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Abstract

Ferroptosis, an intricately regulated form of cell death characterized by uncontrolled lipid 

peroxidation, has garnered substantial interest since 2012 the term coined. Recent years have 

witnessed remarkable progress in elucidating the detailed molecular mechanisms governing 

ferroptosis induction and defense, with particular emphasis on the roles of heterogeneity and 

plasticity. Within the molecular ecosystem of ferroptosis, present and future advancements 

promise to unlock safe and effective therapeutic strategies across a broad spectrum of diseases.

Keywords

antioxidant; cell death; disease; ferroptosis; lipid peroxidation

Introduction

Ferroptosis, coined in 2012, is a distinct form of regulated cell death observed in cancer 

cells, relying on iron but differing from apoptosis and necroptosis1. Unlike lytic cell death 

mechanisms dependent on pore-forming proteins, ferroptosis is driven by toxic, oxidized 

lipids and their byproducts, notably 4-hydroxynonenal (4HNE)2, along with lipidated 

proteins formed through covalent binding to electrophilic lipid peroxidation breakdown 

products3.
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Ferroptosis has significant implications in preclinical studies across diseases, including 

cancer, neurodegenerative disorders, and conditions associated with ischemia-reperfusion 

(I/R) injury. It offers promise as a therapeutic approach against drug-resistant cancer cells 

deficient in apoptosis4, 5, while its inhibition holds potential for managing infection-related 

diseases, sterile inflammation linked to iron overload or lipid toxicity6–8. Additionally, 

ferroptosis plays a vital role in tissue homeostasis and development8–10.

In this review, our aim is to offer an updated overview of ferroptosis, covering its 

fundamental mechanisms, heterogeneity, and plasticity. We will also delve into the 

integrated antioxidant and membrane system’s role in regulating ferroptotic sensitivity, 

along with discussing disease implications, therapeutic prospects, and associated challenges.

The core mechanism of ferroptosis

Erastin and RSL3 are common small molecules used to induce ferroptosis. Originally 

discovered in screens targeting RAS mutant cancer cells, these compounds trigger a non-

apoptotic, iron-dependent form of cell death, leading to the term ‘ferroptosis’1, 11, 12. At the 

same time, genetic inactivation of GPX4 was found to induce oxidative, non-apoptotic cell 

death13, and overexpression of system xc
− to protect cells from a similar non-apoptotic cell 

death14, highlighting the generality of this process as a potential cancer therapy targeting 

RAS mutations while sparing normal cells.

Further research has revealed that ferroptosis is highly context-dependent. Metal ions like 

zinc and copper, in addition to iron, can induce ferroptosis in specific conditions15, 16. 

Both RAS wild-type and mutant cells, including cancer and non-cancer cells, can undergo 

ferroptotic death. Conditional knockout of Gpx4 in various (e.g., kidney9) or cells (e.g., 

T cells8 or B cells10) can cause ferroptotic damage, highlighting its role in developmental 

biology.

Ferroptosis is closely linked to autophagy, and heightened autophagy levels often correlate 

with increased ferroptosis sensitivity17. Specific types of selective autophagy, such as 

ferritinophagy18, 19, lipophagy20, and clockophagy21, can lead to iron accumulation and 

lipid peroxidation, inducing ferroptosis. Genome-wide CRISPRi/a screens in human neurons 

revealed that so-called ATG (autophagy related) family members (e.g., BECN1 [beclin 1]) 

and lysosomal proteins (e.g., PSAP [prosaposin]) are involved in ferroptosis by triggering 

the formation of lipofuscin or increasing iron accumulation22. In certain conditions, the 

depletion of ATG genes has no effect on cell death, including ferroptosis.

These findings underscore the adaptable and context-dependent nature of ferroptosis, but its 

initiation involves three essential elements, which will be discussed below.

Reactive oxygen species

The first crucial element in ferroptosis induction is the presence of initiation signals that 

stimulate the production of ROS from various sources (Fig. 1):

1) Mitochondria: Mitochondria serve as a major source of ROS, primarily superoxide 

anion/O2
•− during oxidative phosphorylation. Mitochondrial SOD converts superoxide 
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into other ROS, including hydrogen peroxide (H2O2). Mitochondrial ROS can trigger 

ferroptosis, with glutaminolysis promoting ferroptosis induced by cyst(e)ine deprivation 

cyst(e)ine deprivation23, 24. Mitochondrial quality is regulated by mitophagy, which has a 

dual role in ferroptosis. Whereas mitochondrial fission promotes apoptosis, mitochondrial 

fusion can increase cellular sensitivity to ferroptosis25. Mitochondrial energy stress 

inhibits ferroptosis through AMPK-mediated phosphorylation of ACACA/ACC (acetyl-CoA 

carboxylase alpha)26, but AMPK can also promote ferroptosis by targeting BECN127 or by 

disrupting pyrimidinosome assembly, hindering pyrimidine intermediate synthesis28.

2) NOX (NADPH oxidase): Overexpression of NOX increases ROS levels, heightening 

ferroptosis sensitivity. The activity of NOX in ferroptosis is regulated by multiple factors, 

such as TP53 (tumor protein p53)29 and ALDH1B1 (aldehyde dehydrogenase 1 family 

member B1)2. Trp53/TP53 deficiency promotes the accumulation of DPP4 (dipeptidyl 

peptidase 4) on the cell membrane, forming a complex with NOX1 and causing ferroptotic 

death29. ALDH1B1 inhibits the ferroptosis-inducing effect of NOX1 activity by catalyzing 

the oxidation of aldehydes, converting them into carboxylic acids2.

3) Enzymatic reactions: ROS can be byproducts of enzymatic reactions, such as 

cytochrome P450 and its reductase involved in drug metabolism. POR (cytochrome P450 

oxidoreductase), a flavoprotein, induces lipid peroxidation and ferroptosis by generating 

superoxide radicals30, 31.

4) The Fenton reaction. This reaction involves the interaction between H2O2 and a 

transition metal, typically iron (Fe2+), leading to the generation of highly reactive hydroxyl 

radicals/•OH. An extensively studied iron metabolism mechanism during ferroptosis is 

ferritinophagy, where autophagy degrades the iron storage protein ferritin. This liberates 

free iron, converting one ROS type into another, thereby inducing ferroptosis in both cancer 

and non-cancer cells18, 19.

Oxidizable lipids

The second key element in ferroptosis is the presence of easily oxidizable polyunsaturated 

lipids (Fig. 2). Cell membranes, the primary target of oxidative damage in ferroptosis, can be 

influenced by metabolic pathways that promote lipid synthesis, particularly the generation 

of polyunsaturated fatty acids (PUFAs), increasing cell sensitivity to ferroptotic inducers. 

While the exact threshold for PUFA breakdown required to initiate ferroptosis remains 

obscure, one well-established positive regulator is ACSL4. ACSL4 activates long-chain fatty 

acids by converting them into acyl-CoA esters, facilitating their entry into various metabolic 

pathways32–35.

ACSL4 mediates two downstream pathways, yielding different PUFA-related acyl-CoA 

esters. One involves LPCAT3 (lysophosphatidylcholine acyltransferase 3), incorporating 

PUFA into phosphatidylethanolamines (PEs)32, 35, while the other activates SOAT1 

(sterol O-acyltransferase 1), producing PUFA-cholesteryl esters (CEs) instead of PUFA-

PEs36. Both pathways contribute to lipid peroxidation, acting as substrates depending 

on the context. In the lipid flippase SLC47A1-deficient human pancreatic cancer cells, 

ACSL4-driven PUFA-CE production is particularly relevant36. ACSL4 activation is a 
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strategy to enhance chemotherapy or immunotherapy efficacy by inducing ferroptosis in 

solid cancers37. PRKCB/PKCβII enhances ACSL4 activity via Thr328 phosphorylation38, 

while HPCAL1 phosphorylation at Thr149 by PRKCQ induces ferroptosis by autophagic 

degradation of CDH2, altering membrane tension in cancer cells39.

ACSL3 synthesizes monounsaturated fatty acids (MUFAs), which may competitively 

inhibit PUFA peroxidation, protecting against ferroptosis initiation40, 41. The mitochondrial 

glutamate transporter SLC25A22 inhibits ferroptosis in pancreatic cancer cells by enhancing 

GSH and MUFA synthesis42. MBOAT1 (membrane bound O-acyltransferase domain 

containing 1) and MBOAT2, upregulated by sex hormone receptors, inhibit ferroptosis in 

cancer cells by remodeling the cellular phospholipid profile to produce MUFA-containing 

phospholipids43. ACSL4-independent pathways add complexity to the understanding of lipid 

metabolism in cell death regulation44.

Peroxisomes, involved in fatty acid breakdown, hydrogen peroxide production, and 

PUFA plasmalogen biosynthesis, can increase ferroptosis sensitivity45. They also contain 

antioxidant enzymes like CAT, which inhibit ferroptosis, as well as MUFA plasmalogens, 

which prevent ferroptosis46. Thus, peroxisomes or plasmalogens influence ferroptosis 

positively or negatively depending on the context.

Lipophagy selectively degrades lipid droplets, releasing lipids for peroxidation, making 

cells, especially hepatocellular carcinoma cells, more susceptible to ferroptosis20. Increased 

lipid storage in lipid droplets by ACSL3 can limit ferroptosis in clear cell renal cell 

carcinoma cells47.

Furthermore, TMEM164 acts as a positive regulator of ferroptosis by functioning as an 

acyltransferase, synthesizing C20:4 ether phospholipids48, and promoting the formation 

of membrane-driven phagophores49. These phagophores are essential for the subsequent 

creation of autophagosomes in pancreatic cancer cells in response to ferroptotic stimuli, 

rather than nutrient starvation49.

Lipid peroxidation

Several enzymes, including ALOXs, PTGS/cyclooxygenase, and cytochrome P450 enzymes, 

play a key role in catalyzing lipid peroxidation during ferroptosis (Fig. 3).

ALOXs are enzymes catalyzing PUFA oxygenation, initiating lipid peroxidation by 

introducing hydroperoxy-groups (-OOH) into fatty acid chains. Humans have six ALOX 

isoforms (ALOX5, ALOX12, ALOX12B, ALOX15, ALOX15B, and ALOXE3) with 

distinct substrate preferences and catalytic activities, contributing to ferroptosis in various 

cells or tissues41, 44, 50, 51. PEBP1 (phosphatidylethanolamine binding protein 1) forms 

catalytic complexes with ALOX15, efficiently peroxidizing PUFA-PE52. Inhibitors targeting 

ALOX15-PEBP1 complexes effectively prevent phospholipid peroxidation and mitigate 

injuries from total body irradiation in vivo53. However, the deletion of Alox15 does not 

prevent Gpx4 deletion-driven ferroptosis in kidney or T cells8, 9. Therefore, profiling ALOX 

expression in experimental models is crucial to assess the requirement of different ALOX 

members in ferroptosis.
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PTGS/cyclooxygenase enzymes catalyze lipid peroxidation by oxygenating free PUFAs, 

generating lipid hydroperoxides. However, their primary function is prostaglandin synthesis, 

playing a secondary role in lipid peroxidation. PGE2 production can inhibit ferroptosis 

through PTGER1 and PTGER2 in cerebral I/R54, but promote it in acute kidney injury55.

Cytochrome P450 enzymes, involved in drug metabolism, can catalyze lipid peroxidation 

by introducing oxygen into fatty acid chains, generating lipid hydroperoxides and 4HNE, 

known ferroptosis mediators. As discussed earlier, POR plays a role by supplying electrons 

to molecular oxygen, facilitating H2O2 production for ferroptosis induction30, 31.

Regardless of the enzyme catalyzing lipid peroxidation, lipid hydroperoxides initiate a 

chain reaction. They undergo cleavage reactions, often catalyzed by transition metals like 

iron, generating highly reactive lipid radicals. These radicals react with nearby lipids, 

amplifying lipid peroxidation in a self-propagating process56. Electrophilic, oxidatively-

truncated phospholipid variants then form, reacting with amino acid residues in proteins 

to induce protein lipoxidation3. This series of reactions damages cell membranes, altering 

membrane tension, compromising membrane repair, and ultimately leading to ferroptotic 

plasma membrane permeabilization57–59. The ER is proposed as the initial site that could 

potentially result in subsequent oxidative membrane damage in other organelles60.

Antioxidant systems in ferroptosis

Enzymatic antioxidants

The key enzyme involved in the antioxidant defense against ferroptosis is GPX4, which 

reduces lipid hydroperoxides to alcohols in biological membranes61 (Fig. 4). GPX4’s 

active center contains selenocysteine62, 63. Low selenium levels lead to ribosome stalling 

at GPX4’s inefficiently decoded selenocysteine UGA codon, causing ribosome collisions, 

premature translation termination, and proteasomal clearance of the N-terminal GPX4 

fragment64. The molecular chaperone HSPA5 directly stabilizes GPX4 protein65, while 

autophagy66, 67 or the ubiquitin-proteasome system68 mediate GPX4 protein degradation, 

increasing ferroptosis sensitivity. CKB-mediated phosphorylation of GPX4 at serine residue 

104 inhibits autophagy-mediated GPX4 degradation and subsequent ferroptosis67.

The R152H mutation in GPX4 can cause Sedaghatian-type spinal metaphyseal dysplasia/

SSMD, a rare and fatal disease in newborns69. In vitro studies suggest that this R152H 

mutation does not affect the catalytic activity of the enzyme in a direct fashion but rather 

interferes with its allosteric activation by cardiolipin70. Further examination is necessary 

to determine if excessive cardiolipin peroxidation by dysfunctional mitochondrial GPX4 

contributes to the disease’s development.

Constitutive knockout of the Gpx4 gene in mice leads to embryonic death around 7.5–8.5 

days71. In vivo evidence linking Gpx4 deficiency to ferroptosis was first observed in mice 

with a conditional knockout of Gpx4 in the kidney, combined with a vitamin E-deficient 

diet, leading to kidney damage9. This phenotype was reversed by vitamin E supplementation 

or the ferroptosis inhibitor liproxstatin-19. Similarly, ferroptosis of activated T cells in the 

absence of Gpx4 in mice is prevented by a vitamin E enriched diet8. Under normal breeding 
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conditions and chow feeding, conditional knockout of Gpx4 in several cell types (e.g., 

myeloid, pancreatic epithelial cells or hepatocytes) is not lethal72–74. However, the inducible 

conditional knockout of Gpx4 in neurons or homozygous conditional deletion of Gpx4 in 

gut epithelium under the standard chow diet is lethal75, 76. Thus, GPX4 and its defense 

against lipid peroxidation play a context-dependent role in regulating tissue development.

GSH, a tripeptide composed of glutamate, cysteine, and glycine, acts as a GPX4 cofactor. 

Cysteine, a critical precursor for GSH synthesis, can limit GSH production and is derived 

from methionine metabolism. In addition, and more importantly, cells import extracellular 

cystine via the cystine/glutamate antiporter system xc−, composed of SLC7A11 and 

SLC3A2 subunits. Imported cystine is subsequently reduced to cysteine. Pharmacological 

agents like erastin or sulfasalazine can inhibit system xc− 1, 77, 78. At high concentrations, 

sorafenib reportedly inhibits the activity of system xc
− in an indirect fashion77, but a recent 

study indicated that sorafenib fails only to induce ferroptosis in certain cancer cells79. GSH 

is primarily synthesized in the cytosol through enzymatic reactions80 and system xc− is 

crucial for maintaining GSH levels to prevent ferroptosis before it begins, as GSH synthesis 

during ferroptosis onset is too slow.

Whereas GSH depletion contributes to ferroptosis, GPX4 is not the exclusive target of 

GSH, suggesting the existence of GPX4-independent protective pathways against ferroptosis 

(Fig. 4). Among them, AIFM2/FSP1 relocates from mitochondria to the cell membrane 

in Gpx4-deficient cells, reducing COQ10 and inhibiting ferroptosis81, 82. STARD7 (StAR 

related lipid transfer domain containing 7), found in both mitochondrial intermembrane 

space and cytosol after cleavage by PARL (presenilin associated rhomboid like), participates 

in COQ10 synthesis and transport to the plasma membrane, also hindering ferroptosis83. 

Additionally, AIFM2 contributes to membrane repair84 and the canonical vitamin K 

cycle85, enhancing its antiferroptotic effects. AIFM2’s activity in ferroptosis relies on 

phase separation and can be initiated by N-terminal myristoylation, facilitated by compound 

icFSP186.

DHODH (dihydroorotate dehydrogenase (quinone)) is a mitochondrial enzyme involved in 

pyrimidine biosynthesis, crucial for DNA and RNA formation. The activity of DHODH has 

an influence on the ferroptotic susceptibility of cancer cells expressing low levels of GPX4, 

likely due the DHODH-catalyzed utilization of COQ10 as an electron acceptor87. Inhibiting 

DHODH reduces COQ10, increasing susceptibility to lipid peroxidation and ferroptosis. 

However, DHODH inhibitors’ potential off-target effects on AIFM2 remain debated88, 89.

Several antioxidant enzymes beyond GPX4, AIFM2, and DHODH play roles in suppressing 

ferroptosis. GCH1 (GTP cyclohydrolase 1) is involved in tetrahydrobiopterin/BH4 

biosynthesis, contributing to cellular redox balance and ferroptosis inhibition90. 

Mitochondrial SOD2 defends against heat-stress-induced ferroptosis91. NOS2/iNOS (nitric 

oxide synthase 2) represses ferroptosis in macrophages by suppressing ALOX15-mediated 

lipid peroxidation92. NFE2L2/NRF2-mediated upregulation of MGST1 aids cellular 

detoxification in pancreatic cancer cells in response to ferroptotic activators93. GSTZ1/

maleylacetoacetate isomerase (glutathione S-transferase zeta 1) inhibits ferroptosis in 

bladder cancer cells94, while TXNRD1 (thioredoxin reductase 1), TXNDC12 (thioredoxin 
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domain containing 12), and peroxiredoxins (PRDX) also have context-dependent roles 

in ferroptosis inhibition95, 96. Additionally, Ca2+-independent PLA2G6/iPLA2β/PNPLA9 

(phospholipase A2 group VI) plays a role in eliminating ferroptotic death signals 

by hydrolyzing peroxidized membrane phospholipids, potentially mediated by TP53 

regulation97, 98. Understanding the synergistic effects of different antioxidant systems in 

ferroptosis remains a central theme or challenge in translational medicine.

Non-enzymatic antioxidants

Non-enzymatic antioxidants counteract harmful ROS and protect cells from oxidative 

damage, maintaining cellular redox balance. Examples in ferroptosis include vitamin E9, 

vitamin K99, GSH1, COQ1081, 82, 87, and NADPH100. They collaborate with enzymatic 

antioxidants to prevent or alleviate oxidative stress. Antioxidants scavenge radicals when 

reduced, but their oxidized form may increase oxidative stress, emphasizing the importance 

of monitoring redox reactions dynamically.

Metal chelators

Metal ions like iron and copper participate in Fenton or Haber-Weiss reactions, producing 

highly reactive hydroxyl radicals. Metal-binding proteins, such as TF (transferrin) and 

ferritin, sequester free iron to prevent these damaging reactions18, 19. Intracellular metal 

homeostasis is tightly regulated by specialized proteins, including metal chaperones that 

deliver metals to their target proteins101. Metallothioneins also help control metal ion 

availability, reducing their contribution to oxidative damage and ferroptosis78. Additionally, 

metal chelator drugs like deferoxamine, deferiprone, deferasirox, and ciclopirox, used 

in clinical settings, have shown promise in regulating ferroptosis by countering lipid 

peroxidation processes.

Transcriptional regulators

NFE2L2: In response to oxidative stress or exposure to electrophilic compounds, NFE2L2 

is released from KEAP1 and translocates into the nucleus. SQSTM1 (sequestosome 1)-

mediated protein degradation regulates the levels of KEAP1, and impaired autophagy leads 

to SQSTM1 accumulation, resulting in KEAP1 degradation and increased NFE2L2 protein 

stability102. In the nucleus, NFE2L2 binds to specific DNA sequences known as antioxidant 

response elements/AREs or electrophile response elements/EpREs in the promoter regions 

of target genes. This binding activates the transcription of a set of genes involved in both 

GPX4-dependent and GPX4-independent pathways to inhibit ferroptosis103, 104. A key 

unanswered question is how NFE2L2 selectively activates target genes to inhibit ferroptosis 

rather than other types of cell death.

TP53: TP53 has a dual role in regulating ferroptosis susceptibility. For instance, the 

acetylation-deficient TP53 variant, TP53[3KR], lacks the ability to induce apoptosis and 

cell cycle arrest. However, it retains its capacity for tumor suppression similar to wild-

type TP53 by suppressing SLC7A11 expression, thereby increasing ferroptosis sensitivity 

in certain cancer cells105. TP53-mediated downregulation of VKORC1L1 also increases 

ferroptosis sensitivity in cancer cells through vitamin K metabolism106. Additionally, TP53 

positively regulates ferroptosis by inducing the expression of SAT1, a rate-limiting enzyme 
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in polyamine catabolism that can produce ROS107. Conversely, under certain conditions, 

TP53 inhibits ferroptosis. For instance, in human colorectal cancer cells, TP53 deletion 

increases sensitivity to erastin-triggered ferroptosis through the activation of the DPP4-

NOX1 pathway on the cell membrane29. The classical TP53-inducible gene, CDKN1A/p21, 

also inhibits ferroptosis in cancer cells108. Furthermore, TP53 mutation (R175H) yields a 

modified TP53 protein that functions as a suppressor of ferroptosis by preventing BACH1-

mediated downregulation of SLC7A11, thus promoting tumor growth109. These findings 

underscore the wide implications of TP53 in the modulation of ferroptosis.

ATF4: ATF4 (activating transcription factor 4) plays a crucial role in ER stress and amino 

acid metabolism. ATF4 activation by ER stress upregulates anti-ferroptotic genes, such as 

HSPA565, SLC7A11110, or TXNDC1296. This pathway protects against ferroptosis in cancer 

cells and mitochondrial cardiomyopathy111, 112. Sublethal cytochrome c release induced 

by pro-apoptotic BH3 mimetics (ABT-737 and S63845) can lead to ATF4-dependent 

chemotherapy resistance in cancer cells113. Considering the importance of the ER as a 

critical organelle for ferroptosis60, ATF4 likely plays a specific role in transcriptional 

regulation, preserving cellular viability and conferring ferroptosis resistance.

Other important transcription factors, including HIF1A114, NFKB/NF-κB115, YAP1116, 

117, WWTR1116, 117, and SREBF1118, also play a context-dependent role in shaping the 

ferroptotic response through multiple targeted genes.

Membrane repair system

Ca2+ is the key initiator of the membrane repair response. When the plasma membrane 

is damaged, Ca2+ enters the cytoplasm from outside sources, signaling downstream repair 

processes, such as endosomal sorting complexes required for transport (ESCRT)-III58, 59 

and exocytosis119, thereby enhancing ferroptosis resistance. Efficient membrane repair is 

vital for cell function, and its disruption may be irreversible. However, Ca2+ signaling from 

different organelles has a dual role in the control of ferroptosis sensitivity, underscoring the 

importance of timely monitoring.

Therapeutic opportunities and challenges

Therapeutic opportunities

Preclinical studies suggest that targeting ferroptosis has broad implications for various 

diseases, notably in oncology, neurodegenerative disorders, and I/R injury, as elaborated 

below.

Cancer cells often undergo metabolic changes that disrupt redox balance and increase 

their reliance on antioxidants, making them vulnerable to ferroptosis induction. Targeting 

ferroptosis offers a novel approach to overcome treatment limitations105, 120–124, despite 

occasional resistance mechanisms (e.g., due to enhanced biosynthesis of pyrimidines28 

or hydropersulfides125). Furthermore, specific mutations in genes like KRAS and TP53 
in certain solid cancers are associated with ferroptosis sensitivity, offering potential for 

precision medicine strategies1, 105, 109.
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Neurodegenerative disorders, such as Alzheimer, Parkinson, and Huntington diseases, 

involve neuronal destruction and protein aggregation in the brain. Oxidative stress plays 

a key role in this degeneration, leading to lipid peroxidation and ferroptotic cell death. 

Therapies targeting ferroptosis inhibition aim to reduce oxidative damage and enhance 

neuron survival62, 126. Modulating ferroptosis pathways may help mitigate the accumulation 

of harmful byproducts like lipid peroxides and reactive aldehydes, potentially slowing 

neurodegeneration, including in conditions like multiple sclerosis127.

I/R events trigger oxidative stress and cell death, making ferroptosis-targeting therapies 

promising for mitigating oxidative damage and preserving tissue function in conditions 

like stroke, myocardial infarction, and kidney and liver injuries. Combining ferroptosis 

and necroptosis inhibition has shown particular effectiveness128, 129. For kidney tubules, 

ferroptotic cell death propagation follows a unique pattern that has been referred to as 

a “wave-of-death” and has since also been described in other systems56. These studies 

highlight the therapeutic potential of ferroptosis inhibitors in I/R-related diseases.

Therapeutic challenges

Specificity and selectivity: High specificity and selectivity are needed to minimize off-target 

effects and potential toxicity. For instance, there are concerns about off-target effects of 

RSL3 and ML162 on the TXNRD1 protein130. Imidazole ketone erastin (IKE) is a widely 

used in vivo ferroptosis inducer131, but its activity relative to other in vitro activators 

needs further study. Additionally, inhibiting ferroptosis through antioxidant mechanisms 

may impact non-ferroptotic pathways, including apoptosis132 and necroptosis128, 133.

Drug delivery: Developing targeted drug delivery systems is essential to enhance therapeutic 

effectiveness and reduce systemic side effects. Recent research has shown promise in using 

nanoparticles, including liposomes, micelles, and polymer-based carriers, to address these 

challenges. Nanoparticles provide advantages like enhanced drug stability, solubility, and 

targeted delivery.

Biomarker identification: Several biomarkers, such as TFRC134, ACSL434, and PTGS261, 

hyperoxidized PRDX3135, have been measured at the mRNA or protein levels to monitor 

ferroptosis responses. Theoretically, blood-based biomarkers have strong translational 

potential for clinical use, particularly danger signals like HMGB1136, ATP137, SQSTM1138, 

and DCN (decorin)139, which can indicate plasma membrane rupture during ferroptosis. 

DCN is notable for its ability to distinguish ferroptosis from other cell death types, 

especially in early stages139. LC-MS-based redox lipidomics is a valuable tool for 

characterizing ferroptotic biomarkers in vivo, especially in various disease conditions3.

Side effects: Current widely used ferroptosis activators lack cell or tissue selectivity, 

potentially causing unintended cell death in various immune cell types, such as 

neutrophils140, CD8+ T cells141, 142, natural killer cells143 and dendritic cells144. Strategies 

are needed to selectively target tumor cells while preserving immune cell integrity and 

anticancer immune responses. A compound called N6F11 shows promise in selectively 

inducing ferroptosis in cancer cells, not immune cells, by triggering TRIM25-dependent 
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GPX4 degradation68. Ferroptosis therapy can also lead to adverse effects like early-onset 

cachexia145, stem cell death146, bone marrow injury147, hematopoiesis disruption146, and 

inflammation-driven tumorigenesis73, 74, 112.

Clinical translation: While some FDA-approved drugs like sorafenib77, sulfasalazine77, 

artesunate148, and zalcitabine50 have shown potential in preclinical ferroptosis induction, 

their effects may be linked to adverse off-target effects. Identifying safe drugs for 

patients is crucial, as is considering co-administration of medications to mitigate systemic 

toxicity and exploring intermittent treatment regimens for better tolerability. Future research 

should address these aspects to understand ferroptosis in human diseases. Well-designed 

clinical trials are essential to evaluate the effectiveness, safety, and long-term outcomes of 

ferroptosis-targeting agents. These trials should enroll specific patient populations, identify 

sensitive ferroptosis biomarkers, and measure them alongside clinical outcomes.

Conclusion and outlook

In recent years, the field of ferroptosis research has witnessed a remarkable surge. This surge 

reflects the establishment of a genuine ferroptosis-focused research era149, 150. However, 

the initial definition of ferroptosis as Fe(II)-dependent regulated necrosis accompanied by 

lipid peroxidation is now recognized as incomplete. Although iron-induced oxidative stress 

remains a prominent trigger, other iron-independent stimuli or stresses are undoubtedly 

involved in ferroptosis. Considering that the core downstream feature of ferroptosis is 

structural damage to cellular membranes resulting from uncontrolled lipid peroxidation, the 

term “lipotoxicity” may also reflect its core mechanism.

Molecular mechanisms of ferroptosis have expanded beyond the original GPX4 regulatory 

pathway. This review explores the interplay between pro-ferroptotic and anti-ferroptotic 

mechanisms, categorized as GPX4-dependent and GPX4-independent, encompassing 

historical insights and recent findings. However, questions about when, where, and how 

these pathways activate persist.

Numerous regulatory molecules linked to ferroptosis also play roles in other types 

of cell death, emphasizing the complexity of intercellular crosstalk. Untangling these 

mechanisms requires well-designed experiments, stringent controls, and the validation 

of specific biomarkers. Understanding how physiological and pathological stressors 

influence ferroptosis in real-world situations remains a challenge. Additionally, the intricate 

connections between stress pathways leading to ferroptotic and non-ferroptotic cell death 

require further elucidation.

Despite occasional research limitations and conflicting hypotheses, we maintain optimism 

about the future prospects of ferroptosis. We believe that the principles of ferroptosis will 

eventually find clinical applications beyond their heuristic value.
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Figure 1. The production of ROS in ferroptosis.
The initiation of ferroptosis requires an oxidative environment, facilitated by diverse sources 

of ROS. Mitochondrial ROS, primarily generated through the electron transport chain, 

can trigger ferroptosis in specific conditions. Mitophagy, involved in removing damaged 

mitochondria, has a dual role in promoting or inhibiting ferroptosis, while mitochondrial 

fusion increases cellular sensitivity to ferroptosis. Activation of the mitochondrial STING1 

(stimulator of interferon response cGAMP interactor 1) may promote mitochondrial fusion, 

leading to ROS production implicated in ferroptosis. Mitochondrial energy stress activates 

AMPK, which can promote or inhibit ferroptosis by phosphorylating different substrates. 

NOX (NADPH oxidase) enzymes in cell membranes play a crucial role in generating ROS 

in ferroptosis. TP53 inhibits NOX-mediated ferroptosis by binding to DPP4 (dipeptidyl 

peptidase 4), while arachidonic acid (AA) and 4HNE enhance NOX1 activity to promote 

ROS production. POR (cytochrome p450 oxidoreductase) promotes ROS production and 

ferroptosis, whereas CYP1B1 (cytochrome P450 family 1 subfamily B member 1) inhibits 

ferroptosis. Ferritinophagy involves the degradation of the iron storage protein ferritin, 

releasing Fe2+ that triggers ROS production through the Fenton reaction.
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Figure 2. Lipid resources for ferroptosis.
Cell membranes are the primary target of oxidative damage in ferroptosis, influenced 

by processes and metabolic pathways that promote lipid synthesis. ACSL4 (acyl-CoA 

synthetase long chain family member 4) plays a critical role in activating polyunsaturated 

fatty acid (PUFA) by converting them into acyl-CoA esters (PUFA-CoA), which 

serve as substrates for lipid peroxidation, contributing to the initiation of ferroptosis. 

Two downstream pathways involve LPCAT3 (lysophosphatidylcholine acyltransferase 3)-

mediated PUFA-PEs and SOAT1 (sterol O-acyltransferase 1)-mediated PUFA-CEs. The 

activity of ACSL4 in ferroptosis is further enhanced by PRKCB (protein kinase C 

beta)-mediated ACSL4 phosphorylation. HPCAL1 (hippocalcin like 1) phosphorylation by 

PRKCQ (protein kinase C theta) promotes ferroptosis by inducing autophagic degradation 

of CDH2 (cadherin 2), leading to alterations in membrane tension in cancer cells. 

Monounsaturated fatty acid (MUFA) synthesis mediated by SCD (stearoyl-CoA desaturase) 

and ACSL3 (acyl-CoA synthetase long chain family member 3) counteracts the initiation 

of ferroptosis by protecting against PUFA peroxidation. The mitochondrial transporter 

SLC25A22 (solute carrier family 25 member 22) plays a role in inhibiting ferroptosis 

by facilitating the production of SCD-mediated MUFA. MBOAT1 (membrane bound 

O-acyltransferase domain containing 1) and MBOAT2 inhibit ferroptosis by remodeling 

the cellular phospholipid profile to produce MUFA-PEs. Peroxisomes contribute to the 

biosynthesis of ether phospholipids (ePLs), which are vulnerable to lipid peroxidation. 

TMEM164 (transmembrane protein 164) functions as an acyltransferase involved in ePLs 

synthesis or promotes the formation of autophagosomes. Lipophagy, the degradation of lipid 

droplets, releases lipids that can undergo peroxidation, increasing the susceptibility of cells 

to ferroptosis.

Dai et al. Page 22

Nat Cell Biol. Author manuscript; available in PMC 2024 December 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Lipid peroxidation in ferroptosis.
Several key enzymes participate in lipid peroxidation, including ALOX/lipoxygenase, 

PTGS/cyclooxygenase, and cytochrome P450 enzymes. ALOXs are a family of enzymes 

that catalyze the oxygenation of polyunsaturated fatty acids (PUFAs), such as arachidonic 

acid (AA), linoleic acid (LA), and docosahexaenoic acid (DHA), leading to the formation 

of lipid hydroperoxides. PTGS/cyclooxygenase enzymes are involved in prostaglandin 

synthesis but can also catalyze lipid peroxidation. The production of prostaglandin H2 

(PGH2) and subsequently prostaglandin E2 (PGE2) promotes or inhibits ferroptosis in 

a context-dependent manner. Additionally, POR plays a role by supplying electrons to 

cytochrome P450 enzymes involved in the production of lipid hydroperoxides. These 

hydroperoxides can undergo further reactions, such as decomposition and rearrangement, 

generating highly reactive lipid radicals. Ultimately, this cascade of reactions can disrupt 

membrane integrity and contribute to ferroptotic cell death.
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Figure 4. Enzymatic antioxidants in ferroptosis.
The main enzyme central to the antioxidant defense against ferroptosis is GPX4 (glutathione 

peroxidase 4), which requires the tripeptide cofactor glutathione (GSH), composed of 

glutamate, cysteine, and glycine. SLC7A11 (solute carrier family 7 member 11) is a key 

component of the cystine/glutamate antiporter system xc
−, responsible for allowing the 

uptake of cystine, which is then reduced to cysteine within the cells. The synthesis of the 

majority of cellular GSH involves the rate-limiting substrate cysteine, catalyzed by GCLC 

(glutamate-cysteine ligase catalytic subunit) and GSS (glutathione synthetase). Cysteine can 

also be derived from the metabolism of methionine. A family of enzymes called GGT 

(gamma-glutamyltransferase) catalyze the breakdown of GSH into cysteinylglycine and free 

amino acids. AIFM2 (apoptosis inducing factor mitochondria associated 2) and DHODH 

dihydroorotate dehydrogenase (quinone)) play pivotal roles in the reduction of COQ10 

(coenzyme Q10) to its antioxidant form, COQ10H2, in the plasma membrane/cytoplasm and 

mitochondria, respectively. The cleavage of STARD7 (StAR related lipid transfer domain 

containing 7) by the rhomboid protease PARL (presenilin associated rhomboid like) is 

essential for the synthesis and transport of COQ10 to the plasma membrane/cytoplasm, 

thereby inhibiting ferroptosis. Furthermore, AIFM2-mediated membrane repair and vitamin 

K (VK) reduction also contribute to its antiferroptotic activity. GCH1 (GTP cyclohydrolase 

1) participates in the biosynthesis of tetrahydrobiopterin (BH4), a cofactor that helps 

maintain cellular redox balance and antioxidant defenses, thereby inhibiting susceptibility to 

ferroptotic cell death. Several other enzymes, such as SOD2 (superoxide dismutase) family, 

MGST1 (microsomal glutathione S-transferase 1), GSTZ1 (glutathione S-transferase zeta 
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1), TXNRD1 (thioredoxin reductase 1), PLA2G6 (phospholipase A2 group VI), and PRDX 

(peroxiredoxin) family inhibit ferroptosis in some cases.
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