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SUMMARY

Developingmicrobiome-basedmarkers for pediatric inflammatory bowel disease (PIBD) is challenging. Here,
we evaluated the diagnostic and prognostic potential of the gut microbiome in PIBD through a case-control
study and cross-cohort analyses. In a Korean PIBD cohort (24 patients with PIBD, 43 controls), we observed
thatmicrobial diversity and composition shifted in patients with active PIBD versus controls and recovered at
remission. We employed a differential abundance meta-analysis approach to identify microbial markers
consistently associated with active inflammation and remission across seven PIBD cohorts from six coun-
tries (n = 1,670) including our dataset. Finally, we trained and tested variousmachine learningmodels for their
ability to predict a patient’s future remission based on baseline bacterial composition. An ensemble model
trained with the amplicon sequence variants effectively predicted future remission of PIBD. This research
highlights the gut microbiome’s potential to guide precision therapy for PIBD.

INTRODUCTION

The global incidence of pediatric inflammatory bowel disease

(PIBD) is on the rise, affecting patients in bothWestern and newly

developed Asian countries.1,2 Patients with PIBD often endure

more severe disease trajectories than adults with inflammatory

bowel disease (IBD). The complex interplay of genetic predispo-

sition, inappropriate mucosal immunity, and environmental fac-

tors underpins the pathogenesis of IBD.3–5 Notably, the inci-

dence in Korea has increased that is potentially linked to the

adoption of Westernized diets.5 Furthermore, environmental

and microbial factors exert greater influence on adolescent-

onset IBD than very-early-onset forms of the disease.6 Studies

have highlighted that gut microbiome imbalances, characterized

by a decrease in commensal bacteria and an increase in poten-

tially harmful microbes, might play a crucial role in the develop-

ment of IBD.4

The link between the gut microbiome and IBD underscores the

potential of microbiome profiling as a pivotal diagnostic tool. This

strategy has proven effective for risk assessment, gut dysbiosis

identification in newly diagnosed IBD cases, and patient stratifi-

cation.4,7,8 Evidence suggests that microbiome profiling could

be useful for classifying adult patients with IBD.9,10 The prospect

of using gut microbiota profiles to predict an individual’s risk of

refractory flares and their likelihood of achieving clinical or

mucosal remission adds a new dimension to its clinical utility.

For instance, studies of treatment-naı̈ve pediatric ulcerative co-

litis (UC) cohorts revealed associations between microbiota pro-

files and remission, as well as between the abundance of spe-

cific microbial taxa and treatment responses.8,11,12 However,

little has been documented regarding the predictive capability

of patient responses to treatment or future disease activity.13,14

The baseline healthy microbiome differs between pediatric

and adult populations.15 Although increased levels of Proteo-

bacteria, Fusobacterium, and Ruminococcus gnavus have

been noted in adults with IBD, pediatric studies often identy

elevated Enterococcus.16,17 Geographic variations in microbial

markers for adult-onset IBD have been observed that feature

both country-specific heterogeneity and some consistent pat-

terns.18–20 However, the availability of gut microbiome datasets

for patients with PIBD is relatively limited, primarily due to smaller

cohort sizes, and unknown global geographic variations.

Furthermore, few studies have explored how dysbiosis varies

in PIBD with disease activity and medication use.

To further investigate the diagnostic and prognostic capabil-

ities of microbiome analyses in PIBD, we comprehensively
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compared the intestinal microbiomes of children with IBD, those

with functional gastrointestinal diseases (FGID), and healthy

controls (HC). We then compiled PIBD cohort datasets from

published studies worldwide. We developed a prognostic model

by integrating our datasets with these global datasets, including

microbial profiles and clinical indices (Figure 1). This model pre-

dicts a patient’s state of achieving remission based on their mi-

crobiome profile and metadata collected during the active IBD

phase. Moreover, our study evaluated the geographical speci-

ficity of microbial markers by comparing their abundance across

nations.

RESULTS

Clinical characteristics
This study’s cohort comprised Korean patients with PIBD (n =

24), those with gut-brain interaction disorders or FGID (n = 19),

and HC (n = 24). The IBD category included patients with Crohn’s

disease (CD; n = 17) and UC (n = 7). The mean ages (for new-

onset or exacerbated state) were 14.9 ± 2.6 for the CD-active

(CD-act) group and 15.3 ± 2.4 years for the UC-active (UC-act)

group. The FGID group, consisting entirely of patients with irrita-

ble bowel syndrome (n = 19), had amean age of 13.4 ± 2.0 years,

while the HC group had a mean age of 13.8 ± 2.2 years.

Table 1 details the clinical features of the patients with IBD.

Compared to patients with FGID, those with active CD (CD-

act) or active UC (UC-act) exhibited significantly higher fecal cal-

protectin levels (Wilcoxon test; CD-act vs. FGID, p = 3.3E�5; UC-

act vs. FGID, p = 9.0E�4). Furthermore, the levels decreased in

patients with CD and UC as they transitioned from an active dis-

ease state to clinical remission (CR; Figure 2A; Table 1).

Gut microbiota diversity in the PIBD cohort
We assessed the alpha diversity of fecal microbiota in patients

with PIBD across active (UC-act and CD-act) and remission

(UC-rem and CD-rem) disease states compared to those

with FGID and HC. Using the Chao1 richness index based

on the composition of 16S amplicon sequence variants

(ASVs), we found that diversity was similar between the HC

and the patients with FGID (Wilcoxon test; 1.01-fold, p =

0.64). However, significantly lower diversity was observed in

the microbiota of patients, 1.34-fold lower in UC-act (p =

0.04) and 1.45-fold lower in CD-act (p = 1.4E-6) versus those

in the HC/FGID group (Figures 2B and 2C; Table S1). This in-

dicates that reduced gut microbial diversity is associated with

active IBD. Interestingly, although not statistically significant,

patients in remission exhibited relatively higher Chao1 indices

than those in an active state, suggesting that microbial diver-

sity tends to recover with CR in IBD patients (paired Wilcoxon

test; UC-rem vs. UC-act, 1.37-fold, p = 0.097; CD-rem vs. CD-

act, 1.24-fold, p = 0.092).

Similarly, the nonparametric Shannon diversity index showed

no difference between HC and patients with FGID (1.01-fold; p =

0.84) but it was significantly lower in patients with active IBD

versus the HC/FGID group, further supporting the association

between reduced diversity and active disease (Wilcoxon test;

Figure 1. Overall study design

The microbiota profiles and clinical metadata from a Korean PIBD cohort and 11 published PIBD cohorts were analyzed to identify diagnostic biomarkers. A

prognostic model was developed and tested based on the baseline samples with information on subsequent clinical responses. Multiple models were built,

performance tested, and an ensemble model was created from the three top scoring models. The prognostic model was evaluated by 10-fold cross-validation

and leave-one-study-out analysis. PIBD, pediatric inflammatory bowel disease.
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HC/FGID vs. UC-act, 1.15-fold, p = 0.16; HC/FGID vs. CD-act,

1.17-fold, p = 0.012). However, no significant difference was

observed in the Shannon index between the active and remis-

sion states, indicating that the recovery of microbial diversity

might not be uniform across all diversity metrics (UC-act vs.

UC-rem, p = 0.26; CD-act vs. CD-rem, p = 0.84).

To explore the correlation betweenmicrobiome alpha diversity

and PIBD prognosis, we categorized disease activity into four

states: new-onset active, recurrently active, CR, and mucosal

remission. Notably, the Chao1 index was significantly higher in

the clinical and mucosal remission states compare to the recur-

rently active state, highlighting a potential association between

increased microbial diversity and favorable disease outcomes

(Figure 2D).

Furthermore, we categorized the samples by fecal calprotec-

tin levels as follows: low (<50 mg/kg), low-mid (50–500 mg/kg),

high (500–2,000 mg/kg), and very high (>2,000 mg/kg). A

decreasing trend in the Chao1 index was observed with

increasing calprotectin levels, with significant differences be-

tween samples with very high calprotectin levels and those

with low or low-mid levels (Figure 2E).

Finally, we found no significant difference in the magnitude of

microbiota richness recovery (i.e., fold increase from the active

to remission state within each patient) between patients

receiving anti-tumor necrosis factor alpha (anti-TNF-a) therapy

and those who did not. This suggests that the effect of microbial

diversity recovery may be independent of treatment modality

(Figure 2F).

Microbial taxonomic composition of the PIBD cohort
We investigated fecal microbial beta-diversity in the 16S ASV da-

taset and observed that the variation in microbial composition

was significantly associatedwith disease states and inflammation

levels. The microbial compositions of patients with UC-act and

CD-act were significantly different from those of HC and the pa-

tients with FGID (Figure 3A). However, the ASV composition did

not significantly differentiate between active and remission states

within the UC and CD cohorts (Figures 3B and 3C).

Table 1. Clinical characteristics of patients with CD and UC

Clinical feature CD-act CD-rem UC-act UC-rem

State Active Clinical remission Active Clinical remission

Number of subjects 17 17 7 7

Age, years 14.9 ± 2.6 – 15.3 ± 2.4 –

Disease duration between start and endpoint, months – 17.0 ± 9.3 – 8.07 ± 8.74

Sex, M:F 9:8 9:8 6:1 6:1

PCDAI 37.1 ± 15.9 3.8 ± 4.5 – –

PUCAI – – 35.7 ± 23.7 1.4 ± 2.4

Calprotectin, mg/kg 830.8 ± 534.7 569.8 ± 764.9 655.2 ± 148.3 251.5 ± 291.5

SES-CD 13.53 ± 7.8 6.4 ± 5.1 – –

UCEIS – – 4.3 ± 1.8 0.5 ± 0.7

Disease location, n (%) – – – –

Ileal 1 (6) – – –

Colonic 6 (35) – – –

Ileocolonic 10 (59) – – –

Fistula, n (%) 10 (59) 2 (12) – –

Disease extent, n (%) – – – –

Left-sided – – 6 (86) –

Pancolonic – – 1 (14) –

Treatment prior to collection, n (%) – – – –

Anti-tumor necrosis factor alpha – 12 (71) – 5 (71)

Exclusive enteral nutrition – 3 (18) – –

Corticosteroids 1 4 (23) 2 2 (29)

Azathioprine 2 9 (53) 2 5 (71)

5-Aminosalicylic acid – – 1 3 (43)

None 14 (82) – 3 (43) –

Surgery, n (%) – 2 (12) – 0

Seton operation – 1 – –

Hemicolectomy – 1 – –

Mucosal remission, n (%) – 6 (35) – 5 (71)

CD, Crohn disease; PCDAI, Pediatric Crohn’s Disease Activity Index; PUCAI, Pediatric Ulcerative Colitis Activity Index; SES-CD, Simple Endoscopic

Score for Crohn’s Disease; UC, ulcerative colitis; UCEIS, Ulcerative Colitis Endoscopic Index of Severity.
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Significant differences in ASV composition were observed be-

tween samples with low fecal calprotectin levels and those with

high or very high levels (Figure 3D). Furthermore, the gut micro-

bial compositions of the four calprotectin-based groups increas-

ingly diverged from those of HC and the patients with FGID as

evidenced by the mean Aitchison distance (Figure 3E).

Significant differences in gut microbial composition were also

observed between new-onset and recurrent IBD cases (R2 =

0.064, p = 0.02) as well as between recurrent IBD and remission

states (both clinical andmucosal; R2 = 0.083, p = 0.007 for recur-

rent vs. CR; R2 = 0.10, p = 0.004 for recurrent vs. mucosal remis-

sion) (Figure 3F). The microbiome shifts among patients with

recurrent IBD were not influenced by any specific medications

received.

To determine whether certain microbial markers are associ-

ated with the inflammatory state, we identified bacterial genera

that were depleted in the active inflammation condition

(compared to HC and patients with FGID) and relatively restored

in remission or vice versa. In patients with UC, two Firmicutes

genera,Oscillibacter species, and an unnamed taxonomic genus

from the Ruminococcaceae family, were depleted in the UC-act

condition and recovered in the UC-rem condition (Figure S1).

In patients with CD, six genera were identified: five exhibited

depletion in the CD-act condition and recovery in the CD-rem

condition (Collinsella and Gordonibacter from Actinobacteria, a

Eubacterium clade including Eubacterium uniforme and Eubac-

terium ventriosum, a Ruminococcus clade containing Rumino-

coccus bromii, Sporobacter, and an unnamed taxonomic genus

from Ruminococcaceae), while one showed enrichment in

the CD-act condition and a decrease in the CD-rem condition

(Gemella from Lachnospiraceae) (Figure S2).

Genera that were depleted in IBD and recovered in remis-

sion (anti-IBD markers) were significantly reduced in patients

with recurrence compared to those in remission states

Figure 2. Gut microbiota alpha diversity of patients with UC and CD compared to healthy controls and patients with functional gastroin-

testinal diseases

(A) The fecal calprotectin concentration of the patients was measured at diagnosis (UC-act, CD-act) and remission (UC-rem, CD-rem). The remission state was

further categorized into CR andMRbased on endoscopic examination findings. Data points are shown in different colors, and the subset of patientswho received

anti-TNF-a treatment can be distinguished by line color. Fecal calprotectin concentration data included five patients with UC and nine patients with CD. Paired

Wilcoxon test: CD-rem vs. CD-act, p = 0.022; UC-rem vs. UC-act, p = 0.063. (BE) Chao1 richness index calculated from read counts per 16S ASV.

(B) Comparison among HC and patients with FGID, UC-act, and UC-rem.

(C) Comparison among HC and patients with FGID, CD-act, and CD-rem.

(D) Comparison among patients with IBD based on diagnostic status. Active IBD states were further classified into new-onset and recurrent types. Remission

states were classified into clinical and mucosal. Wilcoxon test: CR vs. recurrent IBD, 1.5-fold, p = 0.01; MR vs. recurrent IBD, 1.4-fold, p = 0.04.

(E) Comparison within IBD patients based on fecal calprotectin levels. Wilcoxon test: very high vs. low, p = 0.006; very high vs. low-mid, p = 0.03.

(F) Fold changes in ASV Chao1 index from active to remission state divided by patient usage of the anti-TNF-a agent. Significance of the difference was tested by

Wilcoxon’s signed rank test. The pairs of groups with values of p < 0.05 are indicated by horizontal brackets. *p < 0.05, **p < 0.01, ***p < 0.001. Boxplots in (B–F)

represent interquartile range, along with the individual data points shown as dots. A full table of statistical values is available as Table S1. Anti-TNF-a, anti-tumor

necrosis factor alpha; ASV, amplicon sequence variant; CD, Crohn disease; CD-act, active CD; CD-rem, remission CD; CR, clinical remission; FGID, functional

gastrointestinal disease; HC, healthy controls; IBD, inflammatory bowel disease; MR, mucosal remission; UC, ulcerative colitis; UC-act, active UC; UC-rem,

remission UC.
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(vs. CR, p = 0.01; vs. mucosal remission, p = 0.03). However,

this depletion was not significant in patients with new-onset

disease (vs. CR, p = 0.48; vs. mucosal remission, p = 0.32)

(Figure 3G).

Taxonomic markers associated with IBD and remission
across multiple cohorts
To validate our findings of a relatively small Korean cohort,

we assessed publicly available 16S V3–4 or V4 amplicon

sequencing data from pediatric CD and UC cohorts described

in 11 previous studies worldwide. These studies included data

from countries such as Brazil, China, the Czech Republic, the

UK, the USA, and Canada, along with a multinational cohort

(n. samples = 2,401; n. subjects = 1,199).16,21–29 After

excluding data generated from non-stool sample types, such

as ileal or rectal biopsies, and patients not differentiated into

CD or UC, we included six cohorts in the differential abun-

dance marker analysis (n. samples = 1,670; n. subjects =

664; Table S2).

We leveraged these multiple datasets to identify ASVs that

could serve as potential diagnostic microbial markers. Our

screening process aims to identify the ASVs with robust ‘‘anti-

IBD’’ or ‘‘pro-IBD’’ associations. An anti-IBD or pro-IBD associa-

tion was defined as depletion or enrichment in active IBD

compared to both the healthy and the remission groups based

on meta-analysis of multiple cohorts. In each individual cohort,

we tested the differential abundance of ASVs either between

active IBD and HC or between active IBD and remission states

using ANCOM-BC and ALDEx2. Results from six individual

ANCOM-BC analyses (HC vs. CD, 3 cohorts; CD vs. remission,

3 cohorts), summarized using a random effects model, identified

four ASVs consistently displaying an anti-CD pattern, applying a

meta-analysis effect size (log fold change) threshold of 1.2 and

false discovery rate (FDR) cutoff of 0.05 (Figure 4A). Likewise,

nine ASVswith anti-UC pattern were identified from seven individ-

ual ANCOM-BCanalyses (HC vs. UC, 4 cohorts; UCvs. remission,

3 cohorts) (Figure 4B). Two ASVs, each classified as Anaerostipes

hadrus (ASV 1 in Figure 4) and Agathobacter rectalis (ASV 2 in

Figure 3. Gut bacterial community variation associated with patients’ clinical features

(A) PCoA of gut microbiota using read counts per 16S ASV. Aitchison distance was used to quantify inter-sample differences. Adonis 2 test: UC-act vs. HC and

FGID, R2 = 0.046, p = 0.001; CD-act vs. HC and FGID, R2 = 0.078, p = 0.001.

(B and C) Individual trajectories within the patients with UC (B) and CD (C) over two sampling time points. Adonis 2 test: UC-act vs. UC-rem, R2 = 0.069, p = 0.63;

CD-act vs. CD-rem, R2 = 0.038, p = 0.078.

(D and E) Comparison of fecal samples based on fecal calprotectin levels using PCoA (D) and mean distance to healthy controls (E). Adonis 2 test: low vs. high,

R2 = 0.052, p = 0.01; low vs. very high, R2 = 0.076, p = 0.001.

(F and G) Comparison of new-onset patients, those with recurrent active IBD, those in CR, and those in MR. In (A–D) and (F), ellipses are drawn around each

sample group using the geom_mark_ellipse function of the ggforce package, and statistical significance of inter-group variation was tested by Adonis2

permutational multivariate analysis of variance implemented in the vegan package based on Aitchison distance. In (A), the patients with IBD (UC-act, UC-rem,

CD-act, and CD-rem) are circumscribed together in a single ellipse. In (E) and (G), the boxplots represent interquartile range, along with the individual data points

shown as dots. The pairs of groups with values of p < 0.05 as determined by the Wilcoxon test are indicated by horizontal brackets: *p < 0.05, **p < 0.01. ASV,

amplicon sequence variant; CD, Crohn disease; CD-act, active CD; CD-rem, remission CD; CR, clinical remission; MR, mucosal remission; PCoA, principal

coordinate analysis; UC, ulcerative colitis; UC-act, active UC; UC-rem, remission UC.
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Figure 4), showed both anti-CD and anti-UC patterns (Figures 4C

and 4D). There was no ASV discovered to have pro-CD pattern,

whereas there was a single pro-UC ASV, which was classified

as Veillonella rogosae (Figure 4B; see Table S3 for full list of differ-

ential ASVs selected in meta-analysis).

We also manually searched for the ASVs that repeatedly

showed significant differential abundance in active CD or

UC from individual differential abundance tests. From the

CD cohorts, we identified the four ASVs that most frequently

passed the FDR threshold of 0.1 (3 out of 3 HC vs. CD ana-

lyses; 2 out of 3 CD vs. remission analyses). Among these,

only the Roseburia hominis ASV strictly followed the pattern

of depletion in CD and recovery in remission (Figure S3A).

From the UC cohorts, an ASV belonging to the Gemmiger

genus alone was the single most repeatedly recovered taxon

(4 out of 4 HC vs. UC analyses; 2 out of 3 UC vs. remission

analyses). This Gemmiger ASV strictly followed the pattern

of depletion in UC and recovery in remission (Figure S3B).

Figure 4. Microbial markers of active CD and UC derived from meta-analysis of cohorts

(A) Effect size and false discovery rate (FDR) values of the ASVs estimated by random effect model combining ANCOM-BC results from three CD-HC com-

parisons and three CD-remission comparisons. The ASVs that pass the thresholds for FDR (<0.05) and effect size (absolute value of log fold change >1.2) are

emphasized with larger point size and different color. Note that positive effect sizes mean higher abundance in either healthy control or remission state, de-

pending on the analyzed dataset, compared to the active CD. Horizontal dashed line in orange corresponds to FDR value 0.05. Two vertical dashed lines in orange

correspond to log fold change �1.2 and 1.2, respectively. Taxonomic names are displayed only for the ASVs that pass the FDR and log fold change thresholds.

(B) Same plot as (A) drawn for UC datasets.

(C and D) Forest plot representingmeta-analysis summarization of the two selected ASVs. The square point and horizontal line range represent the estimated fold

change and its 95% confidence interval, respectively. The ASV 1 (Anaerostipes hadrus) and ASV 2 (Agathobacter rectalis) were selected from (A) and (B) as these

two were commonly detected as markers in both panels. The meta-analysis was performed with the rem function of the R package metafor, using the ANCOM-

BC’s effect size and standard error values as inputs. See also Figures S1–S3 and Tables S3 and S4. ASVs, amplicon sequence variants; CD, Crohn disease; HC,

healthy control; PIBD, pediatric inflammatory bowel disease; UC, ulcerative colitis.
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None of those frequently detected differential abundance

markers had ‘‘pro-IBD’’ pattern (Table S4).

Prediction of future remission cases using machine
learning approach
From global PIBD datasets, we extracted baseline stool-derived

samples from patients with active IBD who had not yet received

the treatment of interest in each study. These patients were later

categorized based on whether they achieved remission or their

disease remained refractory, encompassing both CD and UC

cases.23–26 By integrating these data with our cohort of patients

with CD-rem and UC-rem, we compiled a meta-analysis dataset

comprising 174 patients who later achieved remission and 111

who did not, including 214 UC and 71 CD patients from the

UK, USA, Czech Republic, and Korea (Table S5).23–25,30,31 The

prognostic training panel consisted of subjects undergoing

diverse treatment regimens, including exclusive enteral nutrition

(n = 21), 5-aminosalicylic acid (n = 65), corticosteroids (n = 140),

anti-TNF-a agents (n = 17), fecal microbiota transplantation

(n = 7), and some cases with missing information (n = 7).

Using this multi-cohort dataset, we developed eight different

machine learning (ML) models, namely deep neural networks

(DNN), logistic regression (LR), k-nearest-neighbor classifier

(KNN), decision tree classifier (DT), random forest classifier

(RFC), gradient boosting classifier (GB), support vector machine

(SVC), and an ensemble model consisting of the top three

models (DNN, LR, SVC) to explore whether the data collected

from previous and current studies could predict future remission

cases. We initially trained the DNN model using 16S ribosomal

RNA (rRNA) ASVs. A filter based on point-biserial correlation

analysis (p < 0.05) against the patients’ future remission state

in the training dataset was applied, resulting in 705 ASVs. The

complete list of ASVs selected by the point-biserial correlation

test is presented in Table S6. These filtered feature profiles

were then used to train the DNN, which was validated through

rigorous 10-fold cross-validation (Figure 5A).

Consequently, the ensemble model demonstrated well-

rounded performance across various metrics, including sensi-

tivity, specificity, and accuracy, compared to the other seven

ML models (Figure 5B). Interestingly, the selected ASVs rarely

overlapped with those identified through differential abundance

analysis (Table S6), suggesting that these bacteria are associ-

ated exclusively with treatment response rather than in the dis-

ease state itself.

Given the ensemble model’s effectiveness, we assessed the

contribution scores of each amplicon within the ASV data using

Shapley additive explanation (SHAP) values. The top 20 ASVs

with the highest impact on our ensemble model prediction are

listed in Figure 6A. Incorporating both microbial and clinical fea-

tures, ourmodel revealed significant impacts of age on the likeli-

hood of treatment response, with age being the second most

important feature. This aligns well with studies where IBD can

develop at any age but is most common at ages 11–16 years

and thatmales are prone tomore severe IBD complications.32,33

Several of the top 20 bacteria were previously identified as

potentially pathogenic or beneficial, with a comprehensive liter-

ature review provided in Table S7. Moreover, these ASVs varied

significantly in abundance across the analyzed UC and CD co-

horts. Specifically, cohort-specific abundance variations were

observed in 11 ASVs among patients with UC and 12 ASVs

among patients with CD as determined by the Kruskal-Wallis

test (p < 0.05) (Figure 6B). The identified predictive ASV markers

were both disease- and cohort-specific, highlighting the poten-

tial for targeted therapeutic interventions. Although 10-fold

cross-validation confirmed the model’s robustness, we further

tested our ensemble model with leave-one-study-out cross-

validation. In leave-one-study-out evaluation, our prognostic

model predicted CR with an AUC of 0.89, accuracy of 0.82,

specificity of 0.52, and sensitivity of 0.9 (Figure S4). This

external validation offered a robust estimate of how well

the model generalizes to new, unseen studies. It evaluates the

model’s performance in a more realistic scenario where the

training and test data come from different distributions, thus as-

sessing the future applicability of the model to new cohort data.

This will ensure that the model is not overfitted onto a specific

dataset but makes accurate predictions across diverse popula-

tions and conditions. At the same time, this may indicate the

prospects of the model for wider application in different

research contexts, increasing the utility value or reliability in

practical applications.

Figure 5. Comparison of various models

trainedwith patients’ future remission states

based on the microbiota profile sampled

during the active disease state

(A) Receiver operating characteristic curves of the

eight machine learning models trained on the

baseline microbiota 16S ASV read counts and

clinical features to predict patient remission.

(B) Comparison of classification performance of the

eight machine learning models tested based on

sensitivity, specificity, and accuracy metrics. See

also Figure S4 and Tables S5 and S6. ASVs, am-

plicon sequence variants.
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DISCUSSION

Dysbiosis in the microbiota is one of the key factors contributing

to the development of IBD, alongside genetic and environmental

influences.3–5 The highly interconnected nature and converging

effects of these three factors make treating IBD particularly chal-

lenging. Nevertheless, studies have shown that the microbiota is

deeply associated with IBD prognosis.13,14 In this study, we

aimed to elucidate the microbiota dynamics associated with

active inflammation and remission by investigating microbiota

sequencing data alongside clinical indices from patients with

PIBD. The study can be largely divided into two parts. First, using

the data from our Korean pediatric cohort and global pediatric

cohorts, we investigated differences between patients with

PIBD and HC, as well as between patients in the active disease

and remission states, to identify potential diagnostic markers.

Second, we tested various ML models and developed an

ensemble model using baseline microbiota and clinical features

of the patients with known clinical outcomes collected from four

different cohorts from three countries as training data. Highly

contributing features in the ensemble model were then selected

to identify any overlaps with diagnostic markers with the aim of

determining how many diagnostic markers could also serve as

prognostic markers and identifying any nondiagnostic markers

involved in IBD prognosis. Furthermore, by teasing apart the

regional abundances of the top-contributing features, we eluci-

dated prognostic markers that can be used universally on a

global or regional scale.

In the Korean pediatric cohort, microbial diversity was

reduced during active IBD and restored upon remission

(Figures 2B and 2C). The overall community composition also

shifted during the active IBD phases (Figures 3B and 3C).

This reduction in microbial diversity correlated with inflamma-

tory severity, as indicated by the levels of calprotectin, a marker

that is widely used for IBD screenings and mucosal inflamma-

tion predictions (Figures 2E and 3E). Reduced gut microbial di-

versity may both result from and contribute to the disease, as

inflammation-induced microenvironments favor dysbiosis-

related microbes, whereas lower microbial diversity is associ-

ated with IBD relapse.34,35 Patients with recurrent or exacer-

bated IBD exhibited less microbial diversity and an abundance

of anti-IBD marker taxa compared to those with new-onset

IBD, although the statistical significance was marginal (p =

0.20 for diversity, Figure 2D; p = 0.05 for anti-IBD taxa abun-

dance; Figure 3G). This could reflect the longer disease dura-

tion and increased risk of poor outcomes in terms of exacerba-

tions. Furthermore, the recurrent CD group demonstrated a

higher Simple Endoscopic Score for Crohn’s Disease than the

new-onset group (20.3 ± 7.64 vs. 12.10 ± 7.31, respectively),

although the Pediatric Crohn’s Disease Activity Index (PCDAI)

values were similar (37.14 ± 17.62 vs. 36.67 ± 3.82, respec-

tively), suggesting that more severe mucosal inflammation

may be correlated with less diversity and a lower abundance

of anti-IBD marker taxa. This finding aligns with previously re-

ported associations between less diversity and higher calpro-

tectin levels.11

Figure 6. Key microbial markers of the prognostic model and their prevalence in different cohorts

(A) The features with the highest SHAP score of feature importance in the ensemble model. The top 21 features are shown, including one clinical variable and 20

microbial ASVs. Point-biserial correlation between the feature and the future response is indicated as a color gradient; the features with positive values had higher

values in patients who achieve remission (i.e., responders).

(B) Heat maps showing the prevalence of each ASV in the CD, UC, and HC populations of different cohorts. The ASVs with the highest SHAP scores are included

in the figure. The taxonomy label was given at the lowest resolved rank. Kruskal-Wallis test significance is marked at the top of each heatmap column: *p < 0.05;

**p < 0.01; ***p < 0.001. See also Table S7 for the literature review of the taxa represented by these ASVs. ASVs, amplicon sequence variants; CD, Crohn disease;

HC, healthy control; SHAP, Shapley additive explanation; UC, ulcerative colitis.
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Next, we compared HC, patients with active disease, and pa-

tients with disease in remission. Using the statistical framework

for meta-analysis, we identified Anaerostipes hadrus and an

Agathobacter rectalis as the shared markers of CD and UC

that are depleted in active IBD and recovered in remission states

in most analyzed cohorts. Both species are butyrate-producing

bacteria that are abundant in human gut,36,37 and in the case

of A. rectalis (formerly called ‘‘Eubacterium rectale’’), previous

studies have demonstrated its immunomodulatory func-

tions.36,38 Our differential abundance analysis approach

assumed that pro-inflammatory microbes would be enriched

during active disease and decreased in remission, whereas

anti-inflammatory microbes would deplete during active disease

and get restored in remission. However, we discovered that taxa

that were depleted in active IBD were not always restored in

remission. For example, Waltera intestinalis and Eubacterium

ventriosum that were consistently depleted in CD compared to

healthy controls tend to be further depleted in the remission con-

ditions (Figure S3A). It is important to note that the discovered

taxonomic markers varied based on the analysis approach. For

instance, the ASVs selected based on the summarized effect

size and FDR frommeta-analysis statistics using random effects

model did not overlap with the ASVs that most frequently passed

the FDR cutoff in individual cohort analyses.39

Using the machine learning framework, we developed a prog-

nostic prediction model that classifies patients into remission

and non-remission groups based on ASV profiles sampled dur-

ing the active disease state. While a few studies have employed

various machine learning techniques, such as personalized pre-

diction of patient responses to specific therapy or a general

prognosis of future clinical outcomes in patients with PIBD (Ta-

ble 2), conflicting results have been reported due to small sample

sizes. Inconsistencies in microbial markers across patient popu-

lations may stem from various factors, such as geographic and

age-related microbiota variations, methodological inconsis-

tencies across datasets, or inherent disease heterogeneity.40–43

Strategies for cross-cohort meta-analyses usingmultiple hetero-

geneous cohorts have been proposed to address these issues,

yet limitations remain, including confounding factors from

diverse environments and batch effects caused by different

technologies.40 Tominimizemethodological and age-related im-

pacts, we focused exclusively on pediatric datasets and

included only Illumina-platform-derived amplicon data targeting

the V4 region of the 16S rRNA gene. We selectively included only

informative taxa to streamline the microbial feature set as

described by previous studies.44,45 Interestingly, our ensemble

model identified age as a significant contributing factor, affirming

the model’s robustness, as childhood-onset IBD tends to be

more aggressive and rapidly progressive compared to adult-

onset IBD.46 Despite a marginal decrease in performance upon

leave-one-study-out cross-validation, the model demonstrated

reasonable performance (82% accuracy). We hypothesize that

this slight underperformance may be attributable to region-spe-

cific taxa that significantly influenced the model.

Investigation of such a prognostic prediction model also

raised intriguing questions about the microbiome features

contributing to the predictability of IBD remission. Our ensemble

model suggests that several microbial species and genera may

contribute to future PIBD prognosis predictions. The results

encompass a wide array of organisms, including both well-es-

tablished and under-appreciated taxa in the context of PIBD.

Among the top features whose abundance was indicative of

future clinical remission, Bifidobacterium adolescentis and Fae-

calibacterium duncaniae were previously reported to be associ-

atedwith PIBD. These species are known for their anti-inflamma-

tory properties and ability to produce short-chain fatty acids

(SCFAs), particularly butyrate, which plays a crucial role in main-

taining intestinal homeostasis and barrier function.22 The inclu-

sion of Anaerobutyricum soehngenii, a producer of both butyrate

and propionate, among the top features further highlights the po-

tential importance of SCFA production in PIBD prognosis.47

Conversely, our model also identified several potentially harm-

ful bacteria. For instance, Fusobacteria species, including Fuso-

bacterium pseudoperiodonticum, were previously implicated in

IBD pathogenesis, potentially through enhanced mucosal inva-

siveness and pro-inflammatory effects.48 Similarly,Haemophilus

and Streptococcus species were highly associated with PIBD

and exacerbated intestinal inflammation.49,50 It is also intriguing

to see Klebsiella quasivariicola in our model as a high contrib-

uting factor. While a direct connection between Klebsiella spe-

cies and PIBD has never been reported, they have been associ-

ated with intestinal inflammation as well.51

We combined several cohorts to create the training dataset for

our prognostic model, resulting in a dataset with varied treat-

ment regimens and remission definitions. For example, remis-

sion in the UK cohort52 was defined as PCDAI <10 after 8 weeks

of exclusive enteral nutrition, whereas the US cohort25 defined it

as Pediatric Ulcerative Colitis Activity Index <10 with no cortico-

steroid therapy in the preceding 28 days at week 52, with pa-

tients receiving either 5-aminosalicylic acid monotherapy or a

combined corticosteroid-5-aminosalicylic acid regimen. Due to

this variability, our model’s predictions do not directly corre-

spond to a specific treatment-endpoint combination. Instead,

this model might predict a patient’s general responsiveness to

certain treatment strategies. As the model considers specific

treatment options as input variables, we could predict the likeli-

hood of achieving remission based on a patient’s age andmicro-

biota profile by simulating the prediction with different treatment

scenarios. This capability potentially expands the model’s utility

beyond traditional predictions.

The complex microbial signature captured by our model re-

flects the multifaceted nature of PIBD pathogenesis. It suggests

that the disease progression is influenced not only by the

reduced population of beneficial, SCFA-producing, bacteria

but also by the proliferation of potentially harmful, pro-inflamma-

tory species. Overall, this intricate balance may provide key in-

sights for personalized treatment and prognosis prediction

in PIBD.

In conclusion, this study provides insights into the microbiota

dynamics associated with active inflammation and remission

states of patients with PIBD. Additionally, we developed a prog-

nostic prediction model using an ensemble framework that

accurately identifies patients in whom remission may occur in

the future based on the given ASV profile sampled during the

active disease state. Our study highlights variations in the gut mi-

crobiome landscapes in PIBD cohorts from different countries,
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Table 2. Microbiome-based prediction models for PIBD in previous studies

Author and year Task Model type Countries Cohort description Model input Model output Model performance

Kolho et al. 2015 Prediction of fecal

calprotectin level

Linear mixed effect

model

Finland N = 94

- Control, n = 26

- CD, n = 36

- UC, n = 26

- IBD-U, n = 6

Fecal microbiome Predicted fecal

calprotectin level

It is possible to

predict calprotectin

levels using selected

bacterial taxa (AUC =

0.85).

Kolho et al. 2015 Prediction of anti-

TNF-a response

Linear mixed effect

model

Finland Subset of the cohort:

anti-TNF-a

receivers, n = 11

- Responders, n = 6

- Non-responders,

n = 5

Fecal microbiome:

-Two taxa

abundance

(Clostridium

sphenoides and

Haemophilus)

Predicted fecal

calprotectin level

It is possible to

predict the patient

response to anti-

TNF-a using the two

selected bacterial

taxa (AUC = 0.88).

Douglas et al. 2018 Diagnosis Random forest UK N = 40

- Control, n = 20

- CD, n = 20

Intestinal tissue

microbiome

Diagnosis of CD Prediction accuracy

was highest with

genus-level 16S

profiles (84.2%).a

Douglas et al. 2018 Prediction of

response to

induction treatment

Random forest UK CD, n = 20 Intestinal tissue

microbiome

The probability the

sample is from a

responder

Prediction accuracy

was highest with the

model combining

different feature

types (94.4%).a

Hyams et al. 2019 Prediction of

response to anti-

TNF-a

Multiple imputation

multivariate logistic

regression with

LASSO variable

selection

USA and Canada UC, N = 386

- With biologics, n =

177

- Responders, n =

150

Fecal and rectal

tissue microbiome:

Host side:

- Clinical indices

- Gene expressions

in rectal tissue

The probability the

sample is from those

who achieve CS-free

remission at week 52

Clinical data alone

(e.g., week 4

remission, PUCAI,

baseline

hemoglobin)

predicted week 52

remission with an

AUC of 0.68.

Adding host gene

expression and

microbial features

improved accuracy

to an AUC of 0.75.

(Continued on next page)
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Table 2. Continued

Author and year Task Model type Countries Cohort description Model input Model output Model performance

Jones et al. 2020 Prediction of

response to EEN

Random forest Canada CD, N = 19

- All received EEN

- Responders, n = 13

Fecal microbiome The probability the

sample is from those

who achieve

sustained remission

until week 24

Sustained remission

can be predicted

based on ASVs

(AUC = 0.74) but not

with other taxonomic

levels or shotgun-

based profiles.

The predictions were

improved by the

addition of species

richness (AUC =

0.83) and further

improved by the

addition of disease

location and

behavior (AUC=0.9).

Wang et al. 2021 Diagnosis Random forest China N = 93

- IBD, n = 66

- Controls, n = 27

Fecal microbiome Diagnosis of IBD In the training set,

predictions based on

11 OTUs achieved

an AUC of 0.88.

The validation

dataset including

IBD (n = 14) and IBS

(n = 48) achieved an

AUC of 0.84.

Zuo et al. 2022 Diagnosis Random forest USA N = 42

- UC, n = 19

- Control, n = 23

Fecal microbiome Diagnosis of UC The best prediction

was made with

pathway abundance

(AUC = 0.95).

- Genus composition

(AUC = 0.91)

- Species

composition (AUC =

0.91)

The addition of sex-

and age-related

variables did not

improve the model’s

performance.

(Continued on next page)
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Table 2. Continued

Author and year Task Model type Countries Cohort description Model input Model output Model performance

Dhaliwal et al. 2023 Prediction of

escalation to anti-

TNF-a

Cox proportional

hazards regression

Canada UC, N = 96

- Anti-TNF-a due to

non-response to CS,

n = 54

- Anti-TNF-a among

CS responders, n =

24

- Clinical remission,

n = 62

Clinical variables,

Fecal microbiome

Hazard ratio and

significance value

per input clinical

variable

Hypoalbuminemia,

greater PUCAI, older

age, and male sex

were significant

predictors of

escalation to anti-

TNF-a.

The baseline

microbiome was not

predictive of

escalation to anti-

TNF-a.

Ventin-Holmberg

et al. 2022

Prediction of

response to anti-

TNF-a

Regression

(PathModel function

in R package mare)

Finland IBD, n = 30

- CD, n = 25

- UC, n = 2

- IBD-U, n = 3

Final cohort used in

the model

- Anti-TNF-a

responders, n = 5

- Anti-TNF-a non-

responders, n = 13

Fecal microbiome Probability the

sample is from a

responder

The Week 6

response to anti-

TNF-a can be

predicted by the

baseline fecal

calprotectin level

and Ruminococcus

count (AUC = 0.89)

- The baseline

Ruminococcus

count alone gives a

slightly less accurate

prediction (AUC =

0.79).

Our study Prediction of

response to

induction treatment

Deep neural

network, logistic

regression, support

vector machine

Multinational

cohorts: Korea, USA,

Canada, and UK;

external validation:

Czech

IBD, N = 248

- Responders,

n = 147

- Non-responders,

n = 101

Fecal microbiome

Host side:

- Age, sex,

calprotectin level,

and disease severity

- Usage of anti-TNF-

a, 5-ASA, AZA, EEN,

and steroids

Probability the

sample is from a

responder

The ensemble model

performed well

(AUC = 0.9),

demonstrating that

the presence or

absence of

commensal and

pathogenic bacteria

can influence future

PIBD remission or

relapse.

5-ASA, 5-aminosalicylic acid; ASV, amplicon sequence variant; AUC, area under the curve; AZA, azathioprine; CD, Crohn disease; CS, corticosteroids; DNN, deep neural network; EEN, exclusive

enteral nutrition; IBD-U, inflammatory bowel disease–unclassified; IBS, irritable bowel syndrome; N/A, not available; OTUs, operational taxonomic units; PIBD, pediatric inflammatory bowel dis-

ease; PUCAI, Pediatric Ulcerative Colitis Activity Index; TNF-a, tumor necrosis factor alpha; UC, ulcerative colitis.
aNote that this study did not include the ASV profiles in the performance comparison.
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suggesting the need for further research into the role of micro-

biome variation in the geographic stratification of PIBD rates.

Despite this, our microbiome-based prognostic model yields

promising results. The exacerbation rate in PIBD has remained

high at 50%–70% within a span of 2 years.2 Our findings offer

the potential for stratifying high-risk groups and predicting out-

comes based on biomarkers, thus enabling the establishment

of proactive treatment strategies in advance. This approach

might contribute to personalized precision medicine for patients

with PIBD. Further investigations into these PIBD-related bacte-

ria will deepen our knowledge of disease progression andmicro-

biome-guided therapy.

LIMITATIONS OF STUDY

Our study has several limitations. (1) Despite the strong perfor-

mance in most metrics, the ensemble model presented in this

study exhibits low specificity. Given the limited number of sam-

ples available in PIBD cohorts, we believe there is still room for

improvement. (2) Although the machine learning approach iden-

tified important features that significantly impacted prognosis

prediction, this does not imply that the features with high scores

are causal factors. More rigorous and controlled experiments are

necessary to establish true causality. (3) Related to the previous

point, this research is entirely data-driven. Although we have dis-

cussed potential biological mechanisms underlying the high-

scoring features, their true biological relevance must be vali-

dated through carefully controlled experiments.
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are listed in the key resources table, with the associated sample meta-

data provided in Table S2.

d Codes used for all analysis and a standalone command-line tool for the

prognostic prediction introduced in this study are available at https://

github.com/smha118/IBD_remission_study.

d Any additional information required to reanalyze the data reported in this

paper is available from the lead contact upon request.

ACKNOWLEDGMENTS

This work was supported and funded by the Kun-hee Lee Child Cancer & Rare

Disease Project, Republic of Korea (no. 22C-011-0100) and supported by a

National Research Foundation of Korea grant funded by the Korean govern-

ment (Ministry of Science and ICT) (no. NRF-2018R1C1B5047245). S.M.H.

was supported by the QCB Collaboratory Fellowship at University of Califor-

nia, Los Angeles. J.H. and O.C. were supported by the National Institute

of Virology and Bacteriology project (Program EXCELES, ID Project No.

LX22NPO5103) funded by the European Union Next Generation EU.

AUTHOR CONTRIBUTIONS

K.L.: conceptualization, data curation, formal analysis, methodology, and

writing–original draft. S.M.H.: formal analysis, methodology, and writing–

original draft. G.K.: formal analysis and writing–review. J.H. and O.C.: data

curation and writing–review. J.O.S.: conceptualization, data curation, method-

ology, formal analysis, writing–original draft, and supervision. J.O.S. takes re-

sponsibility for the integrity of the work as a whole. All authors approved the

final version of the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include

the following:

d KEY RESOURCES TABLE

d EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

B Study design

B Sample size and group allocation

B Participants demographics and data collection

B Disease severity classification

B Sex and gender reporting

B Ethics statement

d METHOD DETAILS

B Stool sample collection

B Microbiota sequencing

B Public datasets

B Sequence data analyses

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Development of ensemble model to predict future IBD remission

cases

B Statistical analysis

d ADDITIONAL RESOURCES

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.

2024.111442.

Received: May 2, 2024

Revised: September 6, 2024

Accepted: November 18, 2024

Published: November 22, 2024

REFERENCES
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STAR+METHODS

KEY RESOURCES TABLE

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Study design
This is a prospective observational study of pediatric-onset inflammatory bowel disease. The inclusion criteria included patients with

new-onset or recurrent (exacerbated) PIBD (CDor UC), diagnosed before the age of 18 years, without a history of biologics treatment.

Exclusion criteria were patients with indeterminate colitis and those who did not achieve clinical remission.

Sample size and group allocation
The final sample size included 24 PIBD patients: 17 patients with CD and 7 with UC. They received their standard treatment in real-

world practice without any study-specific allocation. Additionally, age-matched patients with FGID (n = 19) and HC (n = 24), all

REAGENT or RESOURCE SOURCE IDENTIFIER

Critical commercial assays

DNeasy PowerSoil Pro Kit QIAGEN 47014

Oligonucleotides

16S rRNA forward primer CCTACGGGNGGCWGCAG 341F

16S rRNA reverse primer GACTACHVGGGTATCTAATCC 805R

Deposited data

16S amplicon data (Korea) This study BioProject: PRJNA917086

16S amplicon data (Brazil) Cortez et al.27 BioProject: PRJNA610934

16S amplicon data (Canada) Alipour et al.24 BioProject: PRJNA298762

16S amplicon data (China) Wang et al.22 CRA005251

16S amplicon data (Czech) Hurych et al.31 BioProject: PRJNA958468

16S amplicon data (Israel) Turner et al.53 BioProject: PRJNA532645

16S amplicon data (UK) Ijaz et al.52 BioProject: PRJEB18780

16S amplicon data (UK) Douglas et al.21 BioProject: PRJEB21933

16S amplicon data (USA) Gevers et al.28 BioProject: PRJNA237362

BioProject: PRJNA205152

16S amplicon data (USA) Nusbaum et al.16 BioProject: PRJNA438164

16S amplicon data (USA) Zuo et al.23 BioProject: PRJNA759642

16S amplicon data (USA/Canada) Schirmer et al.25 BioProject: PRJNA436359

Software and algorithms

fastp https://github.com/OpenGene/fastp 0.21.0

Usearch http://www.drive5.com/usearch/ 11.0.667

Vsearch https://github.com/torognes/vsearch 2.21.1

MMseqs2 https://github.com/soedinglab/MMseqs2 15-6f452

Phyloseq https://joey711.github.io/phyloseq/ 1.22.3

MMUPHin https://github.com/biobakery/MMUPHin 1.19.1

Scikit-learn https://scikit-learn.org/ 1.2.0

Keras https://keras.io/ 2.11.0

Python https://www.python.org/ 3.10.4

scikeras https://github.com/adriangb/scikeras 0.10.0

SHAP https://github.com/shap/shap 0.41.0

Vegan https://github.com/vegandevs/vegan 2.6.6

metafor https://wviechtb.github.io/metafor/ 4.6–0

ALDEx2 https://github.com/ggloor/ALDEx_bioc 1.38.0

ANCOM-BC https://github.com/FrederickHuangLin/ANCOMBC 2.8.0
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ethnically Korean and including both males and females, were enrolled as control groups. Data from the FGID and HC data were also

used in another study.39

Participants demographics and data collection
All participants were of Korean ethnicity, including bothmale and female patients. Stool samples and clinical datawere collected at two

timepoints for each PIBDpatient.Wedefined initial samples collected at enrollment, whichwere either at the time of diagnosis or during

an exacerbated state, as representing the active disease state (referred to as CD-act and UC-act samples throughout the manuscript).

Follow-up samples collected during clinical remission, characterized by achieving PCDAI or PUCAI score of less than 10 and taken at an

interval of at least 2 months, were defined as the remission state and referred to as CD-rem and UC-rem samples.

We collected detailed clinical data at both enrollment and follow-up, including age, sex, ethnicity, weight, height, clinical indices

(PCDAI or PUCAI), fecal calprotectin levels, endoscopic scores (Simple Endoscopic Score for Crohn’s Disease or Ulcerative Colitis

Endoscopic Index of Severity), and treatment details. Demographic and clinical characteristics of the patients, as well as manage-

ment details, are provided in Tables 1 and S8.

For the control groups, stool samples were collected once from each participant.

Disease severity classification
Disease severity was categorized as inactive/remission, mild, moderate, or severe based on the following thresholds: a PCDAI score

of <10, 10–27.5, 30–37.5, and R40, and a PUCAI score of <10, 10–34, 35–64, and R65, respectively.

Sex and gender reporting
Our study included both male and female participants to enhance generalizability, and we did not observe any sex-specific effects in

the results.

Ethics statement
Informed consent was obtained from the children and their parents, and the Institutional Review Board of Korea University Guro Hos-

pital approved this study (no. 2020GR0509).

METHOD DETAILS

Stool sample collection
Participants were asked to collect a teaspoon of their stool using the dedicated spoon provided in the stool container. Samples from

inpatients were collected and immediately frozen on site at �20�C. Outpatients were asked to store their samples in the refrigerator

before shipping them to our center. The samples were individually delivered via courier service in a dry ice box within 1–2 h, and then

frozen at �20�C. The entire process must be completed within 12 h.

Microbiota sequencing
Deoxyribonucleic acid (DNA) was extracted for 16S rRNA gene sequencing. After being diluted in 10 mL of phosphate-buffered sa-

line, samples were filtered and vibrated for 24 h. Microbial genomic DNA was extracted from stool samples using a PowerSoil DNA

Isolation Kit (MO BIO Laboratory, San Diego, CA, USA) following the manufacturer’s instructions. Bacterial 16S rRNA genes were

amplifiedwith the primers targeting V3–V4 hypervariable regions.54 Amplicon libraries were sequenced on aMiSeq platform (Illumina,

San Diego, CA, USA).

Public datasets
In addition to the sequencing data from the stool samples in this study, we searched a worldwide database and obtained gut micro-

biota 16S amplicon sequencing datasets that were publicly released from previous studies of PIBD cohorts. Specifically, we queried

the NCBI PubMed (www.ncbi.nlm.nih.gov/pubmed) database on March 12, 2022, using the following terms: (‘‘Inflammatory bowel

disease’’[Title/Abstract] OR ‘‘Crohn’s disease’’[Title/Abstract] OR ‘‘ulcerative colitis’’[Title/Abstract]) AND (microbiota OR micro-

biome OR ‘‘bacterial community’’ OR ‘‘bacterial communities’’ OR ‘‘microbial community’’ OR ‘‘microbial communities’’) AND

(pediatric OR pediatric OR adolescent OR adolescence OR children) AND 16S. After manually reviewing the retrieved articles, we

recruited the datasets that met the following criteria: (a) 16S V3–4 or V4 region was targeted and (b) sequenced in Illumina, (c) run

accessions were matched with the subject-level metadata; and (d) study subjects were not adults. Once the NCBI SRA accession

numbers and the associated sample metadata were collected, we downloaded the raw sequencing reads in fastq format using King-

fisher v0.0.1 (wwood.github.io/kingfisher-download). The final list of sequencing runs and associatedmetadata analyzed in this study

is provided in Table S2.

Sequence data analyses
All analyzed 16S amplicon datasets, including our own, had paired-end sequencing layouts. First, a pair of fastq files from each

sample was preprocessed with Fastp 0.21.0 to trim adapter sequences, remove low-quality reads, and merge the paired reads
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into one full amplicon sequence.54 Next, we used Usearch version 11.0.667 to sequentially perform read orientation, truncate

20 bp from each end to remove the primer regions, and filter low-quality reads based on quality scores.55 The preprocessed

reads from all samples from the same study (i.e., each cohort) were pooled together and dereplicated using the ‘‘–derep_

fulllength’’ command of Vsearch version 2.21.1.56 We generated ASVs from the pooled-dereplicated reads of each study by

applying the ‘‘–cluster_unoise –minsize 5’’ and ‘‘–uchime3_denovo’’ commands sequentially using Vsearch version 2.21.1.56

We assigned taxonomy to the ASVs using the ‘‘usearch11 -sintax -strand plus -sintax_cutoff 0.6’’ command with the

EzBioCloud database50 as taxonomic reference and created read count tables for each study using the ‘‘–usearch_global

–otutabout’’ command of Vsearch version 2.21.1. We performed cross-cohort unification of the ASVs by sequence clustering

using the MMseqs2 command ‘‘easy-cluster –cluster-mode 2 –cov-mode 1 -c 0.9 –min-seq-id 1’’.57 We defined Operational

Taxonomic Units at a 97% cutoff from the cross-cohort ASVs using the MMseqs2 ‘‘–cluster-mode 2 –cov-mode 1 -c 0.9

–min-seq-id 0.97’’ command. Finally, aggregated read count tables at species and higher taxonomic ranks were calculated

from the ASV-level read count table using the ‘‘aggregate_taxa’’ operator provided in the phyloseq R package.58 In the analysis

incorporating multiple public datasets, we performed batch effect correction on the ASV read count matrix before launching the

downstream analysis to eliminate possible study-level effects. We used adjust_batch function of MMUPHin R package, with

cohort name (i.e., study name) as the batch variable and disease state as the covariate.59 The adjusted read counts were

used in downstream analyses of differential abundance and prognostic model training.

QUANTIFICATION AND STATISTICAL ANALYSIS

Development of ensemble model to predict future IBD remission cases
A total of 347 samples were used to generate the models. Here we included only samples taken from patients in an active IBD state.

The remission status of each sample was obtained frompatient data from the current study (n = 23) and four additional studies.16,24–26

Formetadata, we gathered the following information: i) current disease status (UC or CD); ii) calprotectin range; iii) disease severity; iv)

patient age; v) patient sex; and vi) four interventions (antibiotics, anti-TNF-a, 5-ASA, AZA, and steroids). The calprotectin range

scheme included four categories: <250, 250–500, 500–2000, and >2000 (mg/kg). Categorical values in the metadata were converted

to numeric values using the LabelEncoder function of the scikit-learn library (v1.2.0). Subsequently, the 16S rRNA data were log-

normalized with a pseudo-count of 1 to circumvent the sparse nature of the amplicon data.

Next, a point-biserial correlation analysis was performed to filter the elements in the abundance data that were highly associated

with remission/non-remission status. We used cutoff values of absolute correlation coefficient >0.1 and p < 0.05. Metadata was

added after the point-biserial selection of features. The DNN was constructed with the Keras library (v2.11.0) in Python (v3.10.4)

and converted into a scikit-learn readable object using scikeras (v0.10.0). Since the DNN model predicts a binary output (remission

or not), we used the rectified linear unit for the activation function except for the output layer, where sigmoid was used. We used

binary_crossentropy as a loss function and adaptive moment estimation for model optimization. Six additional ML models, namely:

Logistic Regression, GaussianNB, KNeighborsClassifier, DecisionTreeClassifier, RandomForestClassifier, and support vector ma-

chine. Hyperparameter tuning was performed on each model using RandomizedSearchCV from the scikit-learn library (v1.2.0).

The range of parameters tested on each model is listed in Table S9. Lastly, an ensemble model was generated using the best pa-

rameters selected for each model using VotingClassifier with the AUC of each model as weights where only the models above

0.85 of AUC were added and weighted based on their performance rank.

Four performance metrics (receiver operating characteristic/AUC, sensitivity, specificity, and accuracy) were measured

with 10-fold and ‘‘LeaveOneGroupOut’’ cross-validation using a prebuilt function in the scikit-learn library (v1.2.0). Based on

the performance metrics, the ensemble model was chosen as the best model. After selecting the best model, we used

SHAP (v0.41.0) to measure feature importance within the model to assess the contribution score of each feature using

SHAP (v0.41.0).30

Statistical analysis
Alpha diversity was calculated from ASV read count tables using the Chao1 index with the ‘‘estimate_richness’’ function of the

phyloseq package. To account for variable sequencing depth, we rarefied the ASV read count tables to the smallest number of

reads per single sample 100 times using the ‘‘rarefy_even_depth’’ function of the phyloseq package and used the median

Chao1 index as each sample’s diversity score. Intersample dissimilarities of composition were measured with Aitchison distance

calculated from unrarefied read count tables using the ‘‘vegdist’’ function in the vegan package.60 The overall relationship was

visualized with PCoA coordinates determined using the ‘‘pcoa’’ function in the ape package, while testing of the correlation

with disease metadata was performed using the ‘‘adonis2’’ function of the vegan package. Intergroup differences in the above

metrics were tested using the ‘‘wilcox.test’’ and ‘‘kruskal.test’’ functions. We used the ANCOM-BC and the ALDEx2 methods

to discover the taxa that were differentially abundant between groups. To summarize differntial abundance test results from mul-

tiple cohorts to discover robustly differential markers, we used random effects model developed for meta-analysis. In this meta-

analysis we used ANCOM-BC results as ALDEx2 tended to give conservative lists (less markers) and ANCOM-BC always included

ALDEx2 markers. For each ASV, we derived meta-analysis effect size and p values using rma function (method = ‘‘REML’’) imple-

mented in the metafor R pacakge, with the effect size (i.e., log fold change) and the standard error values written by ANCOM-BC
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input. In the visualization of the resulting differentially abundant taxa, we used the Wilcoxon rank-sum test of the proportion of

reads to mark the significance.53,61

ADDITIONAL RESOURCES

This study was registered with the Clinical Research Information Service of the Korea Center for Disease Control and Prevention and

the World Health Organization International Clinical Trials Registry Platform (no. KCT0008372 https://cris.nih.go.kr/cris/search/

detailSearch.do?seq=24512&search_page=L).
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