relationships of immunological traits with PSC in
discovery and validation cohorts. Regarding characteristics influenced by
two or more SNPs, the random-effects inverse variance weighted (IVW)
models, which have stable, as well as, balanced pleiotropic impacts, were
utilized as the primary method to determine the causal effects.
Additionally, the effect estimates for traits controlled by a single SNP
were derived utilizing the Wald ratio. The MR estimates are presented as
odds ratio (OR) with a 95% CI for the dichotomous data or beta value with
standard error (SE) for the continuous variables. To improve the reliability
and strength of the causal relationship, we take the intersection of the
results of two discovery cohorts.

MR sensitivity and heterogeneity analysis
To ascertain if MR impact estimates are resilient to possible invalid genetic
variants, we executed MR-Egger regression, weighted median (WM),
simple mode, and weight mode as sensitivity analyses. In comparison to
the IVW approach, which presumes that all the SNPs are valid IVs when the
Instrument Strength must be Independent of the Direct Efect (InSIDE)
assumption holds, the MR-Egger regression test could generate a
consistent estimate even if all the genetic instruments are invalid. The
WM model stands out as a robust method, capable of availing consistent
estimate results when over half of the genetic instruments are deemed
valid. For any possible heterogeneity, we applied Cochran Q statistic
derived from the MR-Egger regression and IVW approaches. They were
visualized using funnel plots and MR-Egger intercept was utilized to
examine horizontal pleiotropy; a threshold of P < 0.05 for both was utilized.
In addition, MR Steiger filtering was utilized to ascertain the direction of
causation between exposure and outcome. Finally, we performed a leave-
one-out (LOO) analysis to re-calibrate the overall effect size and explored
whether the association can be affected by a single SNP, by eliminating
one exposure-linked SNP at a time.

Meta-analysis pooled the results of MR
To further improve the reliability and strength of the causal relationship,
we performed a meta-analysis to pool the significant results of MR in
discovery and validation cohorts. OR with a 95% CI was reported to
estimate the association between immunological traits and PSC risk.
Heterogeneity was assessed through the utilization of three methods:
visually inspecting the forest plots, assessing the diversity (D2) estimates,
and computing the inconsistency statistics (I2). We employed a fixed
effects model when I2 was equal to zero, and a combination of fixed and
random effects models when I2 was greater than zero. We reported the
most conservative estimate being the point estimate closest to no effect or
the estimate with the widest CI.

Transcriptome dataset collection, sample selection, and
preprocessing
The GEO (http://www.ncbi.nlm.nih.gov/geo) database was systematically
searched to find PSC-relevant transcriptome datasets from February 2001
through February 2024. The transcriptomic profiling datasets needed to
fulfill the following criteria: (a) organism: Homo sapiens; (b) expression
profiling through high-throughput sequencing or array. Lastly, two GEO
datasets (GSE119600: 47 healthy controls and 45 PSC samples; and
GSE159676: 6 healthy tissues and 12 PSC samples) were included for
quantitative and qualitative analyses. For GEO datasets, a robust multi-
array average analysis was implemented, including quantile normalization,
background correction, and summarization.

Evaluation of immune cell infiltration
We used eight different algorithms to infer PSC patients’ immune cell
infiltration in two GEO cohorts. These algorithms including CIBERSORT,
TIMER, xCell, MCPcounter, ESTIMATE, EPIC, and Quantiseq were imple-
mented using the R package ‘IOBR’ [19]; while ssGSEA was performed to
quantify the infiltrating immune cells [20]. Additionally, the relative
abundance of Tregs and B cells was compared between healthy/control
and PSC groups.

WGCNA
By constructing a weighted gene co-expression network in two GEO
cohorts utilizing the R package “WGCNA” (v 1.71), it was feasible to identify

functional gene modules that correlated strongly with the proportion of
Tregs and were thus appropriate for additional screening [21]. Before
establishing a scale-free topology, the soft thresholding power (β= 1–20)
was ascertained. Following the generation of the weighted adjacency
matrix, it was transformed into a topological overlap matrix (TOM).
Furthermore, the dynamic tree-cutting method was implemented to
examine different modules clustered according to gene similarity, after
obtaining the dissTOM for hierarchical clustering. Subsequently, we related
the identified modules to two traits (B cells and Tregs proportion). For
further analysis, genes from the module that exhibited a significant
correlation with Tregs were selected.

Identification of Tregs-related genes and functional
enrichment analysis
Standardized data including GSE119600 and GSE159676 datasets between
healthy and PSC samples, were subjected to a variance analysis utilizing
the NetworkAnalyst online Gene Expression Table (https://
www.networkanalyst.ca/). Then, we take the overlap of differentially
expressed genes (DEGs) and significant Tregs module genes in two PSC
cohorts, defined as Tregs-related genes, and visualized with the UpSetR
package. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and
Genomes) enrichment analyses were conducted on the Treg-related genes
utilizing the clusterProfiler R package.

Identification and construction of Tregs classifier through
multiple machine learning methods
To find robust hub Tregs-related genes, ML techniques with 5-fold cross-
validation based on disease status were applied to two PSC cohorts.
Among these methods were support vector machine (SVM) for feature
variable selection and modified LASSO penalized regression. The hub
Tregs-related genes were derived from the overlapping of the results
obtained from SVM, and LASSO.
Additionally, the following procedure was carried out to develop a

consensus diagnostic model for PSC: (1) We began by combining 12
classical algorithms: Stepglm, gradient boosting machine (GBM), Linear
Discriminant Analysis (LDA), eXtreme Gradient Boosting (XGBoost),
NaiveBayes and SVM, random forest (RF), glmBoost, LASSO, Partial Least
Squares Regression for Generalized Linear Models (plsRglm), ridge
regression, elastic network (Enet). Of these, LASSO, RF, Stepglm, and
glmBoost have feature selection capabilities. In addition, 107 algorithm
combinations were constructed as prediction models utilizing the leave-
one-out cross-validation (LOOCV) framework (2). Next, for the training set,
we utilized the GSE119600 in PSC and employed these 107 combinations
to generate classifiers independently using hub Tregs-related genes. (3)
Lastly, in the testing cohorts (GSE159676), the Tregs score was calculated
for each cohort by employing the model that was acquired in the training
cohort. The best consensus diagnostic model for PSC was ultimately
determined by averaging the area under the curve (AUC) of the two
cohorts.

Diagnostic value, and clinical usefulness of Tregs classifier
Receiver operating characteristic (ROC) analysis was executed to examine
the diagnostic capability of the Tregs classifier in two PSC datasets.
Principal component analysis (PCA) [22], utilizing hub Tregs-related gene
expression levels, was executed on two PSC datasets. Ultimately, the
clinical applicability of the Tregs classifier was determined via decision
curve analysis (DCA).

PSC animals model
Hunan Slack Jingda Laboratory Animal Co. Ltd. supplied the BALB/c mice
that were 6–8 weeks old. BALB/c mice were randomly assigned to one of
the three groups: the control group (n= 6), the 3,5-diethoxycarbonyl-1,4-
dihydrocollidine (DDC)-induced PSC group (n= 6). All animal experiments
received approval from the Ethical Committee on Animal Experimentation
of the Central Hospital of Hengyang City (approval number: 2023-10-40).
Animal experiments were carried out under specific pathogen-free
conditions. We chose the DDC diet to develop a PSC mice model,
considering that it well mimics the human PSC, and reproduces the
gradual progression of the disease [23]. During the experiments, the mice
were anesthetized with 2% isofluorane in 95% oxygen. Upon completion
of each study, the mice were anesthetized by with 2% isofluorane in 95%
oxygen and died of spinal dislocation. All the methods were in accordance
with relevant guidelines and regulations.
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Tissue samples and quantitative real-time polymerase chain
reaction (qRT-PCR)
Liver tissue samples were acquired from PSC and control groups, and
preserved at −80 °C for subsequent in vitro experiments. Total RNA was
isolated as per the provided guidelines using Trizol (Invitrogen). Reverse
transcription of RNA was executed utilizing the RevertAid RT Reverse
Transcription Kit (Thermo Scientific). Quantitative PCR was conducted utilizing
PowerUp™ SYBR™ Green Master Mix (Thermo Scientific), with Gapdh serving as
the internal standard. Quantitative reverse transcription-PCR was executed
utilizing the ABI 7500 real-time PCR system (Applied Biosystems, Foster City,
CA, USA). Subsequently, fold change in gene expression was examined using
the 2-ΔΔCt method. Gene-specific PCR primers are provided in Supplementary
Material 2.

Expression levels, and correlation pattern of hub Tregs-
related genes
The hub Tregs-related gene mRNA expression levels in PSC and control
groups were compared and verified in two GEO datasets and the PSC mice
model. Additionally, hub Tregs-related genes in two GEO datasets were
subjected to correlation analysis.

Analyses of immune cell infiltration in PSC and its relationship
with hub Tregs-related genes
Based on the results of the previous eight different algorithms which calculate
the level of immune cell infiltration, we compared the scores of immune,
stromal, estimate, and microenvironment in two PSC cohorts. In addition,
Spearman correlation analyses were conducted to examine the association of
hub Tregs-related genes with immune cells.

Discovery of potential mechanisms in the development and
progression of PSC and its relationship with hub Tregs-
related genes
ssGSEA analysis was performed on several representative gene sets (immune/
inflammatory/cell death-related pathways) [20] in two PSC cohorts. Then, the
gene set variation analysis (GSVA) [24] was carried out to discern the signaling
pathways according to the KEGG gene sets (c2.cp.kegg.v7.4.symbols.gmt), GO
gene sets (c5.all.v2023.2.Hs.symbols.gmt), and HALLMARK gene sets
(h.all.v2023.2.Hs.symbols.gmt) obtained from the Molecular Signatures Data-
base. In the analysis of signaling pathways, the differential enrichment score
between the control and PSC groups was investigated. Following this,
correlation analysis was executed to further elucidate the link between the
Tregs-related genes and common key biological pathways.

XGBoost and SHAP
Recently, the XGBoost algorithm has gained popularity owing to its excellent
performance in other machine learning (such as k-nearest neighbor algorithms,
logistic regression, Lasso, RF, and SVM) competitions [25]. We applied the
XGBoost algorithm to construct a diagnostic model for PSC based on Tregs-
related genes. Subsequently, the impact of each feature was interpreted using
SHAP values; this provided a clear picture in the form of summary and bar
plots that illustrated the significance and ordered the features in order of
importance. Clear insights into parameters determining the incidence of PSCs
were provided by this method, which facilitated the integration of statistical
analysis with advanced ML. Finally, the Mantel test was applied to investigate
the correlation between optimal Tregs-related genes and pivotal biological
pathways.

Statistical analysis
Statistical analysis was executed utilizing RevMan v5.3 (The Cochrane
Collaboration, Copenhagen, Denmark), GraphPad Prism 9, SPSS 22, and R
software (R v4.3.1). Continuous variables were compared utilizing Student’s
t tests, Mann–Whitney, Wilcoxon, or Kruskal–Wallis tests with two-tailed
analyses based on the distribution of the variables. The statistical
significance criterion was set at P < 0.05 unless specific P values were
provided.

RESULTS
Genetic instruments for immune cells
By applying the indicated significance criterion (P < 1 × 10−5),
harmonization, LD clumping, and F-statistics >10, genetic IVs for

731 immune cells were identified. Consequently, our study
certainly exhibited negligible instrument bias.

Causal effects of immunological traits on PSC
When examining the causal effects of immunological traits on PSC,
we screened 8604 and 19,792 SNPs as IVs from 731 immune cells for
PSC ieu-a-1112 and finn-b-K11_CHOLANGI_STRICT, respectively
(Supplementary material 3 and 4). A total of 40 immunophenotypes
(ieu-a-1112) (Supplementary material 5 and Fig. S1) and 31
immunophenotypes (finn-b-K11_CHOLANGI_STRICT) (Supplementary
material 6 and Fig. S2) yielded causal effects on PSC using the IVW
method (P< 0.05) (Table 2 and Fig. S1). Sensitivity analysis showed
that 36 immunophenotypes (ieu-a-1112) (Supplementary material 5
and Fig. S3) and 28 immunophenotypes (finn-b-K11_CHOLANGI_S-
TRICT) (Supplementary material 6 and Fig. S4) using the IVW method
had the same direction as the findings of MR-Egger regression, WM,
simple model, and weight model. To further improve the reliability
and strength of the causal interrelationship, we take the intersection
of two PSC GWAS (ieu-a-1112 and finn-b-K11_CHOLANGI_STRICT)
and consider the direction of action of the immunological traits. As a
result, three immunophenotypes (CD39+ resting Treg % CD4 Treg
cell, CD3 on CD39+ secreting Treg cell, BAFF-R on IgD- CD38dim B
cell) were causally associated with PSC (Fig. 1). In the PSC ieu-a-1112
cohort, Host-genetic-driven increase in CD39+ resting Treg % CD4
Treg cell (OR= 1.05, 95% CI= 1.00–1.11, PIVW= 0.049), BAFF-R on IgD-
CD38dim B cell (OR= 1.31, 95% CI= 1.01–1.72, PIVW= 0.039)
significantly increases PSC risk, while genetically predicted higher
relative abundances of CD3 on CD39+ secreting Treg cell (OR= 0.92,
95% CI= 0.85–0.99, PIVW= 0.041) exhibited significant protective
effects on PSC (Table 2 and Fig. 2A). Similar results were also observed
in the PSC finn-b-K11_CHOLANGI_STRICT cohort (Table 2 and Fig. 2B).
There was no obvious heterogeneity in the Cochran Q test

utilizing MR-Egger regression and IVW (all P > 0.05, Table 2,
Supplementary material 7 and 8, Figs. S5 and S6). The absence of
any deviation from zero in the MR-Egger regression intercepts
indicates the lack of horizontal pleiotropy (P > 0.05 for all
intercepts, Table 2, Supplementary material 9 and 10). Moreover,
according to the results of the MR Steiger test, the SNP selection
was valid, confirming the hypothesized causal direction of
immunophenotypes’s impact on PSC (all P > 0.05). Lastly, the
LOO analyses ascertained that none of the detected causal
interrelationships were driven by any individual IV (Figs. S7 and
S8).

Replicating the findings in another PSC GWAS and then
pooling with meta-analysis
To further clarify the reliability of causality, we validate these
findings in another PSC GWAS (finn-b-K11_CHOLANGI) (Supple-
mentary material 11). As a result, the abundances of CD39+
resting Treg % CD4 Treg cell and BAFF-R on IgD- CD38dim B cell
remain positively associated with PSC risk, and CD3 on CD39+
secreting Treg cell remains negatively correlated with PSC
occurrence but did not render significant alteration (Supplemen-
tary material 12). Interestingly, we performed a meta-analysis to
pool the results of three PSC GWAS that the Host-genetic-driven
increase in BAFF-R on IgD- CD38dim B cell (OR= 1.27, 95%
CI= 1.07–1.50, P= 0.005, I2= 0), CD39+ resting Treg % CD4 Treg
cell (OR= 1.06, 95% CI= 1.02–1.09, P= 0.001, I2= 0) significantly
increases PSC risk, while genetically predicted higher relative
abundances of CD3 on CD39+ secreting Treg cell (OR= 0.91, 95%
CI= 0.85–0.96, P= 0.002, I2= 0) exhibited significant protective
effects on PSC (Fig. 2C–E).

Analysis of the infiltration level of Tregs and B cells in PSC
transcriptome data
In the GSE119600 and GSE159676 cohorts (Fig. 3A–H), Tregs were
more abundant in the PSC group relative to the control group,
according to CIBERSORT, ssGSEA, and Quantiseq algorithms.
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Considering that the xCell algorithm inferred that the abundance
of Tregs was extremely low, no significant difference existed
between the two groups. However, in the GSE159676 cohort
through the CIBERSORT algorithm alone, infiltrating B cells were
relatively richer in the PSC group than the control group, and no
significant variations were found in other cohorts and methods
(Fig. 3I–P). These underscored the pivotal role of Tregs proportion
imbalance in the occurrence of PSC.

WGCNA
To identify significant Treg module genes, we performed WGCNA
in two PSC datasets. The first step was to calculate the pairwise
gene correlation to create a similarity matrix. We designed a scale-
free network after testing soft threshold power (β) from 1 to 20.
Second, in the GSE119600 and GSE159676 cohorts, respectively,
the optimal value β attained was 13 and 4 and applied in
converting the similarity matrix into an adjacent matrix (Fig. 4A and

ieu-a-1112

BAFF-R on IgD- CD38dim B cell +

CD3 on CD39+ secreting Treg cell -

CD39+ resting Treg % CD4 Treg cell +

finn-b-K11_CHOLANGI_STRICT

BAFF-R on IgD- CD38dim B cell +
Basophil Absolute Count
CCR2 on myeloid DC
CD11b on basophil
CD14+ CD16+ monocyte AC
CD19 on IgD- CD24- B cell
CD19 on IgD+ CD24- B cell
CD19 on IgD+ CD38- B cell
CD25 on IgD- CD38- B cell
CD28- CD8+ T cell AC
CD28 on CD28+ CD45RA- CD8+ T cell
CD28 on CD39+ secreting Treg cell
CD28 on CD45RA- CD4 not Treg cell
CD28 on resting Treg cell
CD3 on CD28+ CD45RA- CD8+ T cell
CD3 on CD28+ CD45RA+ CD8+ T cell
CD3 on CD39+ activated Treg cell
CD3 on CD39+ CD4+ T cell
CD3 on CD39+ resting Treg cell
CD3 on CD39+ secreting Treg cell -

CD4 on CD4 Treg cell
CD4+ %T cell
CD4+ CD8dim %leukocyte
CD45 on HLA DR+ T cell
CD45RA on CD39+ resting Treg cell
CD62L- monocyte AC
CD64 on CD14+ CD16+ monocyte
CD8dim NKT %T cell
CD4-CD8- NKT %lymphocyte
CD4-CD8- NKT %T cell
HLA DR on HLA DR+ CD8+ T cell
HLA DR on CD33dim HLA DR+ CD11b-

HLA DR+ NK %NK
T cell AC

HLA DR+ NK% CD3- lymphocyte

BAFF-R on IgD- CD38dim B cell +
CD127- CD8+ T cell %CD8+ T cell
CD127 on CD8+ T cell
CD20 on IgD+ CD38- naive B cell
CD20 on memory B cell
CD20 on unswitched memory B cell
CD25 on CD39+ CD4+ T cell
CD25++ CD8+ T cell %T cell
CD27 on CD20- CD38- B cell
CD28- CD25++ CD8+ T cell AC
CD28 on CD28+ CD45RA+ CD8+ T cell
CD3 on CD39+ secreting Treg cell -
CD38 on plasma blast-plasma cell

CD3 on CD4 Treg cell
CD3 on HLA DR+ CD4+ T cell
CD3 on naive CD8+ T cell
CD3 on secreting Treg cell
CD38 on IgD+ CD38dim B cell
CD39+ resting Treg % CD4 Treg cell +
CD39+ resting Treg cell AC
CD39+ secreting Treg cell AC
CD4 on effector memory CD4+ T cell
CD62L- HLA DR++ monocyte %monocyte
CD62L- myeloid DC AC
Central memory CD4-CD8- T cell AC
Central memory CD4+ %T cell
Central memory CD4+ AC
FSC-A on CD8+ T cell
HLA DR on CD14- CD16+ monocyte
HLA DR on DC
HLA DR on plasmacytoid DC
Memory B cell AC
Naive CD4+ T cell %CD4+ T cell

CD39+ resting Treg % CD4 Treg cell +
CD4 on CD28+ CD4+ T cell

Terminally differentiated CD4+ T cell AC

Fig. 1 Venn diagram displays the shared immune cells subtypes in two primary sclerosing cholangitis (PSC) GWAS datasets (GWAS ID:
ieu-a-1112, and finn-b-K11_CHOLANGI_STRICT). + represent positive correlation, - represent negative correlation, text with color shading
represent the result direction of inverse variance weighted (IVW) method exists inconsistent with those of sensitivity analysis (MR-Egger
regression, weighted median, simple model and weight model).
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S9A). Furthermore, a negative correlation (R2= 0.69, slope=−1.14
in GSE119600; R2= 0.73, slope=−1.41 in GSE159676) between
log10(k) and log10 (p(k)) was shown in Fig. 4B and S9B,
symbolizing the proximity of the transformed adjacent matrix to
a scale-free network for further analysis. Thirdly, the adjacent
matrix was utilized to create the TOM for dynamic tree-clustering
on genes (Fig. 4C and S9C), enabling the identification of gene
modules containing Tregs. Two characteristics—B cells and Tregs
—were correlated with the identified gene modules. As demon-
strated in Fig. 4D and S9D, the ME cyan, ME dark gray, ME dark
turquoise, and ME light cyan modules were positively correlated
with Tregs (R ≥ 0.69, P ≤ 0.002) in GSE119600 and GSE159676
cohorts, respectively. Furthermore, an intramodular analysis was
conducted, which revealed statistically significant positive correla-
tions between gene significance (GS) and module membership
(MM) in the ME dark gray (R= 0.76, P < 0.001) (Fig. 4E), ME dark
turquoise (R= 0.76, P < 0.001) (Fig. 4F), ME cyan (R= 0.73,
P < 0.001) (Fig. 4G) and ME light cyan modules (R= 0.68,
P < 0.001) (Fig. S9E). Lastly, the genes in the ME cyan module
(n= 346), ME dark gray module (n= 1328), ME dark turquoise

module (n= 1553) in the GSE119600 cohort, and ME light cyan
module (n= 1304) in GSE159676 cohort were deemed to be
significant Tregs module genes for later analysis.

Identification of Tregs-related genes and functional
enrichment analysis
The following DEGs were detected utilizing the NetworkAnalyst
online-Gene Expression Table: 1908 DEGs in GSE119600, and 1860
in GSE159676 datasets, respectively. Then, we take the intersec-
tion of the results of DEGs and significant Tregs module genes in
two datasets, and a total of 65 genes were determined to be
Tregs-related genes in PSC (Fig. 5A). Subsequently, the GO term
enrichment analysis for Tregs-related genes demonstrates the top
five clusters with significant enrichment in cellular components
(CCs), molecular functions (MFs), and biological processes (BPs)
(Fig. 5B), including the regulation of small GTPase mediated signal
transduction, the extrinsic component of cytoplasmic side of
plasma membrane, GTPase regulator activity and so on. As for the
KEGG, they were primarily involved in endocytosis, Fc gamma
R-mediated phagocytosis, etc (Fig. 5C).

Fig. 2 MR and meta-analysis evaluated the effects of 3 immunophenotypes (CD39+ resting Treg % CD4 Treg cell, CD3 on CD39+
secreting Treg cell, BAFF-R on IgD- CD38dim B cell) on PSC. A Forrest plot showing causal effect of genetically predicted immunological
traits on PSC (GWAS ID: ieu-a-1112). B Forrest plot showing causal effect of genetically predicted immunological traits on PSC (GWAS ID: finn-
b-K11_CHOLANGI_STRICT). *p < 0.05; **p < 0.01; ***p < 0.001. C Pooled odds ratio (OR) of BAFF-R on IgD- CD38dim B cell and PSC risk in three
PSC GWAS datasets. D Pooled odds ratio (OR) of CD3 on CD39+ secreting Treg cell and PSC risk in three PSC GWAS datasets. E Pooled odds
ratio (OR) of CD39+ resting Treg % CD4 Treg cell and PSC risk in three PSC GWAS datasets.
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Identification and construction of Tregs classifier through
multiple machine learning approaches
To identify hub Tregs-related genes during PSC in GSE119600
(Fig. 5D–F) and GSE159676 (Fig. 5G–I) cohorts, the expression data

of 65 Tregs-related genes were input into LASSO and SVM machine-
learning models. Notably, we identified seven hub Tregs-related
genes that were shared by at least three results by analyzing the
intersection of the aforementioned datasets (Fig. 5J). To create a

Fig. 3 Comparison of the relative abundance of Tregs and B cells in two PSC transcriptome data using four immune cell infiltration
algorithms (CIBERSORT, ssGSEA, xCell, and Quantiseq). A Tregs in GSE119600 dataset using CIBERSORT. B Tregs in GSE119600 dataset using
ssGSEA. C Tregs in GSE119600 dataset using xCell. D Tregs in GSE119600 dataset using Quantiseq. E Tregs in GSE159676 dataset using
CIBERSORT. F Tregs in GSE159676 dataset using ssGSEA. G Tregs in GSE159676 dataset using xCell. H Tregs in GSE159676 dataset using
Quantiseq. I B cells in GSE119600 dataset using CIBERSORT. J B cells in GSE119600 dataset using ssGSEA. K B cells in GSE119600 dataset using
xCell. L B cells in GSE119600 dataset using Quantiseq. M B cells in GSE159676 dataset using CIBERSORT. N B cells in GSE159676 dataset using
ssGSEA. O B cells in GSE159676 dataset using xCell. P B cells in GSE159676 dataset using Quantiseq. The asterisks indicate a significant
statistical p value calculated using the Wilcoxon test (*p < 0.05; **p < 0.01; ***p < 0.001).
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Fig. 4 Weighted gene coexpression network analysis (WGCNA) for screening functional gene modules highly associated with Tregs
proportion in GSE119600 dataset. A Analysis of network topology for various soft-thresholding powers. (weighting coefficient, β). The x-axis
represents different soft-thresholding powers. The y-axis represents the correlation coefficient between log (k) and log [P(k)]. The red line
indicates a correlation coefficient of 0.6, Average network connectivity under different weighting coefficients. B Distribution of nodes with the
degree of connection, k and Correlation of log (k) and log [P(k)]. C Clustering dendrograms of all genes, with dissimilarity based on topological
overlap, together with assigned module colors. Altogether, 14 co-expression modules were constructed and displayed in different color. D The
heatmap showed the relationship between five WGCNA-identified modules and two traits (B cells and Tregs). Each cell includes the correlation
coefficient and p value. Scatterplots of high correlations between gene significance (GS) versus module membership (MM) for Tregs, (E): ME
darkgrey module and Tregs; (F): ME darkturquoise module and Tregs; (G): ME cyan module and Tregs. Correlation coefficient and p value were
calculated by Spearman correlation analysis.
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consistent diagnostic model for PSC, we incorporated seven hub
Tregs-related genes into our integration program (LOOCV framework).
We designed prediction models employing 5-fold cross-validation and
107 algorithm combinations in the GSE119600 training cohort. For
testing cohorts, the average AUC value was calculated for each
algorithm. The final model was determined to be the combination of

LASSO+GBM, which exhibited the highest average AUC (0.959), as
illustrated in Fig. 6A. Ultimately, we constructed a diagnostic model,
named the Tregs classifier, based on seven hub Tregs-related genes
(AKAP10, BASP1, DENND3, PLXNC1, KLF13, SCAP, and TMCO3).
Detailed feature selection for each model and risk score for each
patient were provided in Supplementary material 13.
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Diagnostic value, and clinical usefulness of Tregs classifier
ROC curves revealed that the Tregs classifier exhibited a superior
diagnostic capacity, with an AUC of 0.974 in the GSE119600 cohort
(Fig. 6B) and 0.944 in the GSE159676 cohort (Fig. 6C). PCA
demonstrated that the expression of seven hub Tregs-related
genes could effectively differentiate between PSC patients and
healthy control in GSE119600 (Fig. 6F) and GSE159676 cohorts
(Fig. 6G). Notably, the DCA chart showed that within the range of
the threshold probability from 0 to 1, the net benefit derived from
employing the Tregs classifier (predictive model) exceeded that
obtained by either not intervening in all patients or intervening in
all patients in GSE119600 (Fig. 6F) and GSE159676 cohorts (Fig.
6G).

Expression levels and correlation pattern of hub Tregs-
related genes
In GSE119600 (Fig. 7A) and GSE159676 cohorts (Fig. 7B), seven
hub Treg-related genes exhibited differential expression. qRT-PCR
verified that compared to the control, the mRNA expression levels
of Akap10, Basp1, Dennd3, Plxnc1, and Tmco3 were significantly
up-regulated in the PSC mice model yet the Klf13, and Scap
expression levels were significantly reduced in PSC group relative
to the controls (Fig. 7E–K). Additionally, as shown in Fig. 7C, the
strongest correlation is TMCO3 and PLXNC1 (R= 0.85, P < 0.05),
followed by PLXNC1 and PLXNC1 (R= 0.81, P < 0.05); AKAP10
exhibited a significant positive link to DENND3 (R= 0.67, P < 0.05);
and KLF13 was correlated positively with SCAP (R= 0.64, P < 0.05).
Consistently, the GSE159676 cohort confirmed the strong expres-
sion correlation patterns of seven hub Treg-related genes (Fig. 7D).

Analyses of immune cell infiltration in PSC and its relationship
with hub Tregs-related genes
The variation in immune profile composition between PSC
patients and healthy control was examined, ESTIMATE and xCell
algorithms uncovered that the immune score, ESTIMATE score,
stromal score, and microenvironment score were substantially
higher in the PSC group than in the healthy control group in the
GSE119600 dataset (Fig. 8A–F). The findings (such as immune
score and ESTIMATE score) from the GSE159676 dataset were
similar (Fig. 8G–L). Moreover, higher expression of hub Tregs-
related genes was generally positively correlated with the immune
score, microenvironment score, neutrophils, and natural killer T
cell (NKT), yet generally negatively correlated with M2 macro-
phages, megakaryocyte-erythroid progenitor (MEP), and vice
versa. The evidence was derived from seven immune cell
infiltration methods and two PSC cohorts (Fig. 9A, B).

Discovery of potential mechanisms in the development and
progression of PSC and its relationship with hub Tregs-
related genes
To explore possible biological pathways during PSC, ssGSEA, and
GSVA were executed to examine the score for the enrichment of pre-
defined BP and GO/KEGG/HALLMARK gene sets, respectively.
Regarding pre-defined BP in two PSC cohorts (Fig. 10A, B), it was
observed that the PSC group exhibited complement and coagulation

cascades, and IL6 JAK-STAT3 signaling that were distinct from those of
the control group. Additionally, correlation analysis revealed sig-
nificant positive associations between highly expressed hub Tregs-
related genes and IL6 JAK-STAT3 signaling, complement, and
coagulation cascades, and vice versa (Fig. 10C, D).
In terms of GO/KEGG/HALLMARK gene sets the differential

analysis revealed a total of 78 GO pathways, 9 KEGG pathways,
and 14 HALLMARK pathways by taking the intersection of the two
PSC cohorts (Figs. 11 and S10). Compared to the normal group,
several GO pathways (mast cell activation, regulation of toll-like
receptor (TLR) signaling pathway, autophagic cell death, positive
regulation of granulocyte differentiation, Fc-epsilon receptor
signaling pathway), KEGG pathways (leukocyte transendothelial
migration, B cell receptor signaling pathway, epithelial cell
signaling in helicobacter pylori infection, Fc gamma R-mediated
phagocytosis) and HALLMARK pathways (complement, inflamma-
tory response, and IL6 JAK-STAT3 signaling) were primarily
involved in the PSC group, while cellular response to copper
ion, response to zinc ion, metabolism-related signaling pathways
(response to cholesterol, response to folic acid, histidine
metabolism, steroid biosynthesis, response to sterol, bile acid
metabolism, cholesterol homeostasis), mitochondrial function-
related pathways (mitochondrial respiratory chain complex
assembly, mitochondrial envelope, mitochondrial large ribosomal
subunit) were mainly enriched in healthy control group. Addi-
tionally, correlation analysis uncovered that highly expressed hub
Tregs-related genes were generally positively linked to upregu-
lated signaling pathways in PSC, but were negatively correlated
with down-regulate, and vice versa (Fig. 12).

XGBoost and SHAP
To identify unique genes in diagnosing PSC, we utilized SHAP and
XGBoost to illuminate feature importance ordering. The summary
plot (Fig. 13A, C) ranks feature according to their impact,
highlighting AKAP10 and KLF13 in the GSE119600 cohort, and
KLF13 and AKAP10 in the GSE159676 cohort, as crucial
determinants. The impact of each component on the model’s
predictions is visualized in Fig. 13B, D. Notably, AKAP10 and KLF13
were identified as the paramount factor for PSC diagnosis.
Additionally, the Mantel test uncovered that AKAP10 was
correlated positively with apoptosis, regulation of cellular
response to macrophage colony-stimulating factor, complement,
epithelial cell signaling in helicobacter pylori infection, IL6 JAK-
STAT3 signaling, APC costimulation, Fc-epsilon receptor signaling
pathway, inflammatory response in two PSC cohorts (Figs. 13E and
S11); KLF13 were positively correlated with bile acid metabolism,
DNA repair, biosynthesis of unsaturated fatty acids, steroid
biosynthesis, response to cholesterol, response to sterol, mito-
chondrial function-related pathways (mitochondrial envelope,
mitochondrial large/small ribosomal subunit) (Figs. 13F and S12).

DISCUSSION
Currently, PSC lacks effective biomarkers for early diagnosis and
targeted therapy. Accumulating evidence supported an

Fig. 5 Identification of Tregs-related genes and functional enrichment analysis. A UpSet plot presents the intersection of the results of
differentially expressed genes (DEGs) and significant Tregs module genes in two PSC datasets. B, C, Functional enrichment analysis of Tregs-
related genes in PSC. B Gene ontology (GO) analysis on biological process (BP), cellular component (CC), and molecular function (MF). C Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways. D–I Identification of hub Tregs-related genes based on multiple machine learning
algorithms(including Lasso, support vector machine (SVM). Modified Lasso was used to identify candidate Tregs-related genes with 5-fold
cross-validation in GSE119600 (D) and GSE159676 (G) datasets. The Y-axis shows mean-square error and the X-axis is Log (λ), dotted vertical
lines represent minimum and 1 standard error values of λ. The genes selected at minimum standard error values of λ were finally used for
further analysis; (E, H): Lasso coefficient profiles of the Tregs-related genes. A vertical line is drawn at the optimal value by1 - s.e. criteria and
results in 10 non-zero coefficients in GSE119600 (E) and GSE159676 (H) datasets; (F, I): SVM algorithm was applied to screen candidate Tregs-
related genes. The green dots indicated the lowest error rate and the highest precision when genes are this number in GSE119600 (F) and
GSE159676 (I) datasets. J UpSet plot presents the intersection of the results of Lasso and SVM in two PSC datasets.
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association between immune cell abundance and PSC [7–9],
however, there are deficient direct pieces of evidence affirming a
causal correlation. Considering that PSC comprises a heteroge-
neous group, each accompanied by individual pathophysiology
and variations. MR analysis examined the causal relationship
between 731 immune cell subtypes and two PSC GWAS datasets
(GWAS ID: ieu-a-1112, and finn-b-K11_CHOLANGI_STRICT). Our
genetic analyses found several potential causal associations
between 3 immunophenotypes (CD39+ resting Treg % CD4 Treg

cell, CD3 on CD39+ secreting Treg cell, BAFF-R on IgD- CD38dim B
cell) and PSC, using IVW method had the same direction as the
findings of MR-Egger regression, WM, simple model and weight
model. Replicating the findings in another PSC GWAS and meta-
analysis pooling the results of three PSC GWAS revealed that these
results were generally consistent. Studies have discovered that
peripheral blood mononuclear cells derived from PSCs had a
noticeably greater total number of B lymphocytes when
contrasted with healthy controls [26]. In addition, 10% of patients

Fig. 6 Construction and testing of the artificial intelligence-derived diagnostic signature (Tregs classifier) for PSC, as well as diagnostic
value and clinical usefulness of Tregs classifier. A The area under curve (AUC) of 107 machine-learning algorithm combinations in the training
(GSE119600) and testing (GSE159676) cohorts. B, C Receiver operating characteristic (ROC) curves with AUC values to evaluate predictive
efficacy of Tregs classifier in GSE119600 (B) and GSE159676 (C) datasets. D, E Principal component analysis for the expression profiles of seven
hub Tregs-related genes to distinguish PSC patients from healthy control patients in GSE119600 (D) and GSE159676 (E) datasets. F, G Decision
curve analysis was applied to evaluate the clinical usefulness of Tregs classifier in GSE119600 (F) and GSE159676 (G) datasets. The Y-axis
represents the net benefit. The black line represents the hypothesis that no patient’s treatment. The X-axis represents the threshold probability.
The threshold probability is where the expected benefit of treatment is equal to the expected benefit of avoiding treatment.
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Fig. 7 Expression levels, and correlation pattern of hub seven Tregs-related genes. Expression levels of seven Tregs-related genes in PSC
compared to the control group in GSE119600 (A) and GSE159676 (B) datasets. The asterisks indicate a significant statistical p value calculated
using the Wilcoxon test (*p < 0.05; **p < 0.01; ***p < 0.001). Correlation heatmap of seven Tregs-related genes expressed in PSC in GSE119600
(C) and GSE159676 (D) datasets. Correlation coefficient and p value were calculated by Spearman correlation analysis. In PSC mice models,
through quantitative real-time polymerase chain reaction (qRT-PCR), we compared the mRNA expression levels of seven hub Tregs-related
genes, including Akap10 (E), Basp1 (F), Dennd3 (G), Plxnc1 (H), Klf13 (I), Scap (J), and Tmco3 (K). The asterisks indicate a significant statistical p
value calculated using the Student’s t-tests (*p < 0.05; **p < 0.01; ***p < 0.001).
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Fig. 8 Analyzing the microenvironment (equal to immune + stromal) between PSC and healthy control groups in two PSC datasets using
two immune cell infiltration algorithms (ESITMATE, and xCell). A immune score in GSE119600 dataset using ESITMATE. B stromal score in
GSE119600 dataset using ESITMATE. C ESITMATE score in GSE119600 dataset using ESITMATE. D immune score in GSE119600 dataset using
xCell. E stromal score in GSE119600 dataset using xCell. F microenvironmen score in GSE119600 dataset using xCell. G immune score in
GSE159676 dataset using ESITMATE. H stromal score in GSE159676 dataset using ESITMATE. I ESITMATE score in GSE159676 dataset using
ESITMATE. J immune score in GSE159676 dataset using xCell. K stromal score in GSE159676 dataset using xCell. L microenvironmen score in
GSE159676 dataset using xCell. The asterisks indicate a significant statistical p value calculated using the Wilcoxon test (*p < 0.05; **p < 0.01;
***p < 0.001).
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Fig. 9 Correlation of seven hub Tregs-related genes with immune cells infiltration using seven methods (CIBERSORT, TIMER, xCell,
MCPcounter, ESITMATE, EPIC, and Quantiseq). A GSE119600 dataset. B GSE159676 dataset. Correlation coefficient and p value were
calculated by Spearman correlation analysis. The asterisks indicate a statistically significant p value calculated using the Spearman correlation
analysis (*p < 0.05; **p < 0.01; ***p < 0.001).
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with PSC had elevated serum levels of IgG4 and a significant
infiltration of IgG4 PCs [27, 28]. PSC tissues were found to have
IgG4+ PC clumps and deposits; the degree to which they were
immunostained was associated with disease progression and
lymphocyte infiltration in PSCs [27, 29]. These findings align with
our study, in which B cells are involved in the development of PSC.
By preventing immune reactions to self-antigens, regulatory T cells

(Tregs) serve an essential role in keeping the immune system in a
steady state [30]. Treg dysfunction facilitates the onset and
advancement of autoimmune liver diseases, including primary
biliary cholangitis, autoimmune hepatitis, and PSC [30]. Limited
research has been conducted on the function of Tregs in PSC, and
only a handful of studies have confirmed Treg dysfunction. The
laboratory of Christoph Schramm discovered a notable reduction

Fig. 10 Analyses of several representative gene sets (immune/inflammatory/cell death-related pathways) in PSC and its relationship with
hub Tregs-related genes. Comparison of pre-defined biological processes between PSC and control groups in GSE119600 (A) and GSE159676
(B) datasets based on ssGSEA algorithm. p value was calculated using the Wilcoxon test. The heatmap plot depicted correlation between
seven hub Tregs-related genes and pre-defined biological biological pathways in GSE119600 (C) and GSE159676 (D) datasets. Correlation
coefficient and p value were calculated by Spearman correlation analysis. The asterisks indicate a statistically significant p value calculated
using the Spearman correlation analysis (*p < 0.05; **p < 0.01; ***p < 0.001).
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Fig. 11 Comparison of GO/KEGG/HALLMARK gene sets from Molecular Signatures Database between PSC and control groups in
GSE119600 cohort based on gene set variation analysis (GSVA). A GO gene sets. B KEGG gene sets. C HALLMARK gene sets. t value and p
value were calculated using the limma R package.
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in the frequencies of circulating and intrahepatic Tregs in PSC,
along with diminished functionality (although the Treg dysfunc-
tion is limited) [31]. However, several studies have found there
were higher frequencies of liver infiltrating Tregs in PSC [32] and
elevated numbers of circulating Tregs were reported [33]. In our
study, we found host-genetic-driven increase in CD39+ resting
Treg % CD4 Treg cell significantly increases PSC risk, while
genetically predicted higher relative abundances of CD3 on
CD39+ secreting Treg cell exhibited significant protective effects
on PSC. Based on previous literature and our results, different
subtypes of Tregs play different roles in the development of PSC.
To further elucidate and verify the relationship between B cells,
Tregs, and PSC, we apply eight different algorithms (CIBERSORT,
ssGSEA, TIMER, xCell, MCPcounter, ESTIMATE, EPIC, and Quantiseq)
to infer PSC patients’ immune cell infiltration at the transcriptome
level. As a result, we discovered that Tregs proportion was
considerably changed, while B cells didn’t exert significance based
on 4 different algorithms and two transcriptome data. These
underscored the pivotal role of Tregs proportion imbalance in the
occurrence of PSC.
Considering these results from MR analysis, meta-analysis, and

immune cell infiltration analysis at the transcriptome level

comprehensively, a thorough comprehension of the possible
functions of Tregs-associated molecules is profoundly significant
for advancing early PSC diagnosis, improvement of the under-
standing of pathogenesis, and the development of potentially
applicable drugs for PSC patients. PSC continues to be a
diagnostic conundrum, frequently being identified years after
the initial reporting of symptoms or during the later stages of the
disease. MRI/MRCP is the first-line diagnostic instrument for
patients suspected of having PSC, yet their costs are substantial,
and diagnostic performance for PSC is suboptimal in the early
phases. There are several immune markers (such as immunoglo-
bulin G, immunoglobulin M, anticardiolipin, and atypical peri-
nuclear antineutrophil cytoplasmic antibodies) known to be
correlated with the PSC, yet there is a lack of consensus
surrounding its diagnostic application in patients with PSC and
their inadequate specificity prevent them from having a
substantial diagnostic utility [5]. This can be attributed to the
intricate pathophysiology and heterogeneity of PSC. Pathophy-
siologically, thousands of genes are differentially expressed in
response to the development and progression of PSC, and some
genes can potentially provide valuable insights into diagnosis and
prediction. In this study, we systematically reviewed available PSC

Fig. 12 Analyzing the correlation between shared differential GO/KEGG/HALLMARK biological pathways in two PSC cohorts and seven
hub Tregs-related genes. A GSE119600 dataset. B GSE159676 dataset. Correlation coefficient and p value were calculated by Spearman
correlation analysis. The asterisks indicate a statistically significant p value calculated using the Spearman correlation analysis (*p < 0.05;
**p < 0.01; ***p < 0.001).
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Fig. 13 Identification of optimal Tregs-related gene for PSC using XGBoost algorithm and SHapley Additive exPlanations (SHAP), and
investigation the relationship between optimal Tregs-related gene and pivotal molecular pathways using Mantel test. Importance
ranking of features in GSE119600 (A) and GSE159676 (C) datasets. Visualization of SHAP variables, with the included features sorted by the
average absolute value of SHAP from highest to lowest in GSE119600 (B) and GSE159676 (D) datasets. Yellow dots denoting a higher impact
(increasing PSC) and purple dots a lower one (reducing PSC). E In GSE119600 cohort, correlation between AKAP10 and significant biological
pathways based on Spearman correlation analysis. Correlation coefficient and p value were calculated by the Mantel test. F In GSE119600
cohort, correlation between KLF13 and significant biological pathways based on Spearman correlation analysis. Correlation coefficient and p
value were calculated by the Mantel test.
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bulk RNA-seq datasets (Homo sapiens) from inception to date and
emphasized the effects of Tregs-related molecules in PSC. As a
result, we applied WGCNA and differential analysis in two cohorts
to identify 65 Tregs-related genes, which were chosen to be
candidates for PSC. Also, previous research shows that individuals
often choose modeling algorithms according to their preferences
and the extent of their knowledge. We compiled a list of 12
machine-learning methods that may be employed to create
biological diagnosis markers to address this limitation. We further
merged them into 107 algorithm combinations, with the functions
of variable screening and data dimensionality reduction per-
formed by LASSO, RF, Stepglm, and glmBoost. The final model was
determined to be the combination of LASSO and GBM that
yielded the largest average AUC (0.959) among the two PSC
cohorts. When developing biomedical models using artificial
intelligence and machine learning, one of the most troublesome
issues is over-fitting, which occurs when a model fits the training
data well but fails to do so when tested with other external
validation datasets [34]. A final seven-gene signature, the Tregs
classifier, was formed using GBM after LASSO minimized
redundant data. The Tregs classifier demonstrated outstanding
predictive and diagnostic performance in the training cohort with
an AUC of 0.974 and the test cohort with an AUC of 0.944.
Moreover, it effectively differentiated between PSC and healthy
control. Based on the DCA results, treatment decisions guided by
the Tregs classifier yielded greater net benefits than those based
on the approach of treating either all patients or none. This
suggests that the Tregs classifier holds promise for diagnosing PSC
and informing clinical decision-making.
Recent studies have shown that bile duct immune cells in PSC

patients can drive hepatic inflammation and fibrosis by affecting
the hepatic microenvironment [35, 36]. In our study, we revealed
that compared with healthy control, the scores of the immune,
microenvironment, and ESTIMATE were substantially higher in PSC
patients in two PSC cohorts. Moreover, correlation analysis
between hub Tregs-related genes and infiltrating immune cells
indicated that neutrophils and NKT may promote the occurrence
of PSC, while M2 macrophages, MEP may inhibit the occurrence of
PSC, using seven immune cell infiltration methods and two PSC
cohorts. Patient-specific biliary inflammation was marked by a
higher presence of T cells and neutrophils than that of healthy
controls, according to a biliary immune landscape map of PSC [9],
which was consistent with our study. The presence of activated
macrophages, predominantly M1 polarized, in the liver of PSC
patients was discovered to be linked to an increase in Notch
signaling and an improvement in HPC self-renewal, according to a
previous study [37]. MEP gives rise to the cells that produce
platelets and red blood cells, the anucleate cells that facilitate
healing. In myelodysplastic neoplasms (MDS), maintenance of
MEPs and lymphoid progenitors predicted favorable outcomes
[38]. However, the impact of a decrease in M2 macrophages and
MEP infiltration has not been studied in PSC, and elevation in
neutrophils and NKT activation in PSC remains relatively under-
studied. Thus, further characterization of those cells will provide a
novel perspective for the development and progress of PSC and
will aid in finding potential therapy for PSC patients.
Subsequently, ssGSEA and GSVA functional enrichment analyses

were performed to elucidate the fundamental biological mechan-
isms of PSC in two transcriptome data. As a result, we uncovered
that immune-related pathways (mast cell activation, regulation of
the TLR signaling pathway, positive regulation of granulocyte
differentiation, B cell receptor signaling pathway), inflammatory-
related pathways (complement, inflammatory response, and IL6
JAK-STAT3 signaling), cell death-related pathways (autophagic cell
death) were primarily involved in the PSC development, while
metabolism-related signaling pathways (bile acid metabolism,
response to cholesterol, response to folic acid, histidine metabo-
lism, steroid biosynthesis), mitochondrial function-related

pathways (mitochondrial respiratory chain complex assembly,
mitochondrial envelope, mitochondrial large ribosomal subunit)
were significantly down-regulated in PSC. These suggested that
PSC is characterized by the activation of immunity and inflamma-
tion, autophagic cell death increased, metabolic disturbance, and
mitochondrial dysfunction. Additionally, we found that significant
involvement of complement and coagulation cascades, Fc gamma
R-mediated phagocytosis, Fc-epsilon receptor signaling pathway,
and epithelial cell signaling in helicobacter pylori infection in the
development of PSC. Current research on the mechanism of PSC
mainly focuses on immune and inflammatory signaling pathways.
PSC patients often develop liver dysfunction, including fat-soluble
vitamin malabsorption, biological metabolism disorders, and bile
acid metabolism disorders, for which several symptomatic
treatment drugs (such as ursodeoxycholic acid, norursodoxycolic
acid, and obeticholic acid) are used to treat PSC [39]. The above
phenomenon can be explained by the disturbance of metabolism-
related pathways in PSC. The findings in one study indicate that
patients diagnosed with PSC are at risk for developing hypercoa-
gulopathy [40], whereas another study indicated that even though
the mean coagulation indices of PSC patients were normal, they
were often lower in individuals with nonbiliary causes of cirrhosis
[41]. Our findings indicate a strong correlation between PSC and
complement, as well as the coagulation cascade and complement.
Remarkably, the precise mechanisms underlying how several
metabolism-related pathways (histidine metabolism, steroid bio-
synthesis), complement and coagulation cascades, epithelial cell
signaling in helicobacter pylori infection, Fc-epsilon receptor
signaling pathway, Fc gamma R-mediated phagocytosis, mito-
chondrial dysfunction led to PSC onset remain elusive. Further
investigation in this direction is warranted to unveil new
therapeutic avenues for treating PSC.
One prominent finding of this study was that we identified

seven hub Tregs-related genes (AKAP10, BASP1, DENND3,
PLXNC1, KLF13, SCAP, and TMCO3) that are anticipated to be
new potential targets for PSC therapy. In two PSC cohorts, seven
hub Tregs-related genes exhibited significantly differential expres-
sion. In the PSC mice model, qRT-PCR confirmed that compared to
the control, the mRNA expression levels of Akap10, Basp1,
Dennd3, Plxnc1, and Tmco3 were significantly up-regulated in
PSC yet the Klf13, and Scap expression level was considerably
reduced in PSC group relative to the control group. Moreover, the
correlation pattern of hub Tregs-related genes uncovered that
there may be some intermolecular interaction (TMCO3 and
PLXNC1, PLXNC1 and PLXNC1, AKAP10, and DENND3, KLF13 and
SCAP), which might be implicated in the occurrence of PSC.
Importantly, to identify optimal genes in diagnosing PSC, we
employed the XGBoost algorithm and SHAP to visualize the
importance of feature variables. In two PSC cohorts, we identify
AKAP10 and KLF13 as crucial determinants. AKAP10 potentially
contributes to the occurrence of PSC while KLF13 potentially
reduces the occurrence of PSC, which might mediate PSC onset
and might potentially function as a novel therapeutic target for
PSC. To further clarify the molecular function of AKAP10 and
KLF13 during PSC, spearman correlation analyses and Mantel tests
revealed that AKAP10 may promote the development of PSC
through activating immune/inflammatory-related pathways, yet
KLF13 may prevent PSC by maintaining normal liver metabolism
and mitochondrial function. However, the potential effects of
AKAP10 and KLF13 on PSC development have not been
investigated and warrant further investigation in vitro and
in vivo experiments.
Our work has certain differences from previous published

studies in several aspects. (1) Through utilizing large-scale GWAS
summary data (731 immune cell subtypes and three PSC GWAS
datasets), we first performed MR and meta-analysis between
immune subtypes and PSC, ascertaining a robust causal relation-
ship CD39+ resting Treg % CD4 Treg cell, CD3 on CD39+

J. Hu et al.

511

Genes & Immunity (2024) 25:492 – 513



secreting Treg cell, BAFF-R on IgD- CD38dim B cell and PSC. (2) At
the transcriptome level, we employed eight different algorithms
(CIBERSORT, ssGSEA, TIMER, xCell, MCPcounter, ESITMATE, EPIC,
and Quantiseq) to infer PSC patients’ immune cell infiltration, and
uncovered the pivotal role of Tregs proportion imbalance in the
occurrence of PSC. (3) We systematically collected PSC transcrip-
tome data and developed our Tregs classifier using the machine-
learning algorithms that had the highest average AUC across all
cohorts, which improved the model’s stability and diagnostic
power. (4) We merged 12 machine-learning algorithms into 107
different combinations and then chose the most accurate one to
avoid inappropriate modeling methods owing to subjective
preferences. (5) The study identified the M2 macrophages, MEP,
metabolic disturbance (histidine metabolism, steroid biosynth-
esis), complement and coagulation cascades, coagulation and
complement cascades, Fc-epsilon receptor signaling pathway,
epithelial cell signaling in helicobacter pylori infection, Fc gamma
R-mediated phagocytosis, mitochondrial dysfunction involved in
PSC, offering new insights into the mechanisms underlying PSC
pathogenesis. (6) The XGBoost algorithm and SHAP identified
AKAP10 and KLF13 as optimal genes, which are anticipated to be
new potential targets for PSC therapy. Our study was as thorough
and meticulous as possible, but there are certain caveats to
consider. First, as for MR analysis, our findings failed to withstand a
stringent Bonferroni correction for multiple comparisons. How-
ever, as a hypothesis-driven approach, the MR study with some
biological evidence was used to test epidemiologically established
associations, irrespective of Bonferroni corrected P values. It is
worth noting that our results were validated in three PSC GWAS
datasets and two PSC transcriptome data. Second, our work relies
on large-scale GWAS summary data from European descent, which
makes it difficult to generalize to other populations; thus, more
research with groups other than Europeans is necessary. Third, the
small sample size in GEO cohorts suggests that the generalizability
of the model needs to be verified in larger prospective cohorts.
Fourth, we found seven hub Tregs-related genes participating in
PSC development. Nonetheless, in vivo validation should be
performed in future investigations to investigate the specific
mechanisms underlying, especially AKAP10 and KLF13. Lastly, the
comprehensive molecular mechanisms in vivo and in vitro ought
to be further investigated in future research for the identification
of the M2 macrophages, MEP, metabolic disturbance, complement
and coagulation cascades, and mitochondrial dysfunction, poten-
tially opening up new avenues for PSC treatment.

CONCLUSION
This work is the first of its kind, as far as we are aware, to integrate
MR and transcriptome analysis to investigate the causal relation-
ships between Tregs and PSC. We used 107 different combina-
tions of 12 machine-learning algorithms to develop and verify a
consensus diagnostic signature (Tregs classifier) for PSC based on
seven Tregs-related genes. Furthermore, the identification of the
M2 macrophages, MEP, metabolic disturbance, complement and
coagulation cascades, mitochondrial dysfunction, AKAP10, and
KLF13 could represent crucial targets for PSC treatment, offering
insights into the underlying pathogenesis of the disease.
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