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The C-H arylation of 2-quinolinecarboxyamide bearing a C—Br bond at the N-aryl moiety is carried out with a palladium catalyst.

The reaction proceeds at the C—H bond on the pyridine ring adjacent to the amide group in the presence of 10 mol % Pd(OAc), at

110 °C to afford the cyclized product in 42% yield. The yield is improved to 94% when the reaction is performed with PPhj as a

ligand of palladium. The reaction is examined with amides derived from unsubstituted picoline, 6-methylpicoline, and 2,6-

pyridinedicarboxylic acid in a similar manner to afford the cyclized products in 70%, 77%, and 87% yield, respectively. The related

reaction is also carried out with amides of non-pyridine derivatives terephthal- and benzamides to afford multiply fused hetero-

cyclic compounds in 81% and 89% yields, respectively.

Introduction

Transition-metal-catalyzed synthetic reactions have recently at-
tracted much attention in synthetic organic chemistry [1,2].
C-H Arylation reactions catalyzed by a transition metal are of
particular interest because these reactions involve rather superi-
or efficiencies in atom economy [3,4]. The extension of the
reaction to an intramolecular version represents a viable ap-
proach for the construction of several fused-ring skeletons [5].

Such ring structures containing heterocyclic rings would be of

crucial importance because heterocycle-fused ring structures
[6,7] are found in a variety of advanced materials [8,9] and bio-
logically important molecules [10-12]. A wide range of pyri-
dine derivatives have been employed as extractants of metal
ions through chelation [13]. Phenanthrolines, a class of pyri-
dine derivatives, have attracted attention for the efficient and
selective extraction of lanthanides and actinides and, further-

more, a number of heterocycles involving pyridine rings have

3256


https://www.beilstein-journals.org/bjoc/about/openAccess.htm
mailto:amori@kobe-u.ac.jp
https://doi.org/10.3762/bjoc.20.269

been reported to exhibit biological activities [14-22]. We have
recently reported, as shown in Figure 1, that the introduction of
a multiply fused structure toward a phenanthroline diamide
(Phen-2,9-diamide) [23] can be achieved by employing a palla-
dium-catalyzed intramolecular C-H arylation [24-28]. One of
the thus obtained products exhibited a remarkable extraction
performance for a lanthanide ion, in which a metal-specific ex-
traction was found despite the similarities in the lanthanide
series [23]. Chakravorty and co-workers reported that a similar
arylation reaction gave access to the fused skeleton of the
diamide of 2,6-pyridinedicarboxlic acid (Py-2,6-diamide) [29].
Our interest has thus turned to extend the substrate scope of the
palladium-catalyzed C—H arylation of phenanthroline to other
nitrogen-containing heteroaromatic compounds. It is therefore
intriguing to demonstrate the advantage of the palladium-cata-
lyzed intramolecular C—H arylation compared to other proto-
cols for the construction of related ring structures [30-32]. We
herein report the palladium-catalyzed intramolecular C-H aryl-
ation of several pyridine and non-pyridine amides to afford

multiply fused heterocyclic compounds.

Results and Discussion

First, we started with the synthesis of the cyclization precursors
la—c that was carried out by the reaction of the corresponding
heteroaromatic carboxylic acids with thionyl chloride followed
by treatment with N-octyl-2-bromoaniline [15]. The reactions
proceeded smoothly affording products 1la—c in good yields as
shown in Scheme 1.

We then studied the reaction of quinoline amide 1la under
several conditions. We carried out the palladium-catalyzed
intramolecular coupling reaction of precursor 1a under similar
conditions [23], which afforded smooth reaction with phenan-
throline bisamide, with 10 mol % of palladium acetate as a cata-
lyst in the presence of potassium carbonate and tetra-n-butyl-
ammonium bromide in N,N-dimethylacetamide (DMA). Table 1
summarizes the results. The yield of the reaction improved as
the temperature was increased from 90 °C to 130 °C (Table 1,
entries 1-3). When the reaction was carried out at 150 °C, the

yield decreased to 27%. A longer reaction period of 72 h at

(6] (0]
CoHs CoHs

n-C4H9 n-C4H9
Phen-2,9-diamide

Beilstein J. Org. Chem. 2024, 20, 3256-3262.

g CgHy7
OH Sock ij/ ‘\E;\
I reflux  EtsN, CH,Cl, “n-CehHey

reflux
1

U L Gl
(0] (0] (0]

1a 1b 1c

76% 63% 85%

Scheme 1: Synthesis of C—H arylation precursors 1a—c.

130 °C also resulted in a decreased yield (27%) (Table 1, entries
4 and 5). It was found that increasing the amount of potassium
carbonate to a three-fold excess improved the yield of 2a to
59% in the reaction at 110 °C shown in entry 6 of Table 1.
Next, the effect of the ligand of the palladium catalyst was ex-
amined. The addition of ligand improved the yield of 2a as
shown in Table 1, entries 7-10. Among several ligands, includ-
ing Buchwald-type phosphines L1-L4 [33] examined, it was
found that the use CyJohnPhos (L3) afforded the cyclized prod-
uct in 90% yield and the reaction with PPh; (L4) as a ligand
was also effective to afford 2a in 94% yield.

The reaction was then carried out with several pyridine deriva-
tives including amide derivatives composed of 6-methylpico-
line (1b) and unsubstituted picoline (1c¢) as summarized in
Table 2. When the reaction was examined in the absence of a
phosphine ligand, the yields of the cyclized products 2b and 2¢
were much worse compared to the same reaction of 1a. In the
latter case product 2a was obtained in 59% yield, whereas the
yields for 2b and 2¢ were only 18% and 5%, respectively. The
use of PPhjy (L4) as a ligand slightly improved the yields of 2b
and 2c¢ to 58% and 24%, respectively. The highest yield of 2b
was obtained in the presence of CyJohnPhos (L3) as ligand,

Py-2,6-diamide

Figure 1: Structures of multiply fused heterocyclic compounds composed of pyridine rings.
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Table 1: Studies on the reaction conditions for 2a from 1a.

K,CO3
n-BugNBr (1.0 equiv)
Pd(OAc), (10 mol %)

A Br ligand (10 mol %)
Z N DMA N
N o n-Celiz temp_erature n-CeH1z
time
1a

Entry Temp. (°C) K2COg3 (equiv) Time (h) Ligand Yield (%)@
1 90 1.0 24 none 70
2 110 1.0 24 none 42
3 130 1.0 24 none 49
4 150 1.0 24 none 27
5 130 1.0 72 none 27°
6 110 3.0 24 none 59
7 110 3.0 24 L1°¢ 58
8 110 3.0 24 L2d 69
9 110 3.0 24 L3¢ 90
10 110 3.0 24 L4f 94 (87%)

aYield determined by "H NMR with 1,1,2,2-tetrachloroethane as an internal standard; Pisolated yield; °L1: SPhos = 2-dicyclohexylphosphino-2’,6'-
dimethoxybiphenyl; 9L2: PCys = tricyclohexylphosphine; €L3: CyJohnPhos = 2-(dicyclohexylphosphino)biphenyl; L4: PPhs = triphenylphosphine.

Table 2: Pd-catalyzed C—H arylation of heteroarenes.

K2CO3 (3.0 equiv)
n-BugNBr (1.0 equiv)
Pd(OAc), (10 mol %)
@ Br ligand (10 mol %) @
N DMA N
“n-CeHir 110 °C, 24 h “n-CeHir
o o
Substrate Conc.2 Ligand Product Yield®
N Br
_ N 0.033 none 59%
N n—C3H17
o
1a
94%
1a 0.033 L4 2a (87%)
| AN Br | AN
_ N 0.033 none _ N 18%
N \I’I-CgH17 N \n'C8H17
o} o
1b 2b
1b 0.033 L2 2b 47%
1b 0.033 L4 2b 58%
70%
1b 0.033 L3 2b (52%)
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Table 2: Pd-catalyzed C—H arylation of heteroarenes. (continued)

| N Br
P N 0.033 none
N \I’l-CgH17
(0]
1c
1c 0.067 none
1c 0.067 L4
1c 0.067 L3
1c 0.067 L2
1c 0.067 L2
Br | N Br
N _ N. 0.032 none
CoHg” N CoHs
(6] (0]
3
7 N N\
=N N=
N Br 0.032 none
O
CoHs
n-C4Hg
5a
7 N/ N\
=N N=
Br N N Br 0032 none
(0] (0]
CoHs CoHs
n-C4H9 n-C4Hg

5b
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(5%)
N \n-Cg H 17
o]
2c
2c 11%
2c 24%
2c 33%
2c 42%
77%S
2 (62%)
87%4
(51%)
85%d-e

aSubstrate/DMA (mol/L); Pyield determined by TH NMR with 1,1,2,2-tetrachloroethane as an internal standard and isolated yield is given in paren-
thesis; °n-Bu4NBr/t-BuCOOH 1:1 was used as an additive; 92.0 equiv of n-BusNBr was used; eresult taken from [23].

while tricyclohexylphosphine (L2) gave the best yield in the
reaction of 1c. Concerning the reaction of 1c, the use of tetra-
n-butylammonium bromide and pivalic acid as additives and
PCys (L2) as a ligand further improved the yield to 77%.
Chakravorty and co-workers showed that a smooth reaction
proceeded with pyridine 2,6-dicarboxylic acid bisamide 3 [29]
and we thus compared the reaction of 3 under similar condi-
tions to that of 1a. The reaction afforded product 4 in 8§7%
yield, which was found to be comparable with the case of 1a.
The reactivity toward the palladium-catalyzed cyclization was
thus shown as 3 = 1a >> 1b > 1c¢. The related trend was also ob-
served in the reaction of phenanthroline monoamide 5a and
diamide 5b. The reaction of 5a afforded the cyclized product in

51% yield, which contrasted with our previous result for the

cyclization of 5b to afford the doubly cyclized product 6b (re-
ported yield: 85% [23]), suggesting that the superior reactivity
was found for bifunctional bisamides compared to monoamides.

It was also found that the reaction also is applicable to a carbo-
cyclic amide derivative. When the reaction was carried out with
7a under similar conditions, the cyclization occurred to afford
8a in 81% yield as shown in Scheme 2. The formation of 8a
was confirmed by X-ray crystallographic analysis (CCDC
2227450). The related monofunctionalized analog 7b also
smoothly underwent cyclization to afford 8b in 89% yield under
similar conditions, in which the result of carbocyclic amide (7a
vs 7b) contrasted with the case of heterocyclic ones, 1¢ vs 3 and
5a vs 5b.
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Scheme 2: Palladium-catalyzed intramolecular direct arylation for synthesizing 8a and 8b and the X-ray crystallographic structure of 8a.

Conclusion

We have shown the facile synthesis of fused nitrogen-contain-
ing heterocycles and extended the scope of the intramolecular
palladium catalyzed C-H arylation to pyridine derivatives. The
cyclization reaction proceeded in a moderate to excellent yield
when an appropriate phosphine ligand was employed. The reac-
tion is expected to be useful for the synthesis of functional ma-
terials, and bioactive molecules in a facile manner.

Experimental

Typical experimental procedure for the C-H arylation of
pyridine derivative 5-octyldibenzo[b,f][1,7]naphthyridin-
6(SH)-one (2a): To a screw-capped test tube equipped with a
magnetic stirring bar were added amide la (44.1 mg,
0.100 mmol), potassium carbonate (42.0 mg, 0.304 mmol),
tetrabutylammonium bromide (31.7 mg, 0.098 mmol),
Pd(OAc); (2.2 mg, 10 mol %), and triphenylphosphine (2.8 mg,
10 mol %). The mixture was dissolved in 3.1 mL of DMA and
stirring was continued at 110 °C for 24 h. Then, water (3 mL)
was added after cooling to room temperature. The product was
extracted with dichloromethane (2 mL) three times. The
combined organic extracts were repeatedly washed with water
(20 mL) and brine (20 mL). The organic layer was dried over
anhydrous sodium sulfate and concentrated under reduced pres-
sure to give a crude material, which was purified by silica gel
column chromatography (hexane/MeOAc 1:1) to give 31.0 mg
(87% yield) of 2a as a colorless solid. (NMR yield: 94%); mp
85.1-86.6 °C; '"H NMR (CDCl3) 5 8.98 (s, 1H), 8.43 (d, J =

8.4 Hz, 1H), 8.31 (dd, J = 8.0, 1.2 Hz, 1H), 7.95 (d, J = 8.4 Hz,
1H), 7.76 (ddd, J = 8.0, 7.6, 1.2 Hz, 1H), 7.62 (ddd, J = 7.6, 7.6,
1.2 Hz, 1H), 7.54 (ddd, J = 8.4, 8.0, 1.2 Hz, 1H), 7.37 (d, J =
8.4 Hz, 1H), 7.30 (dd, J = 8.0, 7.6 Hz, 1H), 4.40 (dd, J = 8.0,
7.6 Hz, 2H), 1.76-1.88 (m, 2H), 1.44-1.56 (m, 2H), 1.18-1.42
(m, 8H), 0.86 (t, J = 6.8 Hz, 3H); 13C{'H} NMR (CDCl3) &
160.1, 148.4, 142.0, 136.7, 131.1, 130.5, 130.2, 130.1, 129.1,
128.7,127.7,126.3, 123.8, 122.7, 118.3, 115.4, 43.3, 31.9, 29.5,
29.3,27.3,27.1,22.7, 14.2; IR (ATR): 2959, 2929, 2856, 1661,
751 cm™!; HRMS-DART?* (m/z): [M + H]* caled for
Cy4H,7N,0, 359.2123; found, 359.2134.

Supporting Information

Accession code CCDC 2227450 contains the
supplementary crystallographic data for 8a. This data can
be obtained free of charge via
https://www.ccdc.cam.ac.uk/structures, or by emailing
data_request@ccdc.cam.ac.uk, or by contacting Cambridge
Crystallographic Data Centre, 12 Union Road, Cambridge
CB2 1EZ, UK; fax: +44 1223 336033.

Supporting Information File 1

Additional experimental details and copies of 'H and
13C{H} NMR spectra.
[https://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-20-269-S1.pdf]
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