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Abstract
Background Traumatic brain injury (TBI) can significantly disrupt autonomic nervous system (ANS) regulation, increasing 
the risk for secondary complications, hemodynamic instability, and adverse outcome. This retrospective study evaluated 
windowed time-lagged cross-correlation (WTLCC) matrices for describing cerebral hemodynamics–ANS interactions to 
predict outcome, enabling identifying high-risk patients who may benefit from enhanced monitoring to prevent complications.
Methods The first experiment aimed to predict short-term outcome using WTLCC-based convolution neural network models 
on the Wroclaw University Hospital (WUH) database  (Ptraining = 31 with 1,079 matrices,  Pval = 16 with 573 matrices). The 
second experiment predicted long-term outcome, training on the CENTER-TBI database  (Ptraining = 100 with 17,062 matri-
ces) and validating on WUH  (Pval = 47 with 6,220 matrices). Cerebral hemodynamics was characterized using intracranial 
pressure (ICP), cerebral perfusion pressure (CPP), pressure reactivity index (PRx), while ANS metrics included low-to-
high-frequency heart rate variability (LF/HF) and baroreflex sensitivity (BRS) over 72 h. Short-term outcome at WUH was 
assessed using the Glasgow Outcome Scale (GOS) at discharge. Long-term outcome was evaluated at 3 months at WUH 
and 6 months at CENTER-TBI using GOS and GOS-Extended, respectively. The XGBoost model was used to compare 
performance of WTLCC-based model and averaged neuromonitoring parameters, adjusted for age, Glasgow Coma Scale, 
major extracranial injury, and pupil reactivity in outcome prediction.
Results For short-term outcome prediction, the best-performing WTLCC-based model used ICP-LF/HF matrices. It had an 
area under the curve (AUC) of 0.80, vs. 0.71 for averages of ANS and cerebral hemodynamics metrics, adjusted for clinical 
metadata. For long-term outcome prediction, the best-score WTLCC-based model used ICP-LF/HF matrices. It had an AUC 
of 0.63, vs. 0.66 for adjusted neuromonitoring parameters.
Conclusions Among all neuromonitoring parameters, ICP and LF/HF signals were the most effective in generating the 
WTLCC matrices. WTLCC-based model outperformed adjusted neuromonitoring parameters in short-term but had moder-
ate utility in long-term outcome prediction.
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Introduction

Traumatic brain injury (TBI) ranks among the leading causes 
of death and disability worldwide. The Lancet Neurology 
Commission on TBI, published in 2017 [49] and then in 2022 
[50], reported that TBI was estimated to constitute one of the 
top three causes of injury-related death and disability, with 50 
million–60 million people sustaining a TBI each year, world-
wide. Despite advancements in intensive care, little progress 
has been made in reducing TBI-related morbidity and mortal-
ity [50]. Modern neurocritical care, driven by neural networks 
and advanced biosignal processing, has the potential to revo-
lutionize personalized diagnostic and treatment approaches 
[30, 47]. Brain trauma as an acute biomechanical event is 
characterized by multiple pathophysiological processes that 
develop over time and are not limited to the brain [61].

Under normal conditions, the brain regulates cerebral 
blood flow (CBF) through cerebral autoregulation, a process 
that is partially controlled by the autonomic nervous system 
(ANS) [13, 40, 59]. Conversely, the brain influences car-
diac function through the sympathetic and parasympathetic 
branches of the ANS, which consists of multisynaptic path-
ways from myocardial cells back to peripheral ganglionic 
neurons and further to central preganglionic and premotor 
neurons [67]. This bidirectional communication creates an 
intricate network, allowing the brain and heart to continu-
ously exchange information [35]. However, this interdepend-
ence can be significantly modified after acute brain injury, 
which might contribute to cerebral hypoperfusion and sec-
ondary injury after TBI [19, 42, 63, 73]. Understanding and 
following therapeutic modulation of brain–heart interactions 
may be an option for improving outcome [35, 75].

Shortly after TBI, there is an increase in sympathetic 
activity and catecholamine levels. The initial state of 
hyperactivity of the sympathetic branch resulted in organ 
vasoconstriction and decreased perfusion [21]. This high 
sympathetic tone persists after TBI, with circulating cat-
echolamine levels remaining high for up to 10 days, which 
is a potentially protective mechanism, designed to maintain 
cerebral perfusion in the presence of increased intracranial 
pressure (ICP), but it also has several adverse effects [36]. 
Although the most important time frame for ANS dysfunc-
tion analysis has not yet been clearly defined, recent studies 
have suggested that the first 72 hours post-injury may be 
crucial [8, 27, 78, 79]. In some patients, paroxysmal sympa-
thetic hyperactivity (PSH) syndrome develops and is char-
acterized by episodic tachycardia, hypertension, tachypnea, 
hyperpyrexia, diaphoresis, and abnormal motor posturing. 
The general prevalence of PSH is up to one-third of patients 
with moderate and severe TBI, however, because PSH is 
often misinterpreted in clinical practice, the appropriate inci-
dence of PSH is likely greater [58].

Several advanced signal-processing methods have been 
used to describe brain–heart interactions. Analytic tech-
niques such as recurrence plots, cross-correlation func-
tions, and wavelet analysis have been applied to identify 
transient elevations in heart rate (HR) and ICP in the TBI 
cohort [25]. Principal dynamic mode analysis has shown 
that adding HR into a two-input model of cerebral hemo-
dynamics (with arterial blood pressure and  CO2 concentra-
tion as inputs) significantly reduces prediction error [52]. To 
explore phase‒causal links between brain and heart oscil-
lations, cross-frequency coupling functions have been pro-
posed [68]. Additionally, a complex network approach based 
on visibility graphs has been introduced to analyze network 
topological measures for detecting brain–heart communica-
tion within the system [24].

The computational complexity of these advanced meth-
odologies has limited their adoption in clinical practice [26]. 
Conversely, in traditional analyses, high-resolution signals 
are averaged into a single value, which eliminates short-
term patterns. Transient episodes can be captured by cor-
relating time series at the individual level, rather than at 
the cohort level. An alternative method, that may overcome 
these limitations is windowed time-lagged cross-correlation 
(WTLCC).

The WTLCC characterizes the fine-grained dynamics 
between time series. Unlike a cross-correlation computed 
over the entire series, which may provide a limited view 
of the dynamics between neuroparameters, WTLCC uses 
short sliding windows [5]. When applied to high-resolution 
monitoring, it generates hundreds of correlation matrices 
(heatmaps) for a patient and thousands of them for a cohort.

This retrospective study aimed to investigate the utility 
of WTLCC matrices in describing brain–heart interactions 
after brain trauma. We hypothesize that quantifying these 
dynamics during the acute phase after brain injury may 
enable the identification of high-risk patients who could 
benefit from enhanced monitoring to prevent complications 
and improve outcome prediction after TBI.

Materials and methods

Study design

The first experiment (‘WTLCC utility’) investigated the 
effectiveness of the WTLCC-based model for predicting 
short-term outcome in TBI patients, assessing whether it 
differentiates short-term outcome better than averaged neu-
romonitoring parameters. This experiment was conducted 
exclusively on the Wroclaw University Hospital (WUH) 
database. The second experiment (‘WTLCC generalizabil-
ity’) assessed the model’s utility for predicting long-term 
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outcome in a broader, external TBI dataset. For this purpose, 
the CENTER-TBI database was used for training and the 
WUH database was used for validation. We also evaluated 
whether the WTLCC model offered improved differentia-
tion for long-term outcomes over averaged neuromonitoring 
parameters. The detailed study design is shown in Fig. 1.

Ethical approval

Ethical approval for the retrospective analysis of the 
WUH database was obtained from the Bioethics Commit-
tee at WUH, Poland, under approval KB-133/2023. The 
CENTER-TBI study (European Commission grant 602,150) 
was conducted in accordance with all relevant laws of the 
European Union that are directly applicable or of direct 
effects and all relevant laws of the country where the recruit-
ing sites were located, including but not limited to, the rel-
evant privacy and data protection laws and regulations (the 

“Privacy Law”), the relevant laws and regulations on the 
use of human materials, and all relevant guidance relating 
to clinical studies from time to time in force, including but 
not limited to, the ICH Harmonized Tripartite Guideline for 
Good Clinical Practice (CPMP/ICH/135/95) (“ICH GCP”) 
and the World Medical Association Declaration of Helsinki 
entitled “Ethical Principles for Medical Research Involving 
Human Subjects.” Informed consent by the patients and/or 
the legal representative/next of kin was obtained, accord-
ing to the local legislations, for all patients recruited in 
the Core Dataset of CENTER-TBI and documented in the 
e-CRF. Ethical approval was obtained for each recruiting 
site from the appropriate local ethics committee, and the 
full list of approvals is available on the website: https:// 
www. center- tbi. eu/ proje ct/ ethic al- appro val. This analysis 
adheres to the Guidelines for Strengthening the Reporting 
of Observational Studies in Epidemiology (STROBE) State-
ment (Supplementary materials).

Fig. 1  Study design. The aim of the first experiment (‘WTLCC util-
ity’) was to investigate to the utility of windowed time-lag cross-
correlation (WTLCC) matrices, which describe cerebral hemody-
namics-autonomic nervous system (ANS) interactions for predicting 
short-term outcome. For cerebral hemodynamics parameters, intrac-
ranial pressure (ICP), cerebral perfusion pressure (CPP), pressure 
reactivity index (PRx) were used, and baroreflex sensitivity (BRS) 
and low-to-high component ratio of heart rate variability (LF/HF) 

were used as ANS metrics. This experiment was performed exclu-
sively on the Wroclaw University Hospital (WUH) database. The 
second experiment (‘WTLCC generalizability’) aimed to evaluate 
the utility of WTLCC matrices for predicting long-term outcome 
in a larger, external database of TBI patients. For this purpose, the 
CENTER-TBI database was used for training, and the WUH database 
was used for validation

https://www.center-tbi.eu/project/ethical-approval
https://www.center-tbi.eu/project/ethical-approval
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Study population

The WUH database includes patients admitted to the 
intensive care unit (ICU) of the WUH from 2014–2019. 
All patients were diagnosed with acute brain injury (TBI 
or aneurysmal subarachnoid haemorrhage (aSAH)). In 
this study, the following inclusion criteria were used: 
patients aged 18 years or older, with available outcome 
at hospital discharge and long-term outcome, ICP sensor 
implementation, and hemodynamic stability at the start 
of monitoring, with good quality signals during the first 
three days of monitoring. None of the patients underwent 
craniectomy. A flow chart is presented in Supplementary 
Fig. 1. All patients were treated according to guidelines 
applicable at the time of admission (for aSAH [20]and 
for TBI [12]). The study group was homogenous in terms 
of the severity of the injury and treatment protocol. In 
the TBI cohort, all patients suffered predominantly from 
severe TBI (severe = Glasgow Coma Scale (GCS) score of 
8 or less). In patients who required craniectomy, monitor-
ing ended after surgery. In the aSAH cohort the decision 
concerning treatment with surgical clipping or endovas-
cular coiling of the aneurysm, was based on the patient’s 
condition and physician’s interest and was performed 
within 24 h after admission to the hospital. In the ICU, all 
patients were classified according to the GCS score, with 
the majority of patients assessed as being in severe condi-
tion. Angiography with computer tomography (angio-CT) 
was used to localize the ruptured aneurysm. The Hunt 
and Hess (H–H) scale and the World Federation of Neu-
rological Surgeons (WFNS) grading scale were used to 
classify aSAH. The extent of haemorrhage was evaluated 
with the Fisher scale.

The CENTER-TBI is a large multicenter European pro-
ject that aims to better understand and improve the care of 
patients with TBI. Patients were recruited prospectively 
between the beginning of 2015 and the end of 2017 from 
21 medical centers across Europe. All patients were treated 
following current evidence-based guidelines for TBI [15]. 
Detailed information on the data collection is available 
on the study website (https:// www. center- tbi. eu/ data/ dicti 
onary). Version CENTER Core 3.0 of the CENTER-TBI 
dataset was used in this study. Among the 2138 patients 
in the ICU included in the CENTER-TBI data collection, 
a subgroup of 282 patients, named the high-resolution 
CENTER-TBI substudy, had high-frequency digital sig-
nals from ICU monitoring. In this study, we applied the 
following inclusion criteria: patients over 16 years of age, 
with available hospital discharge status and follow-up data 
after six months, ICP sensor implantation, no craniotomy 
performed, and good-quality signals recorded during the 
first three days of monitoring. The flow chart for patient 

inclusion is presented in Supplementary Fig. 2. All patients 
were treated according to guidelines applicable at the time 
of admission and the group was homogenous in terms of 
the treatment protocol.

Signal monitoring and processing

In the WUH database, the ICP was measured invasively 
using an intraparenchymal probe (Codman MicroSensor 
ICP Transducer, Codman & Shurtleff, Randolph, MA, 
USA) inserted into the frontal cortex. Arterial blood 
pressure (ABP) was measured invasively in the radial or 
femoral artery using a pressure transducer (Argon Stan-
dalone DTX Plus™, Argon Medical Devices Inc. Plano, 
TX, USA). The signal was recorded with a sampling 
frequency of 200 Hz using ICM + software (Cambridge 
Enterprise Ltd., Cambridge, UK). In the CENTER-TBI 
database, the ICP was measured via intraparenchymal 
strain gauge probe (Codman ICP MicroSensor, Codman 
& Shurtlef Inc., Raynham, MA, USA) or parenchymal 
fiber optic pressure sensor (Camino ICP Monitor, Integra 
Life Sciences, Plainsboro, NJ, USA). ABP was measured 
via a radial or femoral arterial line connected to a pres-
sure transducer (Baxter Healthcare Corp., CardioVascu-
lar Group). The signal was recorded with a sampling fre-
quency of 100 Hz or higher using ICM + software and/or 
the Moberg CNS Monitor (Moberg Research Inc., Ambler, 
PA, USA). In both databases, multimodal signal record-
ing was performed within the first 24 h after onset. In 
this study, we used the first three days of neuromonitoring 
(Fig. 2). The mean values of all the signals and derived 
parameters were calculated using waveform time integra-
tion over 60-s intervals; therefore, the discrepancy in the 
sampling frequency could be neglected.

Outcome

In the WUH database, outcome was assessed in the short-
term (hospital discharge) and long-term (after three months) 
using Glasgow Outcome Scale (GOS), which was dichoto-
mized as favourable (4–5) or unfavourable (1–3). The assess-
ment was performed by one experienced neurointesivist 
(M.B.) and was adjusted for assessment of independence 
when assessment was performed during discharge, as rec-
ommended [77]. In the CENTER-TBI database, long-term 
outcome (after six months) was assessed using the Glasgow 
Outcome Scale Extended (GOS-E). The outcome scores 
were dichotomized as favourable (lower than moderate 
disability or better [GOS-E score of 5–8]) or unfavourable 
(upper severe disability or worse [GOS-E score of ≤ 4]) on 
the basis of the dichotomization utilized in the other trials 
[3].

https://www.center-tbi.eu/data/dictionary
https://www.center-tbi.eu/data/dictionary
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Fig. 2  An examplary time series of cerebral hemodynamics param-
eters: intracranial pressure (ICP), cerebral perfusion pressure (CPP), 
and pressure reactivity index (PRx), as well as autonomic nervous 
system parameters: baroreflex sensitivity (BRS) and the ratio between 

the low (LF, 0.04–0.15 Hz) and high (HF, 0.15–0.40 Hz) frequency 
ranges of heart rate variability (LF/HF) during the first three days 
(72 h) of recordings in traumatic brain injury patient hospitalized at 
Wroclaw University Hospital (WUH)
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Cerebral hemodynamics parameters

Cerebral perfusion pressure (CPP) was defined as the differ-
ence between the mean ABP and ICP. Cerebral autoregula-
tion was assessed using pressure reactivity index (PRx), cal-
culated as the Pearson linear correlation coefficient between 
slow waves in the ABP and the ICP signal. First, the signals 
were averaged over 10 s intervals to isolate the slow changes, 
and then the correlation coefficient was assessed in 5 min 
moving average windows updated for 10 s [22].

Autonomic nervous system metrics

Baroreflex sensitivity (BRS) was assessed in the time domain 
using the sequential cross-correlation method proposed by 
Westerhof et al. [76]. It was calculated as the slope of the 
regression line between 10 s segments of the systolic peak-
to-peak interval and the corresponding systolic pressure time 
series derived from the ABP signal. Heart rate variability 
was assessed in the frequency method using the Lomb–Scar-
gle periodogram as the ratio between the low range (LF, 
0.04–0.15 Hz) and high range (HF, 0.15–0.40 Hz), termed 
LF/HF [51].

Windowed time‑lagged cross‑correlation

The WTLCC analysis is illustrated in Fig. 3. Correlated 
parameters (I1 and I2) included the first 72 h of cerebral 
hemodynamics parameters (ICP, CPP, and PRx) and ANS 
metrics (LF/HF and BRS). WTLCC applied to two series 
I1(n) and I2(n) of length N creates a matrix with K rows and 
J columns, where each row k corresponds to a time-lagged 
cross-correlation for the kth window between both signals 
[10]. Each value in this row is a time-lagged correlation 
value of the windowed signals with the lag lk,j for the jth 
column being equal to lk,j = j-J/2 samples. Next, a window 
of length N is sampled from the signal by moving it begin-
ning with a stride value S, thus creating multiple overlapping 
windows from a single patient (Supplementary Fig. 3). The 
hyperparameters used for heatmap generation were adjusta-
ble from the following sets: N: 360 min, 720 min, 1080 min; 
S: 15 min, 30 min, 60 min, 90 min; and K: 15, 30, 60. By 
default, the time lag (J) was set as a constant 240 min (with a 
1-min resolution, moving 120 min both way). All the hyper-
parameters of the WTLCC matrices were optimized using 
Bayesian optimization technique. The details of the optimi-
zation procedure are presented in the Supplementary Data.

Convolutional neural network

A custom convolutional neural network (CNN) was used 
as a general approximator for finding a mapping from the 
WTLCC matrices to a binary variable of unfavourable/

favourable outcome. The exact structure, training details 
and hyperparameters of the networks can be found in Sup-
plementary Table 1. A total of 2016 models were trained. 
We score the models using aggregate metrics computed for 
all the matrices from a single patient. The scores are concat-
enated using a simple heuristic that computes the means of 
all the scores assigned to every matrix from a single patient 
and checks whether the score exceeds the threshold of 0.5 
(see the analysis pipeline in Fig. 3). The learning procedure 
is described in detail in the Supplementary Data. The per-
formance of the CNN model was assessed using a receiver 
operating characteristic (ROC) curve with the area under the 
curve (AUC), accuracy and F1 score.

XGBoost model

To compare the performance of the features learned from 
the WTLCC-based model and clinical metadata, which 
are commonly used for outcome prediction, we propose 
an extension to the experiments. We generate a simple tab-
ular classifier using the gradient-boosted trees algorithm 
(XGBoost) [16] to predict short and long-term outcome 
on the basis of one of the two potential feature sets: (1) 
average values of neuroparameters (ICP, CPP, PRx, BRS, 
LF/HF) adjusted for clinical features from the established 
Corticoid Randomization after Significant Head Injury 
(CRASH) model (age, Glasgow Coma Scale (GCS), pupil 
reactivity, major extracranial injury) [57]; (2) WTLCC-
based model embeddings adjusted for clinical features 
from the CRASH model. The model embeddings are fea-
ture vectors generated by applying the feature extraction 
component of the best-performing CNN model (identi-
fied during hyperparameter optimization) to the WTLCC 
matrix. The data split used for training this classifier is the 
same as that used for training the model, reducing informa-
tion leakage between the training and validation datasets. 
In the XGBoost model for long-term outcome prediction, 
where the CENTER-TBI database was used as the training 
set, the  Ptraining was 92, because of missing data about GCS 
(n = 5) and pupil reactivity (n = 3).

Statistical analysis

The normality of the data was assessed using the Shapiro‒
Wilk test. Because the normality condition was not met for 
most of the analyzed parameters, nonparametric tests were 
applied. The differences in median values were tested using 
the Mann–Whitney U test. For categorical data, the Pear-
son  CHI2 test (Fisher exact test) was used. The level of sig-
nificance was set at 0.05. Data are presented as the median 
(first–third quartile) unless indicated otherwise. Statistical 
analysis was performed using STATISTICA 13 (Tibco, Palo 
Alto, CA, USA).
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Results

Study population

The WUH database included 47 patients with acute brain 
injury, consisting of 38 with TBI and 9 with aSAH. The 
clinical characteristics of the WUH cohort are presented in 
Table 1. The inclusion and exclusion criteria are detailed 
in the flow chart (Supplementary Fig. 1). The median age 

was 38 (28–63) years, with 15 (32%) females. Patients 
were in moderate to severe condition, with a GCS score 
of 7 (5–8). In the aSAH group the haemorrhage was clas-
sified as severe, with mFisher score of 4 (3–4), WFNS 
score of 5 (3–5), and H–H scale score of 5 (4–5). Unfa-
vourable short-term outcome was found in 35 (74%) 
patients in the group. At the 3-month follow-up, 21 (45%) 
of the patients had unfavourable long-term outcome. The 
CENTER-TBI database includes 100 patients with TBI. 

Fig. 3  The pipeline of the analysis uses windowed time-lagged cross-
correlation (WTLCC) (Upper panel) WTLCC is applied to two series 
I1(n) and I2(n) of length N, creating a matrix with K rows and J col-
umns. (Lower panel) A custom convolutional neural network (CNN) 

was used as a general approximator for the task of finding a map-
ping from the WTLCC matrices to a binary variable of unfavourable/
favourable outcome. The details of WTLCC and CNN are presented 
in the Supplementary materials



 Acta Neurochirurgica         (2024) 166:504   504  Page 8 of 15

The clinical characteristics of this cohort are presented in 
Table 1. The detailed inclusion and exclusion criteria are 
presented in the flow chart (Supplementary Fig. 2). The 
median age was 53 (36–64) years, with 25 (25%) being 
female. Patients were in moderate to severe condition, 
with a GCS score of 7 (3–11). Within this group, at the 

6-month follow-up, 51 (51%) of the patients had unfavour-
able long-term outcome.

Experiment 1: WTLCC utility

Selected hyperparameters for WTLCC matrices

The WUH database was randomly divided into two separate 
groups for training and validation (Ptraining = 31, Pval = 16). 
Across all the experiments (see details in the ‘Convolutional 
neural network’ section), the following hyperparameters 
received the best score metrics: parameters  I1 – ICP, and  I2 
– LF/HF. The WTLCC matrices parameters were as follows: 
length (N) of 1080 min, correlation step (S) of 90 min, and 
a number of windows (K) of 60.

WTLCC‑based model for short‑term outcome

The CNN model was trained on 1,079 matrices and vali-
dated on 573 matrices. The best-performing CNN, used to 
map acute-phase WTLCC matrices to short-term outcome, 
achieved an accuracy of 88%, with an F1 score of 0.92 and 
an AUC of 0.80. The ROC curve and confusion matrix are 
presented in Fig. 4.

Averages of neuromonitoring parameters vs. 
short‑term outcome

A comparison of the average neuromonitoring parameters 
by short-term outcome in the WUH database is presented in 
Table 2. Notably, none of the neuromonitoring parameters 
averaged over the first three days were significant predictors 
of unfavourable outcome.

WTLCC‑based model vs. neuromonitoring 
parameters adjusted for CRASH features 
in short‑term outcome prediction

We compared WTLCC-based model embeddings with 
average values of cerebral hemodynamics and ANS met-
rics (ICP, CPP, PRx, BRS, LF/HF), after adjustment for 
clinical features from the established CRASH model (age, 
GCS, pupil reactivity, major extracranial injury), in the 
short-term outcome prediction task. This predictive mod-
elling was performed using the XGBoost algorithm (see 
details in the ‘Methods’ section). The adjusted neuromoni-
toring parameters had an accuracy of 75%, with an F1 score 
of 0.82 and an AUC of 0.71. The adjusted WTLCC-based 
model embeddings had an accuracy of 88%, with an F1 
score of 0.92 and an AUC of 0.80.

Table 1  Baseline clinical characteristics of patients from the Wro-
claw University Hospital (WUH) database and the CENTER-TBI 
database.  Data are presented as median (lower  quartile-upper quar-
tile) or number (percentage)

TBI,  traumatic brain injury; aSAH, aneurysmal subarachnoid 
haemorhhage;  ISS, injury severity scale; CT, computed tomography; 
NA, data were not available; a data concerning the Glasgow Coma 
Scale were not available for n = 5 patients; b,c variables available for 
TBI patients, where  for c  more than one is possible; d In the WUH 
database short-term outcome was assessed at hospital discharge and 
long-term outcome was assessed after 3 months using Glasgow Out-
come Scale (GOS); in the CENTER-TBI, long-term outcome was 
assessed after 6 months using the Glasgow Outcome Scale Extended 
(GOS-E)

Characteristics of total group WUH (N = 47) CENTER-
TBI 
(N = 100)

TBI 38 (81%) 100 (100%)
aSAH 9 (19%) 0
Age [years] 38 (28–63) 53 (36–64)
Female 15 (32%) 25 (25%)
Glasgow Coma Scale 7 (5–8) 7 (3–11)a

ISS 36 (26–50) 32 (25–41)
Major extracranial injuries 25 (53%) 39 (39%)
bCause of injury:
Road traffic incident 20 (53%) 40 (40%)
Incident fall 14 (37%) 34 (34%)
Other nonintentional injuries 2 (4%) 4 (4%)
Violence/Assault 1 (3%) 12 (12%)
Suicide attempt 0 0
Other/Unknown 1 (3%) 10 (10%)
bPupillary reactivity:
Bilaterally reacting 29 (76%) 77 (77%)
Unilaterally reacting 7 (18%) 8 (8%)
Bilaterally nonreacting 2 (6%) 12 (12%)
NA 0 3 (3%)
cCT characteristics:
Contusion 24 (51%) 59 (59%)
Epidural hematoma 4 (9%) 20 (20%)
Cerebral Hematoma 15 (32%) 32 (32%)
Traumatic SAH 16 (34%) 77 (77%)
dOutcome:
Unfavourable short-term outcome, 

n(%)
35 (74%) NA

Unfavourable long-term outcome, n(%) 21 (45%) 51 (51%)
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Experiment 2: WTLCC generalizability

Selected hyperparameters for WTLCC matrices

The training process in experiment 2 was performed inde-
pendently of experiment 1, and both databases (CENTER-
TBI and WUH) were not mixed in any stage of analysis. 
The CENTER-TBI database was used as the training set 
(Ptraining = 100) and the WUH database was used as the 
validation set (Pval = 47). The following hyperparameters 
received the best score metrics across all the experiments: 
parameters  I1 – ICP, and  I2 – LF/HF. The WTLCC matrix 
parameters were as follows: length (N) of 1080 min, correla-
tion step (S) of 15 min, and a number of windows (K) of 60.

WTLCC‑based model for long‑term outcome

The CNN model was trained on 17,062 matrices and vali-
dated on 6,220 matrices. The best-score custom CNN, used 
for the task of finding a mapping from the acute-phase 
WTLCC matrices to long-term outcome, had an accuracy 
of 59%, with an F1 score of 0.64 and an AUC of 0.65. The 
ROC curve and confusion matrix are presented in Fig. 4.

Averages of neuromonitoring parameters vs. 
long‑term outcome

A comparison of neuromonitoring parameters between 
groups with favourable and unfavourable long-term outcome 
is presented in Table 2. In the WUH database, PRx was 
higher in patients with unfavourable outcome than in those 
with favourable (0.69 ± 0.12 vs. 0.57 ± 015; p < 0.001).

In the CENTER-TBI database, CPP [mm Hg] (67 ± 11 vs. 
73 ± 12, p = 0.011) and LF/HF (1.01 ± 0.96 vs. 1.76 ± 1.75, 
p = 0.002) were lower, whereas the PRx was higher 
(0.56 ± 0.27 vs. 0.48 ± 0.27, p = 0.048) in patients with unfa-
vourable outcome than in those with favourable.

WTLCC‑based model vs. neuromonitoring 
parameters adjusted for CRASH features 
in long‑term outcome prediction

We compared WTLCC-based model embeddings with 
average values of cerebral hemodynamics and ANS met-
rics, after adjustment for clinical features from the CRASH 
model, in the long-term outcome prediction task. This pre-
dictive modelling was performed using the XGBoost algo-
rithm (see details in the ‘Methods’ section). The adjusted 

Fig. 4  A  receiver operating characteristic (ROC) curve and confu-
sion matrix for the convolutional neural network (CNN) model uti-
lizing windowed time-lagged cross-correlation (WTLCC) in two 
experiments. The first experiment (‘WTLCC utility’) aimed to pre-
dict short-term outcome and was trained and validated on the Wro-
claw University Hospital (WUH) database (Ptraining = 31 with 1,079 

matrices, Pval = 16 with 573 matrices). The second experiment 
(‘WTLCC generalizability’) aimed to predict long-term outcome and 
was trained on the CENTER-TBI database and validated on WUH 
(Ptraining = 100 with 17,062 matrices, Pval = 47 with 6,220 matrices). 
Abbreviations: Fav. – Favourable outcome; Unfav.– Unfavourable 
outcome
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neuromonitoring parameters had an accuracy of 65%, with 
an F1 score of 0.67 and an AUC of 0.66. The adjusted 
WTLCC-based model embeddings had an accuracy of 63%, 
with an F1 score of 0.62 and an AUC of 0.63.

Discussion

In this study, we propose a new method to explore the 
simultaneous transients between cerebral hemodynam-
ics and ANS by employing an artificial intelligence-based 
model utilizing acute-phase WTLCC matrices. Among all 

the neuromonitoring parameters, ICP and LF/HF signals 
were the most effective in generating the WTLCC matri-
ces. For short-term outcome prediction, the WTLCC-based 
model performed better than average values of the neu-
romonitoring parameters after adjusting for clinical fea-
tures used in the CRASH model. However, in long-term 
outcome prediction, the utility of the WTLCC-based model 
was moderate and comparable with the mean values of 
the neuroparameters.

The WTLCC has been previously applied to study 
the relationship between simultaneous time series describ-
ing human perceptions and performance [64]. To our knowl-
edge, this is the first study to explore the utility of WTLCC 
in predicting patient outcome after acute brain injury. The 
proposed solution preserves the temporal dynamics between 
neuromonitoring parameters. By segmenting data into time 
windows, WTLCC generates hundreds of correlation matri-
ces per patient, similar to a ‘snapshot’, each capturing the 
relationship between cerebral hemodynamics and ANS 
parameters while accounting for potential delays and time-
related changes. This approach transforms a one-dimen-
sional time series into two-dimensional matrices, which can 
be analyzed similarly to images using a CNN model.

The incidence of dysautonomia or paroxysmal sympa-
thetic hyperactivity (PSH) is approximately 8% to 33% of 
TBI patients [32, 58]; however its incidence may be difficult 
to diagnose because these patients typically have significant 
neurologic and systemic injuries. In severe TBI hyperactivity 
of the sympathetic nervous system as an adaptive response 
to damaged tissues can result in damage to the myocardium 
and other critical organs [45]. Most research suggests that 
brain injury is commonly associated with increases in sym-
pathetic activity, which can alter the regulatory function of 
critical organs such as the heart via hemodynamic changes 
[54]. It is also likely that brain injury alters the fine balance 
between the sympathetic and parasympathetic arms of the 
autonomic nervous system, resulting in an imbalance of the 
homeostatic mechanisms that maintain normal organ system 
function and their interactions with each other. Therefore, 
investigating of the mechanisms of autonomic dysfunction 
can guide advancements in monitoring and treatment para-
digms to improve the acute survival and long-term prognosis 
of TBI patients [46].

In the task of finding a mapping from the WTLCC 
matrices to a binary variable of unfavourable/favourable 
outcome, ICP and LF/HF were identified as the most accu-
rate time series. ICP is a complex modality that should not 
be reduced to its mean value, as it reflects cerebral com-
pensatory mechanisms and indirectly regulates cerebral 
blood flow [23]. Recent studies have reported alterations 
in ANS activity in response to changes in ICP [33, 62]. 
However, the ICP-ANS relationship is not straightforward 
and rather nonlinear [14, 65]. The LF/HF ratio is often 

Table 2  Cerebral hemodynamic parameters and autonomic nervous 
system metrics for patients with favourable and unfavourable  short-
term and long-term outcome.  Data are presented as median (lower 
quartile-upper quartile)

WUH, Wroclaw University Hospital database; ICP, intracranial 
pressure; CPP, cerebral perfusion pressure; PRx, pressure reactivity 
index; BRS, baroreflex sensitivity; LF/HF, ratio between the low (LF, 
0.04–0.15 Hz) and high (HF, 0.15–0.40 Hz) frequency ranges of heart 
rate variability

Database: WUH (n = 47)

Parameter Favourable 
short-term out-
come
n = 12

Unfavourable 
short-term out-
come
n = 35

p-value

ICP [mm Hg] 12.9 (10.2–14.2) 11.8 (9.1–14.9) 0.854
CPP [mm Hg] 74.3 (71.5–78.3) 72.6 (65.0–77.4) 0.311
PRx [a.u.] 0.60 (0.46–0.67) 0.63 (0.55–0.71) 0.360
BRS [ms/mm Hg] 6.4 (4.2–9.2) 6.8 (4.5–8.7) 0.931
LF/HF [a.u.] 0.79 (0.49–1.15) 0.85 (0.33–1.55) 0.970
Database WUH (n = 47)
 Parameter Favourable

long-term out-
come

n = 26

Unfavourable
long-term out-

come
n = 21

p-value

 ICP [mm Hg] 12 (10–15) 13 (9–15) 0.957
 CPP [mm Hg] 73 (69–77) 74 (65–77) 0.940
 PRx [a.u.] 0.57 (0.46–0.61) 0.69 (0.62–0.74)  < 0.001
 BRS [ms/mm 

Hg]
6.7 (4.8–9.6) 5.6 (4.0–8.1) 0.226

 LF/HF [a.u.] 0.96 (0.54–1.56) 0.59 (0.29–1.36) 0.167
Database CENTER-TBI (n = 100)
 Parameter Favourable

long-term out-
come

n = 49

Unfavourable
long-term out-

come
n = 51

p-value

 ICP [mm Hg] 12 (9–15) 13 (10–16) 0.488
 CPP [mm Hg] 73 (67–78) 67 (62–74) 0.011
 PRx [a.u.] 0.48 (0.32–0.60) 0.56 (0.40–0.67) 0.048
 BRS [ms/mm 

Hg]
8.1 (4.5–11.3) 6.3 (4.5–13.1) 0.901

 LF/HF [a.u.] 1.76 (0.90–2.65) 1.01 (0.69–1.65) 0.002
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used as an indicator of sympathovagal balance. Although 
it should not be interpreted as a ‘zero-sum’ system [66], 
low LF/HF, indicating high parasympathetic activity with 
the withdrawal of the sympathetic branch, has been associ-
ated with poor outcome and increased mortality rates [18, 
39, 55]. Increased ICP, which is commonly observed after 
TBI, causes increased sympathetic activity, which in turn 
results in hypertension, increased heart rate, and catechola-
mine hypersecretion. Catecholamines increase the contractil-
ity of the heart despite increased vascular resistance [6]. On 
the other hand, previous studies have shown that the para-
sympathetic system might be triggered by an increase in 
ICP, leading to vasodilatation to preserve cerebral blood 
flow, which in turn produces an increase in arterial brain 
blood volume and consequently a further increase in ICP 
[31]. It has been demonstrated that in patients with poor out-
come, BRS remains low during an increase in ICP, whereas 
in patients with good outcome, BRS increases with higher 
ICP [56, 11, 55].

ANS metrics, including heart rate variability (HRV) 
parameters, are influenced by age, sex, functional capac-
ity, and chronic comorbidities, and measuring them in criti-
cally ill patients is accompanied by potential difficulties [69]. 
Studies where basal autonomic function can be captured, 
including elective surgery [1, 43] may provide powerful 
mechanistic insights since autonomic changes can be indi-
vidualized and referenced to pre-insult normal levels [44]. 
Despite possible problems and limitations, HRV analysis has 
been performed in intensive care for the last three decades. 
It has been shown that brain-injured patients have reduced 
HRV, whereas recovery of HRV is associated with improved 
outcome [38]. In a study of the effects of sepsis, age, seda-
tion, catecholamines, and illness severity on sympathovagal 
balance (LF/HF), an LF/HF ratio < 1.5 was shown to be asso-
ciated with sepsis and mortality [48]. Moreover, a negative 
correlation between LF/HF and the SOFA score has been 
reported [4]. Sykora et al. [71] reported that a decreased 
LH/HF ratio in a TBI cohort of patients was significantly 
associated with increased mortality, independent of ICP 
and CPP. Bodenes et al. [9] reported that lower LF/HF, and 
Shannon entropy values at admission were associated with 
higher ICU mortality. Moreover, HRV measured (including 
LF/HF) on admission enables the prediction of outcome in 
the ICU or on day 28, independent of the admission diag-
nosis, treatment, and mechanical ventilation requirements.

The prediction of outcome after brain injury is still a 
challenge. Two of the most recognized and reported models 
of outcome prediction after TBI are CRASH [57] and the 
International Mission for Prognosis and Analysis of Clinical 
Trials (IMPACT) [70]. However, both models have limi-
tations. They are based on demographic and clinical data 
related to the primary injury. According to current research 
extending prognostic models with early monitoring data of 

physiological signals may improve the accuracy of outcome 
prediction [7, 37, 60]. Furthermore, the CRASH or IMPACT 
models are designed for long-term outcome prediction but 
lack the ability to guide life-or-death decisions for individual 
patients. According to the study of Eagle et al., these mod-
els incorrectly predicted that nearly 1 in 5 patients would 
have an unfavourable outcome or die [28]. In our study, we 
showed that in the prediction of short-term outcome the 
WTLCC-based model performed better than cerebral hemo-
dynamics and ANS metrics, adjusted for clinical character-
istics included in the CRASH model (age, GCS score, pupil 
reactivity, major extracranial injury). However, in terms of 
their ability to predict long-term outcome, their performance 
was comparable. While short-term outcome may be affected 
not only by the severity of brain injury but also by the extent 
of systemic disorders, the function of peripheral organs, and 
transient changes in cerebral hemodynamics and ANS activ-
ity [41, 72], long-term recovery after brain injury may also 
depend on care pathways and rehabilitation [11, 53]. Current 
studies have shown that patients with TBI who are treated in 
an ICU are a highly heterogeneous group. Therefore clus-
tering by glucose variations and brain biomarkers (such as 
glial fibrillary acidic protein, S100 calcium-binding protein 
B and others), could be the best clinical descriptors of dis-
ease trajectories in the ICU. However, the implementation of 
brain biomarkers in clinical practice has not yet been widely 
accomplished [2]. New metrics of the brain–heart interac-
tions can serve as ‘biomarkers’ of healthy brain–heart inter-
action, making their assessment valuable in understanding 
the pathological mechanisms of TBI.

Guideline-based care for moderate to severe TBI patients 
relies on various pharmacological agents as treatment cor-
nerstones. Sedatives are used to manage ICP and suppress 
cerebral metabolic demand, whereas vasopressor agents are 
utilized to maintain CPP targets [17]. HRV metrics are sen-
sitive to sedation levels [56]. Propofol has been found to 
significantly reduce sympathetic nerve activity and diminish 
reflex increases in sympathetic nerve activity; however, this 
observation was based on a relatively small group (n = 10) 
of healthy volunteers aged 21–37 years [29]. Conversely, 
a recent study conducted by Froese et al. on 475 patients 
hospitalised with brain trauma demonstrated that infusions 
of commonly administered sedatives and vasopressor agents 
do not impact cerebrovascular reactivity [34]. Therefore, the 
effects of sedatives and vasopressors on the ANS and cer-
ebral hemodynamics are still under investigation, something 
which is not accounted for in our study.

The proposed pipeline aims to explore the relationships 
between the ANS and cerebral hemodynamics metrics. It takes 
advantage of neural networks as general approximators. With 
fixed network hyperparameters, we constrained the Bayesian 
optimization algorithm to prioritize extracting the most infor-
mation from the WTLCC matrices rather than fully optimizing 
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the model structure for the best possible scores. This modifi-
cation in dataset creation required adjustments in the training 
process, prompting us to include both training and WTLCC 
hyperparameters in the optimization process. However, this 
approach has limitations. First, assessing model performance 
with limited data is challenging, as a small patient sample 
affects score resolution and requires an external testing dataset. 
To address this, we used two completely independent databases 
in the second experiment, showing that even in this scenario, 
the model achieved moderate results in terms of outcome pre-
diction. Additionally, we restricted the hyperparameter options 
to a predefined set to ensure that the assumptions were met.

Limitations

This study has several limitations. In the first experiment, 
we used the WUH database exclusively for training and 
validation. Given the limited data, we were unable to use 
a separate test set in this preliminary study. For the second 
experiment, we address this limitation by using two separate 
databases, CENTER-TBI as the training dataset and WUH 
as the validation dataset, to assess the generalizability of 
our findings. Although we acknowledge that this approach 
has some limitations, it allows us to minimise overfitting 
concerns and assess model performance across independ-
ent datasets. Additionally, as a short-term outcome metric 
we used GOS assessed at hospital discharge in the WUH 
database. However, this assessment was performed by 
experienced specialist and the questionnaire was adaptive 
to the aspects of independence if necessary and according to 
recommendations [77]. The impairment in ANS regulation 
observed in TBI patients outweighs the transient changes 
inherent in and inseparable from the critical care environ-
ment (changes in body temperature and position, respiratory 
rate, tidal volume, nursing manoeuvres, alterations in the 
medical therapy and drugs), as reported in previous studies 
[71]. However, we cannot be certain that they do not influ-
ence ANS parameters, therefore this should be considered 
the primary limitation of this study. Given the heterogene-
ity between traumatic brain injury (TBI; n = 38 (81%)) and 
aneurysmal subarachnoid haemorrhage (aSAH; n = 9; 19%)) 
in the WUH cohort of patients, we recognize the potential 
challenges in combining these subgroups, especially in 
examining cerebral hemodynamics.

Conclusions

Among all the neuromonitoring parameters, ICP and LF/
HF were the most effective in generating the WTLCC matri-
ces. For short-term outcome prediction, the WTLCC-based 

model performed better than average values of the neu-
romonitoring parameters after adjusting for clinical features 
used in the CRASH model. However, in long-term outcome 
prediction, the utility of the WTLCC-based model was mod-
erate and comparable with the mean values of the neuropa-
rameters. Further research with a larger TBI patient cohort 
is needed to confirm these findings.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00701- 024- 06375-6.
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