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Acute-on-chronic liver failure (ACLF) defines a heterogeneous syndrome involving acute 
decompensation in patients with pre-existing liver disease accompanied by (multi-)organ failure. 
This study aimed to develop a simple, reliable machine learning (ML) model to predict mortality in 
ACLF patients receiving intensive care unit (ICU) treatment. Data from 206 patients admitted to 
the ICU at RWTH Aachen University Hospital between 2015 and 2021 were retrospectively analyzed 
with ICU mortality as the primary outcome. An ICU mortality prediction model was developed by 
logistic regression and validated by 5-fold cross validation. Performance metrics were assessed to 
evaluate the model’s accuracy and compare to existing mortality scores. ICU mortality was 60%. The 
chronic-liver-failure-consortium ACLF score (CLIF-C ACLFs) was the best predictor of ICU mortality. ML 
generated seven models using five to thirteen features. The best-performing model included CLIF-C 
ACLFs, number of organ failures, Horovitz quotient (FiO2/PaO2), FiO2 and lactate. The newly developed 
Aachen ACLF ICU (ACICU) score demonstrated exceptional predictive accuracy for ICU mortality 
(AUROC 0.96), underscoring its potential for mortality and futility assessment in critically ill ACLF 
patients complementing existing prognostic tools. The ACICU score www.acicu-score.com is an easy-
to-use tool for predicting ICU mortality in patients with ACLF offering high predictive performance.
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Acute-on-chronic liver failure (ACLF) is a multifaceted syndrome characterized by a sudden deterioration of 
liver function accompanied by (multi-)organ failure in patients pre-existing liver disease1–3. The severity of 
ACLF is evidenced by a 28-day mortality ranging from 22% for patients with one organ failure (ACLF-1) to 77% 
for those with three or more organ failures (ACLF-3). Despite the advancements in critical care, these mortality 
rates remain alarmingly high3–6.

The prognosis of critically ill patients depends on the presence and severity of organ failures (OFs). However, 
ACLF patients face additional challenges due to specific clinical features of patients with advanced chronic liver 
disease, i.e. cirrhosis-associated immune dysfunction, which increases susceptibility for infections and sepsis2,7,8. 
Moreover, complications of portal hypertension such as gastrointestinal bleeding may worsen the prognosis and 
reduce ICU survival rates9–12.

An accurate risk stratification is crucial for ICU decision-making and optimizing patient care. Currently, 
ACLF is diagnosed based on the Chronic Liver Failure Consortium ACLF score (CLIF-C ACLFs) - the “gold-
standard” for mortality risk stratification in patients with ACLF. While existing liver disease scores, i.e. the model 
for end-stage liver disease (MELD) and Child-Pugh score, reasonably predict overall mortality, they have not 
specifically been designed for ICU mortality prediction13. Efforts to refine the CLIF-C ACLFs predominantly rely 
on conventional adjustment methods, such as linear regression models, and may not fully capture the intricacies 
of the syndrome9,14,15. Machine learning (ML) approaches offer a promising avenue for improving outcome 
prediction in patients with ACLF by identifying hidden patterns within complex datasets, that conventional 
methods may overlook16,17. However, to date, no ML-based model is available to predict ICU mortality in 
patients with ACLF, representing an essential knowledge gap.

The primary objective of this study was to develop a ML-based model to more accurately predict ICU 
mortality in patients with ACLF, surpassing conventional scoring systems. By harnessing the power of ML 
algorithms, we aimed at unlocking hidden insights from patient data and identifying relevant patterns that could 
revolutionize ICU mortality prediction in this challenging patient cohort.

Results
Patients’ characteristics
206 retrospectively met the criteria for ACLF and were included in the analysis. Of those, 82 (40%) survived 
the ICU whereas 124 (60%) did not. The median age of all patients included was 56, ranging from 19 to 87 
years (Table 1). Most patients were male (61%), with a median body mass index (BMI) of 28 kg/m², and 28% 
had preexisting diabetes mellitus type 2. At the time of study inclusion 17 patients (8%) had been diagnosed 
with hepatocellular carcinoma. Alcohol-associated liver disease was the primary etiology of advanced chronic 
liver disease (66%), with a significantly higher proportion among ICU non-survivors. Significant differences 
between ICU survivors and ICU non-survivors were furthermore noted in the white blood cell count (WBC, 
survivors 11.9/nl, non-survivors 14.9/nl, p = 0.004), C-reactive protein (CRP, survivors 467.62 nmol/l mg/l, non-
survivors 586.67 nmol/l, p = 0.06), and interleukin-6 (IL-6, survivors 1067.5 pg/ml, non-survivors 6169.5 pg/
ml, p = 0.007) (Supplementary Table 1). Liver function parameters, such as the total serum bilirubin level and 
INR were significantly worse in ICU non-survivors. Approximately 57% of patients had ACLF grade 3, with 73% 
in the non-survivor group compared to 33% in the survivor group. This corresponded with significantly worse 
respiratory parameters, such as the Horovitz quotient, and a higher necessity for hemodynamic support in the 
ICU non-survivors. The average ICU stay was approximately 12 days. 15 patients (7%) underwent liver transplant. 
The overall mortality rate was 72% (30% in ICU survivors) (Table 1). Additional baseline characteristics are 
presented in suppl. Table 1.

Comparison of existing scores for ICU mortality prediction
We observed significantly higher SOFA, APACHE-II and SAPS-II scores in ICU non-survivors compared to 
ICU survivors (each p < 0.0001; Fig. 1a–c). The best predictive capacity for ICU mortality was achieved with the 
SAPS-II score (AUROC 0.76, 95% CI: 0.47; 0.81) using an optimal cut-off of 42 determined by Youden´s index 
(Fig. 1d).

Comparison of prognostic scores for mortality prediction in patients with advanced chronic 
liver disease
Given the mediocre predictive performance of the mentioned scores in this cohort, the performance of commonly 
applied scores for predicting overall mortality in patients with advanced liver disease was evaluated. ICU non-
survivors had significantly higher MELD, Child-Pugh, CLIF-C OF and CLIF-C ACLF scores compared to ICU 
survivors (each p < 0.0001; Fig. 2a–d). The CLIF-C ACLFs had the best predictive capacity for ICU mortality 
(AUROC 0.80, 95% CI: 0.71; 0.99) with an optimal cut-off of 58 determined by Youden´s index (Fig. 2e).

Establishment of the ACICU score
While established scoring systems exist for predicting overall mortality in patients with advanced liver diseases 
or ICU mortality in critically ill patients, there is currently no such system available for predicting ICU mortality 
especially in patients with ACLF. To address this gap, we utilized a ML-based model to develop an optimized 
scoring system for predicting ICU mortality.

We initially explored decision tree models as one of the ML-based approaches. Those models utilized 13 to 
68 features and had only mediocre sensitivity (0.67–0.81) and unsatisfactory AUROC values (Suppl. Table S2). 
Consequently, we employed a logistic regression model, a form of supervised ML that identifies patterns in the 
training data to predict outcomes. This model calculates coefficients in a linear model to describe the relationship 
between a categorical dependent variable (ICU survival yes/no) and one or more independent variables18. The 
result is expressed as P(Y = 1), representing the probability of the outcome as a categorical value between 0 and 1.
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The ML process generated seven logistic regression models using different combinations of features, ranging 
from five to thirteen (Suppl. Table S3). We observed that increasing the number of variables improved accuracy, 
aligning with findings by Harrel and his collaborators in 199619. However, for clinical applicability, it was 
important to use the fewest possible number of variables. The logistic regression model with L1 regularization 
automatically selected the features without predetermined inputs. We evaluated each model’s performance using 
various metrics and selected the top-performing models for subsequent analysis.

Among the evaluated models, the newly defined ACICU score demonstrated the best performance metrics. 
This score employs five features: Horovitz quotient, FiO2, number of organ failures, lactate, and CLIF-C ACLFs 
(Fig. 3).

All patients ICU survivors ICU non-survivors p value

Patients, n (%) 206 (100) 82 (39.8) 124 (60.2)

Characteristics

 Age [years], median (range) 56 (19–87) 54.8 (19–87) 56 (25–76) 0.596

 Male gender, n (%) 125 (60.7) 50 (60.9) 75 (60.5) 0.944

 HCC, yes (%) 17 (8.3) 8 (9.7) 9 (7.3) 0.524

 BMI [kg/m2], median (range) 28 (15.6–62.5) 27.7 (17.3–59.5) 28.3 (15.6–62.5) 0.431

Etiology

 Alcohol, n (%) 135 (65.5) 46 (56.1) 89 (71.8) 0.023

 Viral, n (%) 13 (6.3) 6 (7.3) 7 (5.6) 0.091

 MASLD, n (%) 19 (9.2) 11 (13.4) 8 (6.4) 0.629

ACLF grade

 Grade 1, n (%) 25 (12.1) 18 (22.0) 7 (5.6) < 0.0001

 Grade 2, n (%) 64 (31.1) 37 (45.1) 27 (21.8) < 0.0001

 Grade 3, n (%) 117 (56.8) 27 (32.9) 90 (72.6) < 0.0001

Type of decompensation

 Ascites, n (%) 178 (86.4) 69 (84.1) 109 (87.9) 0.441

 Gastrointestinal hemorrhage, n (%) 48 (23.3) 24 (29.3) 24 (19.4) 0.099

 Hepatic encephalopathy, n (%) 52 (25.2) 22 (26.8) 30 (24.2) 0.670

 Sepsis, n (%) 115 (55.8) 33 (40.2) 82 (66.1) < 0.0001

Laboratory parameters

 Bilirubin [µmol/l], median (range) 157.53 (4.62–655.58) 131.87 (4.62–655.58) 174.63 (7.18–632.67) 0.004

 Creatinine [µmol/l], median (range) 235.15 (34.48–813.3) 222.77 (34.48–702.79) 245.76 (37.13–813.3) 0.339

 INR, median (range) 2.2 (1.03–6.39) 1.85 (1.03–3.60) 2.42 (1.06–6.39) < 0.0001

 Blood gas analysis

 Lactate [mmol/l], median (range) 3.93 (0.6–18.0) 2.65 (0.6–12.1) 4.84 (0.6–18.0) < 0.0001

ICU treatment data at admission

 Mechanical ventilation data

  Horovitz quotient [mmHg], median (range) 273.14 (49–623) 337.84 (94–623) 230.55 (49–519) < 0.0001

  FiO2 [%], median (range) 40 (21–100) 29 (21–100) 47 (21–100) < 0.0001

 Hemodynamic data

  Pharmacological hemodynamic support, yes, n (%) 163 (79.1) 52 (63.4) 111 (89.5) < 0.0001

  TPTD, yes, n (%) 37 (17.9) 4 (4.8) 33 (26.6) 0.0001

Length of ICU treatment

 ICU days, median (range) 12.1 (1-178) 13.2 (1–178) 11.4 (1-106) 0.262

Outcome

 OLT, yes, n (%) 15 (7.3) 10 (12.2) 5 (4.0) 0.1043

 90-day mortality, n (%) 138 (66.9) 16 (19.5) 122 (98.4) < 0.0001

 Overall mortality, n (%) 149 (72.3) 26 (31.7) 124 (100.0) 0.0001

 Survival [days], median (range) 328.3 (1–2285) 799.2 (5–2285) 13.4 (1–106) < 0.0001

Table 1.  Baseline characteristics of ICU survivors vs. non-survivors. Baseline characteristics at the time 
point of ICU admission. For quantitative variables median and range (in parentheses) are given. Significance 
between ICU survivors and ICU non-survivors was assessed using the unpaired Mann-Whitney U or chi-
squared test, respectively. Abbreviations: BMI, body mass index; MASLD, metabolic dysfunction-associated 
steatotic liver disease; INR, international normalized ratio; TPTD, transpulmonary thermodilution.
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Application and performance metrics of the ACICU score
The ACICU score ranges from 0 to 1, with higher values indicating a higher risk of ICU mortality. An exemplary 
calculation for a high- and low risk patient of our cohort is given in supplemental Table 4 (Suppl. Table S4).

The confusion matrix demonstrated a low incidence of false negative and false positive results, achieving an 
overall performance of 0.95 (Fig. 4a; Table 2). Although the score’s calibration was inferior to other developed 
models, it was still deemed acceptable (Suppl. Table S3). The ACICU score achieved an average AUROC derived 
from 5-fold cross validation of 0.96 (95% CI: 0.87; 1.0) (Suppl. Fig. S2, Fig. 4b) compared to the CLIF-C ACLFs` 
AUROC of 0.91 (CI 95%: 0.88; 1.0) in the testing set (Fig. 4b). A cutoff of 0.54, determined by Youden´s index, 
allowed a clear differentiation of high risk and low risk for ICU mortality (Fig. 4c; Table 2). In our single-center 
cohort, the ACICU score was significantly higher in ICU non-survivors compared to ICU survivors (median: 
ICU survivors 0.27 vs. ICU non-survivors 0.77, Fig. 4d).

The variables included in the ACICU score, especially Horovitz quotient and FiO2, emphasize respiratory 
failure. To assess the interrelationship among these variables, an intercorrelation analysis was conducted. This 
analysis revealed a strong positive correlation between the number of organ failures and CLIF-C ACLFs, while 
the Horovitz quotient and FiO2 exhibited a negative correlation. Only moderate correlations were observed for 
the other variables (Suppl. Table S5).

Patients who underwent OLT due to ACLF were classified as survivors during the establishment of the 
ACICU score, potentially confounding the results. However, a subgroup analysis excluding OLT patients still 
revealed an average AUROC of 0.86 for the ACICU score (Suppl. Fig. S2).

In addition to mortality prediction in ACLF patients we investigated whether the novel ACICU score could 
also support clinicians to decide which patient could especially benefit from OLT. However, the ACICU score 
did not show a difference between patients who benefited from liver transplant and those who did not (Suppl. 
Fig. S3).

Fig. 1.  Comparison of existing scores for ICU mortality prediction. (a) Comparison of median SOFA 
scores between ICU survivors vs. ICU non-survivors, p < 0.0001. (b) Comparison of median APACHE-II 
scores between ICU survivors vs. ICU non-survivors, p < 0.0001. (c) Comparison of median SAPS-II scores 
between ICU survivors vs. ICU non-survivors, p < 0.0001. In (a–c) an unpaired two-tailed t-test was used. (d) 
Comparison of AUROC of scores estimating the ICU mortality in the whole cohort: SAPS-II (AUROC = 0.76; 
J = 42), SOFA (AUROC = 0.75, J = 14), APACHE-II (AUROC = 0.69, J = 29).
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Futility analysis
According to the ROC analysis, different thresholds for the ACICU score were assessed to predict ICU outcomes 
in critically ill patients with ACLF and identify those for whom prolonged ICU care might be futile. The highest 
specificity for determining ICU mortality was reached with an ACICU score ≥ 0.94 (Fig. 5a). Patients with an 
ACICU score below 0.94 had an ICU mortality rate of 58% (115 of 197), whereas patients above the threshold 
had a 100% mortality rate (Fig. 5b). Engelmann et al. defined a CLIF-C ACLFs cut-off above 70 as threshold 
for intensive care support for patients with ACLF20. To assess the value of the ACICU score as a dichotomized 
variable for identifying patients for whom prolonged ICU care might be futile, we compared the classification of 
patients using the Engelmann futility score cutoff20 and the ACICU score cutoff. ICU survivors were correctly 
classified in 78 (95.1%) cases by the CLIC-C ACLFs cutoff and in 82 (100%) by the ACICU score cutoff. ICU 
non-survivors were correctly classified in 29 (23.4%) by the CLIF-C ACLFs cutoff and in 9 (7.3%) cases by the 
ACICU score cutoff (Suppl. Table S6). This resulted in a positive predictive value of 0.23 using the CLIF-C ACLF 
and 0.07 using the ACICU score, and a negative predictive value of 0.95 and 1, respectively. In our cohort, 4 
patients (12.1%) who had been classified as ICU non-survivors according to the CLIF-C ACLFs ≥ 70 did not 
decease. Of those, all 4 were correctly classified as ICU survivors according to the ACICU score (Fig. 5c). A 
suggested sequence of score calculation to identify patients with ACLF with a CLIF-C ACLFs of ≥ 70 who might 
still benefit from ICU treatment is outlined in Fig. 5c.

Fig. 3.  ACICU score formula.

 

Fig. 2.  Comparison of existing scores for liver disease mortality prediction.  Comparison of (a) MELD 
score, (b) Child-Pugh score, (c) CLIF-C OF score and (d) CLIF-C ACLF score between ICU survivors 
vs. ICU non-survivors. In (a–d) an unpaired, two-tailed t-test was used, each p < 0.0001. (e) Comparison 
of AUROC of scores estimating the mortality due to advanced liver disease in the whole cohort: CLIF-C 
ACLFs (AUROC = 0.79, J = 58), CLIF-C OF (AUROC, J = 12), MELD (AUROC = 0.68, J = 32), Child-Pugh 
(AUROC = 0.69, J = 12).
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Discussion
Recently, international consortia have developed models to predict short- and long-term mortality in patients 
with ACLF. However, these scores have not been specifically designed to predict ICU outcomes in patients with 
ACLF, limiting their utility in this context. We present the ACICU score – a novel, easy-to-use score derived 
from a ML-based algorithm using data from 206 critically ill patients with ACLF. Strikingly, the ACICU score 
was superior to the existing gold-standard CLIF-C ACLFs for prediction of ICU mortality in patients with ACLF 
and could therefore represent a valuable addition to existing prognostic tools.

The prognosis of critically ill patients, regardless of cirrhosis, is heavily influenced by the presence of organ 
failures, forming the basis for prognosis scores. The CLIF-C ACLFs represents the current gold standard for 
predicting overall mortality of patients with ACLF13. Consistent with previous findings, in our single center 
cohort the CLIF-C ACLFs outperformed other existing scores in predicting ICU mortality13. Recent efforts 
have aimed to improve the predictive accuracy of the CLIF-C ACLFs, especially for ICU mortality prediction 
as well as to evaluate futility of ICU treatment in patients with ACLF20. For instance, researchers have assigned 
higher weight to specific organ failures such as respiratory or circulatory failure, or even incorporated surrogate 
markers like the neutrophil–lymphocyte ratio (NLR)9,14,15.

However, all available studies in this context have made use of single conventional adjustment methods, e.g. 
logistic regression, that primarily aim at investigating relationships between variables21. We opted for logistic 

Fig. 4.  ACICU score validation. (a) Confusion matrix of the ACICU score in validation cohort. (b) Receiver 
operating characteristics of the ACICU score (AUROC = 0.96, J = 0.54) in comparison to CLIF-C ACLFs 
(AUROC = 0.91, J = 53) in validation cohort. (c) ICU survival days according to the ACICU score in whole 
cohort. High risk of ICU death was noted in patients with ACICU score above 0.54. (d) Comparison of the 
values of the ACICU score between ICU survivors vs. ICU non-survivors in whole cohort, unpaired, two-tailed 
t-test was used, p < 0.0001.

 

Scientific Reports |        (2024) 14:30497 6| https://doi.org/10.1038/s41598-024-82178-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


regression as basis for our predictive model as it directly estimates the probability of mortality within a specific 
time frame. This approach was preferable over time-to-event analysis for our study’s objective, which focused 
on evaluating the risk of death in ACLF patients during their ICU stay. Here, logistic regression provided a 
straightforward and interpretable measure of mortality risk, facilitating clinical decision-making and allowing 
futility assessment in this critical care setting. Moreover, the models based on logistic regression performed 
better than the miscellaneous evaluated models.

The ACICU score now presents the first model for ICU ACLF mortality prediction that is derived from an 
ML-based approach. ML algorithms are advantageous as they can learn from existing data thereby uncovering 
novel patterns17. There is evidence that ML in contrast to conventional analysis tools may especially improve 
prognosis prediction – for example, it was shown that ML-based approaches can improve mortality prediction 
in patients with acute coronary syndrome22. Notably, ML-based prediction models have also been developed in 
hepatological contexts such as for the prediction of hepatocellular carcinoma development as well as graft failure 
after liver transplantation23,24, suggesting the feasibility of ML-based models in hepatology.

In our study, 118 clinical and laboratory features were evaluated using ML to identify key differentiation 
criteria resulting in the ACICU score that incorporates the CLIF-C ACLFs, Horovitz quotient, FiO2, number of 
organ failures and lactate.

Both number of organ failures and lactate had previously been addressed as relevant prognostic parameters 
in patients with ACLF. For example, Cardoso et al. developed the LacOF model that combines lactate and 
number of organ failures and outperformed common ACLF mortality scores including the CLIF-C ACLF as 
well as CLIF-SOFA score14. The relevance of lactate in prediction of short-term mortality in critically ill patients 
with cirrhosis had previously been confirmed when Drolz et al. developed the so-called CLIF-C ACLFsLact

25.
9% of patients with ACLF present with pulmonary failure3. Already in the late 1980s, the need of mechanical 

ventilation was identified as one crucial prognostic factor of patients with liver cirrhosis requiring ICU 
treatment26. Subsequent studies confirmed that impaired oxygenation is a critical factor in predicting ICU 
mortality and could enhance the sensitivity of the ACICU score9–12. For example, Schulz et al. argued, that 
the grade of pulmonary impairment should be considered in the risk assessment of patients with ACLF and 
introduced the CLIF-C ACLF-R score. The fact, that our ML-based approach resulted in a score that combines 
three parameters that reflect pulmonary impairment – the CLIF-C ACLF itself, Horovitz quotient and FiO2 – 
further strengthens the relevance of respiratory failure in critically ill patients with ACLF.

In an intercorrelation analysis we specifically found a notable correlation between CLIF-C ACLFs and 
number of organ failures, as well as between FiO2 and Horovitz could be noted. While these correlations may 
raise concerns regarding multicollinearity and potentially weaken the model’s predictive performance, it is 
essential to note that the ACICU score still demonstrated robust predictive capability for ICU mortality. Future 
studies may explore methods to mitigate the impact of intercorrelations, such as feature selection techniques or 
regularization methods, to further enhance the model’s accuracy and reliability.

An ACICU score cutoff  ≥ 0.94 demonstrated 100% specificity in predicting mortality, meaning all patients 
surpassing this value died in the ICU. While the number of patients with ACICU ≥ 0.94 was modest (n = 9), our 
findings imply that in these patients, prolongation of ICU care might be futile and treatment options – including 
the need for palliative care – should be carefully evaluated. In contrast, 4 patients of our cohort were misclassified 
as ICU non-survivors by the Engelmann cutoff (CLIF-C ACLFs ≥ 70), but correctly classified as ICU survivors 
by the ACICU score20. Therefore, we suggest calculating the ACICU score after CLIF-C ACLFs determination to 
identify patients that were misclassified as non-survivors and still could profit from ICU therapy.

Target ACICU score

Precision 1 0.95 (0.94–0.96)

Sensitivity 1 0.95 (0.94–0.96)

F1-score 1 0.95 (0.94–0.96)

Calibration-in-the-large 0.6 0.58

Calibration intercept 0 − 0.216

Calibration slope 1 2.7046

AUROC 1 0.96

Youden’s J 0.54

Number of used features 5

Features ‘d1_CLIF_C_ACLF’, ‘Number_OF’, ‘d1_Horovitz’, ‘d1_FiO2’, ‘d1_BGA_Lactate’

Coefficients

0.65130518

0.14880095

-0.29750186

0.26440165

0.35542168

Table 2.  Performance of the ACICU score. Performance and calibration of the ACICU score in the validation 
cohort are described in the upper part of the table. Xn refers to the features, βn refers to the coefficients as 
described in the formula for logistic regression in “Material and Methods” section.
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We acknowledge several limitations: First, the retrospective and single-center design of our study might limit 
the generalizability of our findings to a broader ACLF patient population. Although our study was internally 
validated with cross-sectional validation as advised for small data sets, larger multicenter studies are warranted 
to validate and extend the predictive capabilities of our ML-based model to diverse patient populations27. 
Second, although our study has yielded promising results, the high AUROC of our score may indicate potential 
overfitting. We have attempted to address this using fivefold cross-validation as well as lasso and ridge regression. 
Nevertheless, the generalizability of our score needs to be tested in external cohorts in future studies where 
hyperparameters can be fine-tuned to improve the robustness of our score. Third, as a single-center study, our 
findings might not fully represent the diversity of patient characteristics and clinical practices seen in multiple 
centers. Therefore, we recommend that future research should focus on conducting multi-center studies to assess 
the model’s performance across different healthcare settings and patient demographics.

In conclusion, our study offers valuable insights into the potential of a ML-based approach for predicting ICU 
mortality in patients with ACLF. The ACICU score achieved satisfactory performance and calibration metrics 
using readily available clinical parameters and outperformed the existing gold standard CLIC-C ACLFs. Overall, 
our findings represent a significant step forward in prognosis prediction in critically ill patients with ACLF.

Fig. 5.  Futility analysis according to the ACICU score.  ACICU score futility analysis was performed in 
the whole cohort. (a) Confusion matrix for the ACICU score with a threshold of 0.94 showing a 100% ICU 
mortality rate for patients above the threshold. (b) ICU survival probability according to the ACICU score. 
High risk of ICU death was noted in patients with an ACICU score above 0.94. (c) Flowchart outlining the 
sequence of score calculation to identify ACLF patients with a CLIF-C ACLFs of ≥ 70 who may still benefit 
from ICU treatment.
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The ACICU score can be calculated for scientific discussion using the ACICU score calculator available at 
www.acicu-score.com.

Materials and methods
Study design and patients’ characteristics
The study was conducted at the RWTH Aachen University Hospital. A total of n = 264 patients admitted to the 
medical ICU between August 2015 and May 2021 due to acute decompensation of liver cirrhosis were screened. 
Of those, n = 206 patients fulfilled the EF-CLIF ACLF criteria and were included in this retrospective analysis3. 
Exclusion criteria were patient´s age below 18 years, an anticipated ICU stay of less than 48 h, ICU admission due 
to acute poisoning, pregnancy or post-interventional observation after an elective procedure (such as portal vein 
embolization, transjugular intrahepatic portosystemic shunt insertion, or transarterial chemoembolization). 
The study protocol was approved by the local ethics committee (EK 150/06) of the University Hospital Aachen, 
RWTH Aachen University, Aachen, Germany, and conducted according to the ethical principles outlined both 
in the Declarations of Helsinki and Istanbul. Written informed consent was obtained from the patient, her/his 
spouse or legal guardian upon ICU admission.

Score determination
Upon ICU admission, the MELD, Child-Pugh, CLIF-C ACLF and CLIF-C OF scores were calculated to assess 
severity of acute decompensation and ACLF. Clinical and laboratory parameters as well as the presence of 
hepatic encephalopathy according to the West Haven criteria28, the mean arterial pressure, use of vasopressors, 
partial arterial pressure of oxygen (paO2), FiO2, and necessity of mechanical ventilation were considered. The 
Sequential Organ Failure Assessment (SOFA), the Acute Physiology and Chronic Health Evaluation (APACHE) 
II and the Simplified Acute Physiology (SAPS) II scores were determined to evaluate the mortality risk of 
critically ill patients. For dynamic parameters, the worst value within the last 24 h was considered.

Machine learning-based model
To predict ICU mortality, we explored both logistic regression and decision tree models.

In a logistic model, the log-odds of an event are modeled as a combination of one or more independent 
variables. Logistic regression estimates the coefficients in the linear combination, as exemplified by the SAPS 
score29. Decision tree models recursively split the dataset into subsets based on predictor variables and aim to 
maximize subset homogeneity with respect to the outcome variable30. Each node in the tree represents a decision 
based on a specific predictor variable, creating branches that lead to different outcomes. This process continues 
until a stopping criterion is met, such as a maximum tree depth or minimum samples per leaf node. Decision 
tree models and logistic regression models generate decision boundaries differently. Decision tree models bisect 
the data into smaller regions, though they are prone to overfitting31. In contrast, logistic regression fits a single 
line to separate the data into two regions, which may limit its flexibility.

The ML process started with data preparation for training and testing. Categorical features were converted 
into binary classifications. Features with more than 20 percent missing data were excluded, resulting in 118 
features. The data set was stratified and split into training (164 patients, 80%) and testing sets (42, 20%). Missing 
data were addressed using k-nearest neighbor imputation with ten neighbors, and the data were standardized 
using the standard scaler.

Model development consisted of two phases: In the training phase, the model was trained to predict ICU 
mortality using the training data set. Hyperparameters were optimized using a grid search with fivefold cross-
validation. Both Lasso regression (L1 regularization) and Ridge regression (L2 regularization) were applied 
to select features and address overfitting, respectively. Models were only trained to the training set to avoid 
information bleed-through. In the testing phase, the model’s performance on the testing data set was evaluated 
using fivefold cross-validation. Performance metrics included precision, sensitivity, and the F1-Score. Model 
calibration (prediction of the absolute risk32) and discrimination (differentiation of high and low-risk groups32) 
were assessed using calibration-in-the-large, calibration slope and intercept, AUROC and Youden’s index.

For model development, the scikit-learn package (version 1.3.0) for Python was used, while the lifelines 
package (version 0.27.3) was applied for survival analysis33,34. Logistic regression was employed with the 
following standardized formula:

	
P (Y i = 1) = e(β 0+β 1χ 1+... +β nχ n)

1 + e(β 0+β 1χ 1+... +β nχ n)

X1, X2, X3 … represent the features, β1, β2, β3, … are the coefficients of the formula and reflect how the features 
poured into the computation. Features were standardized by their means and standard deviations, and nominal 
features were transformed into binary features.

Statistical analysis
Statistical analysis was performed using SPSS (Version 26, SPSS Inc., Chicago, USA) and Python (Version 3.9.7, 
Python Software Foundation, Beaverton, USA). Data visualization was conducted with GraphPad Prism 6.0 
(GraphPad Software, La Jolla, USA). Outliers were identified using the Grubbs’ test, and normal distribution was 
assessed with the Shapiro-Wilk test. The Mann-Whitney U test was used for unpaired samples with more than 
two groups, and the Chi-square test was applied to nominal variables. The Youden index determined optimal 
cut-off values for prognostic parameters. AUROC statistics were calculated by plotting the true positive versus 
false positive rate. Kaplan-Meier curves depicted patient survival. A p-value of less than 0.05 was considered 
statistically significant.
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Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
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