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Dyslexia is a learning difficulty with neurodevelopmental origins, manifesting as reduced accuracy and speed in reading and
spelling. It is substantially heritable and frequently co-occurs with other neurodevelopmental conditions, particularly attention
deficit-hyperactivity disorder (ADHD). Here, we investigate the genetic structure underlying dyslexia and a range of psychiatric traits
using results from genome-wide association studies of dyslexia, ADHD, autism, anorexia nervosa, anxiety, bipolar disorder, major
depressive disorder, obsessive compulsive disorder, schizophrenia, and Tourette syndrome. Genomic Structural Equation Modelling
(GenomicSEM) showed heightened support for a model consisting of five correlated latent genomic factors described as: F1)
compulsive disorders (including obsessive-compulsive disorder, anorexia nervosa, Tourette syndrome), F2) psychotic disorders
(including bipolar disorder, schizophrenia), F3) internalising disorders (including anxiety disorder, major depressive disorder), F4)
neurodevelopmental traits (including autism, ADHD), and F5) attention and learning difficulties (including ADHD, dyslexia). ADHD
loaded more strongly on the attention and learning difficulties latent factor (F5) than on the neurodevelopmental traits latent factor
(F4). The attention and learning difficulties latent factor (F5) was positively correlated with internalising disorders (.40),
neurodevelopmental traits (.25) and psychotic disorders (.17) latent factors, and negatively correlated with the compulsive disorders
(–.16) latent factor. These factor correlations are mirrored in genetic correlations observed between the attention and learning
difficulties latent factor and other cognitive, psychological and wellbeing traits. We further investigated genetic variants underlying
both dyslexia and ADHD, which implicated 49 loci (40 not previously found in GWAS of the individual traits) mapping to 174 genes
(121 not found in GWAS of individual traits) as potential pleiotropic variants. Our study confirms the increased genetic relation
between dyslexia and ADHD versus other psychiatric traits and uncovers novel pleiotropic variants affecting both traits. In future,
analyses including additional co-occurring traits such as dyscalculia and dyspraxia will allow a clearer definition of the attention and
learning difficulties latent factor, yielding further insights into factor structure and pleiotropic effects.
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INTRODUCTION
Dyslexia is classed as a specific learning disorder in the DSM-V [1]
and is defined by persistent difficulty with accurate and/or fluent
word reading and poor spelling ability [2]. It is present in 5–10% of
children worldwide [3, 4], and is the most common specific
learning difficulty. While there are no universal diagnostic criteria,
dyslexia is typically identified when reading and writing abilities
fall below expectations, considering the individual’s age, exposure
to effective education and other cognitive abilities [5]. Dyslexia is
typically identified in childhood, but persists throughout adult-
hood [5]. It has been viewed as a neurodevelopmental disorder,
linked to structural, connective and functional abnormalities in
brain regions involved in visual and auditory processing [6]. Here,
we refer to it as a specific learning difficulty in line with the 2009
Rose Report on dyslexia and reading difficulties [2].
Twin studies of dyslexia estimate its heritability at 60–70% [7, 8],

which suggests a substantial genetic component. However, the
genetic background of dyslexia is complex and multifactorial:
individual genes contributing to dyslexia have only a small effect

each, and likely act together in an additive manner [9]. Discovery
of such genes requires very large sample sizes, thus previous
genome-wide association studies (GWAS) have struggled to
identify genomic loci predisposing to dyslexia due to low
statistical power [10]. Through collaboration with the personal
genetics company 23andMe, Inc., Doust and colleagues published
the largest dyslexia GWAS to date, comprising over 1.1 million
individuals (51,800 dyslexia cases) and discovering 42 significantly
associated genomic loci [11]. This dataset enables further study of
the genetic background of dyslexia.
Genetic factors underlying neurodevelopmental and psychiatric

traits often overlap between disorders: of 208 genes associated
with at least one psychiatric disorder, it was reported that
approximately half of them are also associated with another
disorder [12]. Likewise, evidence from family- and population-
based studies points to considerable overlap among genetic
influences shared across neurodevelopmental traits [13–16],
including dyslexia-ADHD and dyslexia-autism overlaps [17–19].
This may contribute to frequent co-occurrence of dyslexia with
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other neurodevelopmental differences – in particular, 25–40% of
individuals with dyslexia are diagnosed with attention deficit-
hyperactivity disorder (ADHD) and vice versa [20, 21]. In contrast,
associations between autism (AUT) and dyslexia are complex.
Certain traits, such as atypical sensory processing and spatial
attention alterations, are shared between autism and dyslexia [17].
Yet, some studies show that autism is linked to better reading
skills [22–24], and others suggest dyslexia is no more prevalent
among autistic individuals than in the general population [25].
Previous genetic correlation studies have been mostly limited to

pairwise comparisons [13]. Recent developments in structural
equation modelling methods to study multiple phenotypes with
overlapping genomic influences permit a more complex quanti-
tative analysis of genetic correlations between individual psychia-
tric traits/disorders [26]. Such studies aim to construct a structural
model where traits are clustered based on their genetic similarity
using the correlational structure between genome-wide single-
nucleotide polymorphism (SNP) associations for each trait that
give rise to genetic correlations. Each cluster is described by a
single latent factor, which represents the shared genetic (SNP)
liability within the cluster. In 2019, structural modelling of 8
psychiatric disorders proposed a three-factor model describing
three clusters of genetically correlated disorders [27], while a 2022
follow-up analysis of 11 psychiatric disorders (which added
problematic alcohol use, post-traumatic stress disorder (PTSD),
and anxiety) proposed a four-cluster model [28]. Broadly, these
clusters are: 1) Early-onset neurodevelopmental disorders: ADHD,
autism, Tourette syndrome, major depressive disorder, plus
problematic alcohol use and PTSD in the four-factor model; 2)
Disorders with compulsive behaviours: obsessive-compulsive
disorder, anorexia nervosa, Tourette syndrome; 3) Mood and
psychotic disorders: bipolar disorder, schizophrenia, (and major
depressive disorder in three-factor model), and; 4) Internalising
disorders (four-factor model): anxiety disorder, major depressive
disorder.
To understand whether and where dyslexia is located among

these broad genetic clusters, here we expand and adapt current
genomic structural models to include dyslexia. Based on the
frequent co-occurrence of ADHD and dyslexia [20, 29], correlation
between general reading ability and ADHD [29, 30], and significant
ADHD polygenic score prediction of dyslexia and reading
achievement [10, 31], we expected that dyslexia would fall under
an early-onset neurodevelopmental disorder factor. However, we
made no prediction of how correlated dyslexia would be with this
neurodevelopmental factor given that the nature of the latent
factor itself depends on the range of variables included in the
analysis. For instance, an earlier GenomicSEM analysis of 8 traits
identified a neurodevelopmental factor through loadings from
Tourette syndrome, major depressive disorder, ADHD and autism
[27]. However, a later study [28] adding problematic alcohol use,
PTSD, and anxiety found that problematic alcohol use and PTSD

also loaded on the neurodevelopmental factor, while the loading
of major depressive disorder on this factor reduced from .60 (in
the model with 8 traits) to just .20. In another study [32], addition
of alcohol dependence, nicotine dependence and cannabis use
disorder to the original 8 traits resulted in a neurodevelopmental
factor clustering primarily with major depression, alcohol and
nicotine dependence with relatively weak loadings from any of
the developmental disorders, thus changing the nature of the
factor. Because developmental traits are linked to social outcomes
[33–35], this factor may capture variance in causal pathways
between childhood traits (e.g., ADHD) and adult outcomes (e.g.,
alcohol dependence). The aim of the present study was to more
clearly delineate neurodevelopmental genomic factors influencing
phenotypes arising in childhood, so we excluded substance use
dependence and PTSD to avoid a neurodevelopmental factor that
would be largely correlated with adult outcomes. In the case of
dyslexia for example, a dyslexic child may disengage with school,
develop low self-esteem or feel alienated [36], putting them at
greater risk of substance use [37] and this causal pathway would
be reflected in their genetic covariance. This is an example of
vertical pleiotropy, where genetic variants act on a trait down-
stream of an associated outcome, which we wished to minimise.
In the present study, we focussed on 10 developmental/

psychiatric traits and expected to observe a four latent factor
model – compulsive, psychotic, neurodevelopmental, and inter-
nalising – with dyslexia clustering especially with ADHD for which
it is known to be moderately genetically correlated (r= 0.53) [11].
Having observed evidence of shared genetic influence on dyslexia
and ADHD, we followed up our analysis with targeted investiga-
tions of genomic loci associated with both traits, which provided
the strongest evidence thus far of pleiotropic effects.

METHODS
Samples
To construct the genomic structural model, we sourced publicly available
GWAS summary statistics for 10 neurodevelopmental/psychiatric traits
(Table 1, Supplementary Table 1). GWAS summary statistics for all traits,
except dyslexia, were obtained from multi-cohort case-control meta-
analyses. The dyslexia summary statistics came from a single analysis of
23andMe, Inc, participants in which genomic inflation was controlled. The
combined sample amounted to 453,408 cases and 2,374,026 controls, and
included some sample overlap, for example, iPSYCH was part of the ADHD,
AUT, and BPD GWAS (Supplementary Table 1). Consistent with previous
genomicSEM investigations, data were restricted to participants with
European ancestry as these currently have adequate sample sizes.

Data standardisation and quality control
To ensure all data were uniform and reliable, all GWAS summary data
were aligned to the 1000 Genomes European reference genome build
37 [38] and filtered to imputation quality score >0.9, minor allele frequency
>0.05 using the sumstats and munge functions in the GenomicSEM R

Table 1. Sources and description of GWAS summary statistics used for GenomicSEM modelling.

Disorder Abbreviation N (cohorts) N (cases) N (controls)

Attention deficit/hyperactivity disorder [31] ADHD 13 38,691 186,843

Anorexia nervosa [75] AN 33 16,992 55,525

Anxiety disorder [76] ANX 2 53,978 221,844

Autism spectrum disorder [77] AUT 6 18,381 27,969

Bipolar disorder [78] BIP 57 41,917 371,549

Dyslexia [11] DYX 1 51,800 1,087,070

Major depressive disorder [79] MDD 3 170,756 329,443

Obsessive-compulsive disorder [80] OCD 2 2688 7037

Schizophrenia [81] SCZ 90 53,386 77,258

Tourette syndrome [82] TS 4 4819 9488
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package [39]. Any SNPs not commonly shared between all 10 studies were
excluded. After quality control, 3,959,995 SNPs remained for further
analysis.

Statistical analysis
GenomicSEM. SNP-based heritability and pairwise genetic correlations (rg)
between disorders were obtained using the linkage disequilibrium score
regression (LDSC) [40] function in the GenomicSEM package and based on
830,359 high quality HapMap SNPs (Supplementary Table 2). To reveal
clusters of traits with shared genetic liability, we synthesised LDSC outputs
into a genomic structural model. Our initial model was guided by a
previously published three latent factor structural model of 8 psychiatric
disorders [27], all of which were also included in the present study.
However, fit of this model was poor; and given that anxiety and dyslexia
were new to this model, we further investigated the factor structure
underlying these genetic relationships using an exploratory factor analysis
(EFA) of the genetic covariance matrix with promax rotation. Goodness of
fit of the confirmatory and exploratory models was evaluated by the
standard fit statistics using recommended criteria: lower Akaike’s Informa-
tion Criterion (AIC), Comparative Fit Index (CFI) in the range of 0.97 and 1
(good; 0.95–0.97, acceptable), and Standardised Root Mean Squared
Residual (SRMR) < 0.05 (good; 0.05–0.1, acceptable) [41].

Genetic correlations between the attention and learning difficulties latent
factor and other traits. Following the identification of the attention and
learning difficulties latent factor (F5) through modelling of ADHD and
dyslexia, we sought to identify how this factor correlates with other traits.
We regressed F5 on all 3,959,995 quality-controlled SNPs using the
userGWAS function in the GenomicSEM R package. The resulting summary
statistics were used to calculate genetic correlations of F5 with 1457 traits
using batch LDSC v1.01 within the CTG-VL platform (https://vl.genoma.io/
analyses/ldscore). GWAS summary statistics for all traits were obtained via
the CTG-VL platform, except for the 10 conditions described in this paper,
for which we uploaded the same summary statistics included in the
present study for consistency (Table 1, Supplementary Table 3). Correla-
tions were considered significant at a Bonferroni corrected threshold of
p < 3.383 × 10−5 from 1468 tests.

Identification of common dyslexia and ADHD variants. Given the frequent
co-occurrence of ADHD and dyslexia [20, 29] and the strong genetic
overlap we find in this study, we sought to discover pleiotropic genetic
loci that are significantly associated with both traits. We filtered dyslexia
and ADHD datasets to 3,956,700 shared SNPs and calculated an overall
effect size (r) and degree of sharedness (Θ) for each SNP using a polar
coordinate transformation method PolarMorphism [42]. By taking Θ into
account, we were able to correct for inflation in effect size due to vertical
pleiotropy and sample overlap [42]. SNPs where FDR-adjusted p-values
(q-value) for r and Θ were < 0.05 were deemed significant and brought
forward for gene mapping. Functional annotation and gene mapping was
performed using FUMA v1.5.2 (https://fuma.ctglab.nl) [43]. We clumped
linkage-independent genomic regions (r2 threshold= 0.4, maximum LD
distance= 500 kb, maximum p-value for lead SNPs= 5 × 10−8, maximum
p-value cut-off= 5 × 10−2). The MHC region was considered as one locus.
The 1000 Genomes European population was used as reference [38]
(GRCh37 release).

RESULTS
Genetic Clustering
Heritability Z-scores were > 4, LDSC intercepts approximately 1,
and ratios close to 0, indicating that linkage disequilibrium scores
reflected polygenic heritability. The strongest genetic correlations
were observed between anxiety (ANX) and major depressive
disorder (MDD) (rg= 0.86 ± 0.05), then bipolar disorder (BIP) and
schizophrenia (SCZ) (rg= 0.69 ± 0.03), with moderate correlations
ranging between 0.40 and 0.45 for pairings of ANX with ADHD and
BIP, for MDD with ADHD, BIP and SCZ, for anorexia nervosa (AN)
and obsessive-compulsive disorder (OCD), and ADHD and dyslexia
(DYX) (see Fig. 1a, b, Supplementary Table 2). A regression of
effective sample size on estimated genetic correlation for each
pair of disorders indicated that there were no effects of sample
size on genomic correlation (R2adj= –0.02, p= 0.90, Fig. 1c).

The initial model was guided by a previously published model,
which included 8 of the 10 traits studied here [28]. We expanded it
by modelling ANX to load on the same two latent factors as MDD
due to their strong correlation. Similarly, we modelled DYX to load
on the same factor as ADHD (F1: OCD, AN, TS; F2: BIP, SCZ, MDD,
ANX; F3: TS, MDD, ANX, ADHD, AUT, DYX). However, the fit of this
model was poor (AIC= 381.40, CFI= 0.933, SRMR= 0.077). An EFA
identified a structure of four correlated factors, which together
explain 61.3% of underlying variance. The model identified by EFA
clusters ANX and MDD under a common factor of internalising
disorders (F1: OCD, AN, TS; F2: BIP, SCZ; F3: ANX, MDD; F4: ADHD,
AUT, DYX). This is in line with the newer report of an 11-disorder
structural model [28]. We thus constructed a confirmatory model
using the EFA output (Fig. 2a) and observed a dramatic
improvement in model fit (AIC= 224.60, CFI= 0.968, SRMR=
0.062). Having observed a strong genetic correlation between DYX
and ADHD but not between DYX and AUT, we modified the
confirmatory model by modelling DYX and ADHD to load on a
fifth factor (F5) of learning difficulties (Fig. 2b). This model (F1:
OCD, AN, TS; F2: BIP, SCZ; F3: ANX, MDD; F4: ADHD, AUT; F5: ADHD,
DYX) had the best fit of all the estimated models (AIC= 158.57,
CFI= 0.984, SRMR= 0.048).

Correlations between the attention and learning difficulties
latent factor and other traits
LDSC correlation between the learning difficulties latent factor (F5)
and 1457 other traits resulted in 330 significant correlations
(Supplementary Table 3). Traits were clustered broadly into
“Psychiatric”, “Cognitive”, “Education”, “Occupation”, “Physical
health”, “Lifestyle” and “Wellbeing” categories. Of the 330 sig-
nificantly correlated traits, 66 selected traits are presented in Fig. 3.
As expected, the strongest associations of the learning difficulties
latent factor were observed with dyslexia (0.95) and ADHD (0.72),
and linguistic and mathematical test performance such as concept
(–0.57) and word (–0.47) interpolation and positional (–0.58) and
conditional (–0.50) arithmetic tests. In addition, we observe
moderate correlations with some manifestations of mania or
irritability, such as being easily distracted (0.47) or racing thoughts
(0.31).
Other notable associations are linked to educational and

occupational achievement: we observe strong negative correla-
tions between the learning difficulties latent factor and GCSE
qualification (–0.62), year ended full-time education (–0.44) and
strong positive correlations with shift working (0.59) or being
unable to work at all due to sickness or disability (0.55). Several
interesting associations emerge with traits relating to physical
health, particularly joint disorders (0.73), chronic pain (0.49) and
various pulmonary illnesses; lifestyle – smoking (0.29), cannabis
use disorder (0.29), regular physical activity (–0.22); and socio-
economic status, such as financial difficulties (0.43), and home
ownership (–0.24).

Identification of shared variants contributing to dyslexia
and ADHD
From the overlapping SNPs available for DYX and ADHD, 1 566
SNPs met the significance criteria for overall effect size and degree
of sharedness. These 1 566 pre-defined significant SNPs were
clumped into 51 lead SNPs belonging to 49 genomic risk loci
(Fig. 4a, Supplementary Table 4). Overall and standardised
genomic inflation factors were close to 1 (λ= 0.879,
λ1000= 0.999), indicating that bulk inflation and excess false
positive rates were minimal (Fig. 4b). MAGMA tissue expression
analysis indicated that these SNPs are associated with genes
showing enriched expression in brain tissues (Fig. 4c). Six out of 49
pleiotropic loci were previously reported as associated with
dyslexia [11], and one of these 6 (lead SNP rs1005678 on
chromosome 3) was also found in the ADHD GWAS [31]. A further
3 of the pleiotropic loci were reported for ADHD alone [31]
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(Fig. 4d, Supplementary Table 4). Forty-nine pleiotropic loci were
mapped to 174 protein coding genes (Supplementary Table 5).
Gene Ontology analysis [44–46] indicated an enrichment in genes
involved in protein modification and metabolism, and in
development (Table 2, Supplementary Table 6). Thirty-six out of
the 174 pleiotropic protein-coding genes have been previously
associated with dyslexia (i.e., from 173 genes mapped to the 42
significant loci from the dyslexia GWAS) [11], and 21 with ADHD
[31]. Of those, four genes, TCTA (T-cell leukaemia translocation
altered), AMT (aminomethyltransferase), TRAIP (TRAF interacting
protein) and SORCS3 (sortilin-related receptor 3) had been
associated with both traits in prior literature (Fig. 4e, Supplemen-
tary Table 5).

DISCUSSION
By extending existing multivariate genomic models of neurode-
velopmental and psychiatric traits to include dyslexia, our work
has yielded three key findings: (1) that a five latent factor model,
composed of internalising (F1), psychotic (F2), compulsive (F3),

neurodevelopmental (F4), and attention and learning latent traits
(F5), effectively describes the genetic relationships between these
diagnoses; (2) that ADHD aligns more with dyslexia and to a
learning difficulties latent factor than a neurodevelopmental one,
and; (3) we identify a set of pleiotropic genetic loci associated with
the presence of both dyslexia and ADHD.
Genetic correlations between the psychiatric disorders were

concordant with those of previous analyses [27, 28]. Most pairs of
disorders displayed a statistically significant genetic correlation,
varying in magnitude, as observed previously. This supports the
concept of a complex, interlinked network of shared genetic
liabilities across psychiatric disorders.
Based on the frequent co-occurrence of dyslexia and ADHD,

and, albeit less often, with autism, we initially hypothesised a
structural model that includes dyslexia alongside other neuro-
developmental disorders. The moderate genetic correlation
(0.40) between dyslexia and ADHD matches estimates derived
from a meta-analysis of twin studies for reading ability indicators
and ADHD symptoms [30]. This result was in line with our original
hypothesis. However, genetic correlation between dyslexia and

Fig. 1 Genetic relationships between ten neurodevelopmental and psychiatric disorders. a Pairwise genetic correlations detected using
LDSC. Colour intensity scales with correlation coefficient (rg), radius of circles scales with significance of p-values. Asterisks denote statistically
significant (p ≤ 0.001) correlations after Bonferroni correction. b Path diagram of genetic correlations. Each edge connecting two phenotype
nodes represents genetic correlation between those traits. Width and colour intensity of edges scale with correlation coefficient (rg). Only pairs
where rg > 0.3 and correlation is statistically significant (p ≤ 0.05) after Bonferroni correction are displayed. c Regression of effective sample size
on estimated genetic correlation for each pair of traits. Selected pairs where rg > 0.3, or rg < 0.1, or effective sample size >100,000 are labelled.
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autism was found to be statistically non-significant (p= 0.082),
and accordingly, an improvement in model fit was observed
when dyslexia and autism were modelled as loading on distinct
latent factors. By contrast with dyslexia, ADHD loaded on both
the neurodevelopmental and the attention and learning
difficulties factors (F4 and F5), with its correlation being lower
on the former than on the latter (0.43 vs 0.75). This suggests that
the genetic architecture influencing ADHD shows greater overlap
with dyslexia than with autism. We propose four non-mutually
exclusive explanations: (a) ADHD is a complex, biologically
heterogeneous disorder that shares genetic influences with
both neurodevelopmental and learning difficulties to varying
degrees; (b) vertical (or spurious) pleiotropy is present, meaning
that ADHD has a causal effect on dyslexia or vice-versa; (c)
current diagnostic criteria for dyslexia, ADHD and autism are
insufficient to categorically define genetically distinct popula-
tions, and suggest different degrees of overlap between the
continuous traits underlying the diagnoses, and; (d) co-
occurrence of dyslexia is higher than autism within the GWAS
sample ascertained for ADHD [31] and/or ADHD occurs more

frequently than autism in the dyslexic cases included in the
23andMe GWAS.
The shared and unique genetic architecture identified in this

study is broadly in line with previous genomic structural models
[27, 28] and highlights the complexity of behavioural and
psychiatric genetics. We observed strong positive correlations
between the five latent factors in our structural model, which
supports the concept of general genetic risk factors that
contribute to all 10 neurodevelopmental and psychiatric traits in
this panel. However, we also observe a range of residual variances,
which represent specific genetic factors that confer distinguish-
able phenotypes to each developmental trait/psychiatric disorder.
Dyslexia and autism have larger residual estimates than ADHD
(0.78, 0.56 and 0.10, respectively). This suggests that (a) shared
genetic factors explain a larger part of total genetic influence for
ADHD than for either dyslexia or autism; (b) both dyslexia and
autism have a substantial proportion of risk factors not shared
with ADHD that pertain more specifically to biological mechan-
isms related to these traits’ core features (e.g., respective reading
subskills and social communication). Additionally, a recent

Fig. 2 Structural models of 10 neurodevelopmental and psychiatric disorders. Each genetic factor (F1–F5) represents shared genetic
liability. Single-headed arrows represent standardised loading parameters, which indicate covariance of the latent factor with a given
parameter. Standard errors are given in parentheses. Double-headed arrows connecting factors represent pairwise correlation. Double-
headed arrows connecting a component to itself represent residual variance, i.e., variability that is unexplained by factor loading. Factor
residuals are fixed for scaling. a Confirmatory model based on exploratory factor analysis. b Modified confirmatory model that separates DYX
and ADHD into a separate cluster of learning difficulties, based on observed genetic correlations.
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Psychiatric

Cognitive

Education

Occupation

Physical health

Lifestyle

Wellbeing

Home ownership
Townsend deprivation index

Financial difficulties in the last 2 years
Receive disability living allowance

Long-standing illness, disability or infirmity
Ever sought or received professional help for mental distress

Mood swings
Ever self-harmed
Racing thoughts

Loneliness, isolation
Risk taking

Easily distracted
Ever manic or hyper for 2 days

Cannabis use disorder

Age started smoking
Current smoker

Current alcohol drinker
Screentime duration

No physical activity in the last 4 weeks
Attending a sports club or gym

Body mass index
Basal metabolic rate

Excessive, frequent or irregular menstruation
Age at first living birth

Gastro-oesophageal reflux

Ever used hormone-replacement therapy

Hearing difficulty
Age started wearing glasses or contact lenses

Any disease of the nervous system
Other joint disorders

Osteoarthritis
Shoulder lesions

Deranged meniscus
Arthrosis

Walking as a general means of transport

Bone fractures
Chronic pain

Stroke
Heart failure

Coronary atherosclerosis
Interstitial lung disease

Chronic obstructive pulmonary disease
Asthma

Shortness of breath while walking
Breathing problems while working

Dusty workplace
Unable to work because of sickness or disability

Job involves shift work
College or university qualification

GCSE qualification
NVQ/HND/HNC qualification

No qualification

Conditional arithmetic test
Positional arithmetic test

Concept interpolation test

Year ended full time education

Word interpolation test
Synonym naming test

Fluid intelligence score
Cognitive performance

Schizophrenia*
Major depressive disorder*

Bipolar disorder*
Anxiety disorder*

Dyslexia*
ADHD*

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
Genetic correlation (rg)

Fig. 3 Genomic correlations between the learning difficulties latent factor and other traits. Only 66 out of 330 significant correlations after
Bonferroni correction are shown. Traits marked with an asterisk are traits used in this study for GenomicSEM modelling. Error bars
represent SEM.
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bivariate causal mixture model analysis of bipolar disorder,
depression, schizophrenia, and ADHD showed that ADHD is the
least polygenic of these traits (5600 causal variants) [47]. If
polygenicity is low but pleiotropy high then one would expect
lower residual variance for ADHD. Thus, the finding of substantial
residual variance in dyslexia and autism could indicate higher
polygenicity for these traits compared to ADHD. Intelligence, a
trait genetically correlated with dyslexia, ADHD, and autism, for
instance, showed high polygenicity (~11,500 variants) using this
mixed effect modelling [47]. Such an approach should be applied
to dyslexia and autism in future.

We observed that the neurodevelopmental latent factor was
more strongly correlated than the attention and learning factor
with the other latent factors, often showing correlations that were
twice as high. This aligns with findings from a study that dissected
the shared and unique genetic background of ADHD and autism
spectrum disorder [48]. That study found that the shared genomic
portion was strongly associated with psychiatric traits (e.g.,
depressive symptoms) whereas the distinct part was strongly
associated with cognitive traits (e.g., educational attainment,
childhood IQ). This distinct part is likely captured in the attention
and learning difficulties factor. This is supported by stronger
genomic correlations between the learning difficulties factor and
cognitive and educational traits: cognitive performance (–0.53),
fluid intelligence (–0.55), absence of higher qualifications (0.41);
and weaker correlations between the learning difficulties factor
and psychiatric traits: major depressive disorder (0.29), anxiety
disorder (0.30), self-harming behaviours (0.30) or mood swings
(0.27).
Further extension of the genomic structural model including

other relevant traits should help to clarify the nature of the
attention and learning factor and the large residual variance in
dyslexia. Specifically, additional specific learning difficulties, such
as dyscalculia, and other developmental disorders that co-occur
with dyslexia, namely developmental language disorder and
dyspraxia [49] should be prioritised for inclusion. This is
particularly evidenced by the strong correlations between the
attention and learning difficulties latent factor and performance in
linguistic and mathematical tests. At present, no large GWAS have
been reported for these traits, precluding their use for Genomic-
SEM. Multivariate genetic modelling in 12-year-old twins [50]
showed that genetic influences on reading, mathematics, and
language difficulties each overlapped largely with the genetic
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Table 2. Results of Gene Ontology enrichment analysis for 174 genes
mapped to putative pleiotropic loci influencing dyslexia and ADHD.

Gene Ontology term Adjusted p-value

Molecular functions

protein binding 2.77 × 10–4

hyalurononglucosaminidase activity 2.10 × 10–2

peptide-O-fucosyltransferase activity 4.99 × 10–2

Biological processes

glycosaminoglycan catabolic process 1.95 × 10–3

macromolecule modification 4.69 × 10–3

protein modification process 4.82 × 10–3

aminoglycan catabolic process 5.55 × 10–3

developmental process 8.02 × 10–3

anatomical structure development 2.36 × 10–2

multicellular organism development 2.42 × 10–2
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influences on general cognitive ability/low ability, so an analysis
that further incorporates general cognitive ability may show that it
correlates strongly with the attention and learning difficulties
factor.
Our targeted approach to identify pleiotropic loci associated

with both dyslexia and ADHD uncovered 49 shared genomic loci.
Importantly, 43 of these loci were not among genome-wide
significant associations of the prior source GWAS of each separate
trait, and thus represent newly identified pleiotropic loci. The 49
putative pleiotropic loci were mapped to 174 protein-coding
genes, with gene ontology analysis suggesting enrichment of
genes involved in development. This is consistent with the
neurodevelopmental origins of both dyslexia and ADHD, both
manifesting from changes in structure, connectivity and function
of the brain [51, 52]. We also detected enrichment of genes
involved in protein modification and metabolism. While it is
known that post-translational modification has a major role in
neurodevelopment in general [53], any specific links to dyslexia
and ADHD require further investigation.
Of the 49 significant SNPs, 13 showed no associations in the

GWAS Catalogue with primary phenotypes (developmental,
cognitive, attainment) related to dyslexia or ADHD. One might
place lower confidence in these findings given that variants
shared between dyslexia and ADHD would likely have generalised
effects that can be detected in related traits such as educational
attainment or cognitive function which have well-powered GWAS.
Six SNPs were associated with dyslexia in the prior GWAS, with
one of these also significant in the previous ADHD GWAS. GWAS
Catalogue look-up showed a further two of these SNPs associated
with ADHD or a combined phenotype including ADHD, and two
others with the related traits of educational attainment and
cognitive function (including processing speed). There were no
reported associations with relevant traits for rs73175930 in AUTS2.
However, ADHD is a core feature of individuals with
AUTS2 syndrome arising from pathogenic variants in this gene
[54]. For the three SNPs previously identified in the ADHD GWAS
but not the dyslexia GWAS, all were reported to associate with
educational attainment and/or cognitive function. For all other
significant SNPs, there was a mixture of reported associations with
primary traits, secondary traits (risk taking, externalising beha-
viours, psychiatric, neuroticism), and other traits (many medical
health outcomes that may be downstream outcomes related to
lower socio-economic status of those with dyslexia and ADHD).
These variants may therefore be associated with a whole range of
behaviours due to their primary effect on attention and learning
processes which we suggest define the covariation between
dyslexia and ADHD. This hypothesis might be further tested in
extended genomicSEM models that include a host of variables
that we identify here (e.g., risk-taking, externalising behaviours,
educational attainment) as being previously associated with our
significant SNPs for combined dyslexia and ADHD. Downstream
outcomes can be confirmed by Mendelian Randomization
methods in cases where confounding by socio-economic status
is unproblematic.
Four genes – SORCS3, TCTA, TRAIP and AMT – shown to be

pleiotropic had previously been associated with dyslexia and
ADHD in individual GWAS studies and are very strong pleiotropic
candidate genes [11, 31]. The SORCS3 protein is abundant in the
central nervous system [52]. It has a primary role in sorting
intracellular proteins between organelles and the plasma mem-
brane, and a secondary role in cell signalling. Mouse studies of the
murine orthologue of SORCS3 have implicated it in long-term
synaptic depression via aberrant glutamate signalling [55].
SORCS3-deficient mice have decreased synaptic plasticity and
deficits in spatial learning and memory. This is consistent with the
proposed theories of reduced visual and spatial learning abilities
in children with dyslexia and ADHD [56, 57]. SORCS3 has previously
been suggested as a pleiotropic gene associated with ADHD,

autism, schizophrenia, bipolar, and MDD [58]. In addition, SORCS3
mutations have been linked with intellectual delay [59], multiple
sclerosis [60] and Alzheimer’s disease [61]. TCTA has a role in
regulating processes related to dissolution and absorption of bone
[62], so is not an obvious candidate gene for involvement in brain-
related phenotypes. However, in GWAS, variants at this locus have
been associated with relevant traits of very high intelligence,
cognitive function, and household income [63–65], and less
relevant traits like cardiovascular disease, Crohn’s disease,
inflammatory bowel disease (from NHGRI-EBI GWAS Catalogue
[66]). TRAIP, part of the RING finger protein gene group, is linked to
the ubiquitination pathway protecting genome integrity following
replication stress [67]. Variants in this gene have been associated
with more than 40 phenotypes, but notably the most strongly
associated SNPs (P ≤ 7 × 10−18) in this gene have been from a
meta-analysis combining ADHD, AUT and intelligence [68] for
multiple studies of intelligence/cognitive function including the
cognitive component of education attainment [69–72], and
externalising behaviour [73]. Thus, the gene may potentially be
involved in general learning processes that can be affected in
both ADHD and dyslexia. The AMT gene encodes a critical
component of the glycine cleavage system contributing to normal
development and function of neurons [74]. It is strongly
associated (P= 5 × 10−82) with educational attainment [71], an
outcome that is negatively correlated with both ADHD and
dyslexia, and could be prioritised as a candidate gene involved in
learning given its lack of strong association with other pheno-
types. For the remaining 170 pleiotropic mapped genes (32
previously found for dyslexia and 17 for ADHD), and particularly
the 121 that were not identified in previous dyslexia and ADHD
screens, future research is needed to understand the extent of
their overlap with both general and specific cognitive abilities.
There are a number of limitations to this study: (1) the GWAS

included here had variable sample sizes. Lack of power in small
GWAS datasets (i.e., AN, TS) results in decreased effect sizes, and
thus could contribute to reduced strengths of genetic correlations
observed. (2) We have been unable to control for causal
relationships and diagnostic overlap in building our structural
models, which may potentially inflate genetic correlations. (3) The
dyslexia, ADHD, ANX and MDD GWAS was based on self-reported
diagnoses, which may have confounded results through mis-
classification of cases versus controls. (4) All participants of the
GWAS included in this study were adult individuals of European
ancestry, limiting the applicability of results across ancestries and
across life stages. Future investigations into psychiatric conditions
in non-European samples or at earlier neurodevelopmental stages
will likely uncover different genomic correlations, allowing for a
more comprehensive understanding of the relationships
between them.
In sum, our analysis of genetic relationships of 10 develop-

mental traits, which includes dyslexia for the first time, and
psychiatric disorders has shown the emergence of an attention
and learning difficulties factor that is only modestly correlated
with a separate neurodevelopmental factor. In this model, ADHD
aligns more closely with dyslexia than autism, suggesting that
ADHD may be better termed as a learning difficulty than a
psychiatric disorder, and highlighting the importance of it being
managed within education and later employment. To explain the
large residual variance in dyslexia, extension of the genomicSEM
model to include other co-occurring developmental traits and a
range of other cognitive abilities will be informative, once reliable
GWAS of these are available. Finally, we discovered 49 potentially
pleiotropic genomic risk loci, 43 of which are novel, influencing
the development of both dyslexia and ADHD, and further confirm
SORCS3 and TRAIP as putative pleiotropic genes that likely have
broad associations with neuropsychiatric traits potentially through
learning pathways. Future GWAS investigations of individuals with
co-occurring dyslexia and ADHD will help to validate our
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pleiotropy analyses and determine whether the identified variant
effects are larger when both traits are present.
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