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Abstract. Despite advancements in diagnostic and thera‑
peutic technologies, cancer continues to pose a challenge to 
disease‑free longevity in humans. Numerous factors contribute 
to the onset and progression of cancer, among which sex 
differences, as an intrinsic biological condition, warrant 
further attention. The present review summarizes the roles 
of hormone receptors estrogen receptor α (ERα), estrogen 
receptor β (ERβ) and androgen receptor (AR) in seven types 
of cancer: Breast, prostate, ovarian, lung, gastric, colon and 
liver cancer. Key cancer‑related transcription factors known to 
be activated through interactions with these hormone recep‑
tors have also been discussed. To assess the impact of sex 
hormone receptors on different cancer types, hormone‑related 

transcription factors were analyzed using the SignaLink 3.0 
database. Further analysis focused on six key transcription 
factors: CCCTC‑binding factor, forkhead box A1, retinoic 
acid receptor α, PBX homeobox 1, GATA binding protein 2 
and CDK inhibitor 1A. The present review demonstrates that 
these transcription factors significantly influence hormone 
receptor activity across various types of cancer, and elucidates 
the complex interactions between these transcription factors 
and hormone receptors, offering new insights into their roles 
in cancer progression. The findings suggest that targeting 
these common transcription factors could improve the effi‑
cacy of hormone therapy and provide a unified approach to 
treating various types of cancer. Understanding the dual and 
context‑dependent roles of these transcription factors deepens 
the current understanding of the molecular mechanisms 
underlying hormone‑driven tumor progression and could lead 
to more effective targeted therapeutic strategies.
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1. Introduction

The Global Cancer Observatory reported that the top seven 
types of cancer according to incidence rates in 2022 were breast 
(23.8%), lung (9.4%), colorectal (8.9%) cervix uteri (6.9%), 
thyroid (6.4%), corpus uteri (4.3%) and stomach (3.5%) cancer 
for females. For males, the top seven by incidence were lung 
(15.2%), prostate (14.2%), colorectal (10.4%), stomach (6.1%), 
liver (5.8%), bladder (4.6%) and esophagus (3.5%) cancers. 
Similarly, the top seven types of cancer according to mortality 
rates in 2022 were breast (15.4%), lung (13.5%), colorectal 
(9.4%), cervix uteri (8.1%), liver (5.5%), stomach (5.4%) and 
pancreas (5.1%) cancers for females. For males the top seven 
by mortality rate were llung (22.7%), liver (9.6%), colorectal 
(9.2%), stomach (7.9%), prostate (7.3%), esophagus (5.9%) and 
pancreas (4.6%) cancer (1). These statistics demonstrate sex 
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differences in cancer incidence and mortality rates that can 
be attributed to varying expression levels of hormone recep‑
tors and associated genes involved in cancer occurrence and 
malignancy mechanisms (2,3).

Estrogen, commonly recognized as a female hormone, also 
significantly impacts males. Among the four types of estrogen, 
estrone (E1), estradiol (E2), estriol and estetrol, E2 is the most 
predominant in both males and premenopausal females. While 
E2 levels in males are lower compared with in premenopausal 
females, they are comparable to or exceed those in postmeno‑
pausal females (4,5). In males, E2 is primarily produced in 
extragonadal tissues, particularly increasing in individuals 
with a higher BMI (4‑7). Estrogen inhibits bone resorption and 
provides cardiovascular protection, essential for maintaining 
health in premenopausal women. However, after menopause, 
ovarian estrogen production ceases, diminishing these protec‑
tive effects and increasing the risk of developing diseases, such 
as cardiovascular disease and osteoporosis (8‑12). Additionally, 
in postmenopausal women, estrogen is mainly produced in 
peripheral tissues, heightening the risk of developing breast 
cancer (13,14).

Androgens, commonly known as male hormones, notably 
impact females as well. In males, androgens are secreted by the 
testes and adrenal glands; whereas in females, androgens are 
produced by the ovaries and adrenal glands (15). Androgens 
bind to androgen receptors (AR) in various tissues, including 
the prostate, seminal vesicles and skeletal muscle, to regulate 
physiological activities, sperm production and cancer growth 
in males (16,17). In females, precursor substances of androgen, 
such as androstenedione, are more likely to convert to estrogen 
compared with androgens and act on estrogen receptors 
(ER) (18). Excessive androgen secretion in females can worsen 
endocrine disorders such as polycystic ovary syndrome and 
congenital adrenal hyperplasia (19,20).

The expression and activation of sex hormone receptors 
serve a significant role in the progression and malignancy 
of breast and prostate cancer, influencing tumor growth, 
metastasis and response to treatment (21). While a direct 
linear correlation between cancer stage and hormone receptor 
expression is not consistently observed (22,23), sex hormone 
receptor status serves a key role in determining treatment 
options and prognosis at various stages of cancer (24). In 
the early stages of cancer (stage 1 or 2, according to the 
AJCC Cancer Staging Manual), cancer cell growth is mainly 
promoted in a sex hormone‑dependent manner, so that it may 
be treated with hormone therapy. However, in the advanced 
stages of cancer (stage 3 or 4), hormone receptor expression 
levels often diminish or become less predictive of treatment 
efficacy, requiring more aggressive therapies, such as chemo‑
therapy or targeted therapy (25,26). ER‑low or ER‑negative 
(‑) patients with breast cancer have a higher recurrence rate 
and show distinct clinicopathological findings compared with 
ER‑high patients. The 5‑year recurrence rates are 5.1% for 
ER‑high, 7.4% for ER‑low and 9.7% for ER‑negative patients, 
with ER‑negative cases showing significantly worse outcomes 
(P<0.001). ER‑high patients typically have lower tumor grades, 
lower Ki‑67 proliferation indices, and are associated with the 
luminal A subtype, which responds well to hormone therapy. 
By contrast, ER‑negative patients present with higher tumor 
grades, significantly elevated Ki‑67 indices, and a higher 

prevalence of triple‑negative breast cancer, often leading to a 
poorer prognosis (24). Furthermore, hormone receptor‑posi‑
tive types of cancer, such as luminal A and B, respond well to 
hormone therapies, while HER2‑positive and triple‑negative 
breast cancer (TNBC) subtypes often require more aggressive 
treatments, such as targeted therapy or chemotherapy (27‑29). 
Among these subtypes, both luminal subtypes typically 
show positive ER and progesterone receptor (PR) expression, 
while luminal B breast cancer generally displays increased 
HER2 expression levels compared with luminal A. Luminal 
B breast cancer is also associated with higher proliferation 
rates (e.g., Ki‑67 index), increased HER2 expression and a 
poor prognosis, indicating more aggressive clinical charac‑
teristics (27‑30).

Prostate cancer is similarly categorized by its depen‑
dence on AR signaling, with advanced cases evolving into 
castration‑resistant prostate cancer (CRPC), which requires 
more intensive treatments. Hormone‑sensitive prostate cancer, 
which typically describes most early‑stage cases, is commonly 
treated with androgen deprivation therapy (ADT) (31). 
However, CRPC requires more aggressive treatments, such 
as second‑line hormonal therapies, such as enzalutamide or 
chemotherapy (32). Thus, the expression levels of hormone 
receptors in the early stages of cancer are a major factor in 
treatment decisions. However, in advanced stages, their predic‑
tive value for treatment decreases due to reduced dependence 
on hormones.

Recent studies have reported that AR and ER signaling 
pathways are closely associated, particularly in breast 
cancer, where AR can either suppress or enhance estrogen 
receptor α (ERα) activity depending on the context (33,34). 
In ER‑positive (+) breast cancer, ARs often act as a tumor 
suppressor by inhibiting ERα‑driven tumorigenesis, with AR 
activation showing significant anti‑tumor effects, even in cases 
of resistance to ER and CDK4/6 inhibitors (35). AR redis‑
tributes ER and its co‑activators on chromatin, suppressing 
ER‑regulated genes and upregulating AR target genes, which 
correlates with improved survival in patients with ER(+) breast 
cancer (36). However, AR can also promote oncogenic func‑
tions in the context of androgen excess, where androgens act 
as precursors to estrogen (37). This leads to overstimulation of 
estrogen‑regulated gene expression, driving tumor proliferation 
and progression in ER‑positive breast cancer (34). In CRPC, 
estrogen receptor β (ERβ) activation reduces AR expression, 
inducing apoptosis and acting as a tumor suppressor. These 
findings highlight the key role of AR and ER interactions 
in cancer progression and present opportunities for targeted 
therapies (38).

While cancer research spans numerous fields of research, 
studies focusing on sex‑specific differences are currently 
limited. Addressing these differences may lead to significant 
breakthroughs in cancer prevention and treatment. Specifically, 
hormones can act on their receptors to influence the expression 
of hormone‑related transcription factors, which in turn can 
affect the expression of oncogenes or tumor suppressors (39). 
Understanding how sex hormone receptors interact with 
common transcription factors in different types of cancer may 
serve to identify novel therapeutic targets, which could aid 
in the development of personalized treatment strategies and 
thereby maximize the efficacy of cancer therapies.
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2. Roles of ERs and ARs in tumor progression

ERα. ERα was first discovered in 1958 by Jensen et al (40). 
Subsequently, ERα was found to regulate gene transcription 
through interactions with estrogen, resulting in extensive 
research into its role in various diseases. ERα is encoded by the 
ESR1 gene on chromosome 6, and consists of several domains 
in the following structure: NH2‑A/B‑C‑D‑E‑F‑COOH. The 
N‑terminal domain (NTD; A/B) contributes to transcriptional 
activation and provides receptor specificity. The DNA‑binding 
domain (DBD; C) enhances DNA binding, whereas the D 
domain stabilizes the C domain through binding to heat 
shock proteins. The ligand‑binding domain (LBD; E/F) 
facilitates regulation via activation functions (AF)‑1 and 
AF‑2, thus aiding in transcriptional control. The AF1 domain, 
a ligand‑independent region, is typically regulated through 
phosphorylation by kinases such as mitogen‑activated 
protein kinase (MAPK), enhancing its capacity to recruit 
coactivators and stimulate transcription, even in the absence 
of hormone binding (41‑44). By contrast, the AF2 domain is 
ligand‑dependent, undergoing a conformational change upon 
estrogen binding to the LBD, particularly in helix 12 (45). 
This shift facilitates the recruitment of coactivators, such as 
nuclear receptor coactivator 1 and p300/CBP, via their LxxLL 
motifs (46). These coactivators, once bound, modify chromatin 
through histone acetylation, which enables transcription (47). 
These regulatory mechanisms are functionally conserved in 
ERβ and ARs (48,49).

ERα is a pivotal molecule in the development and progres‑
sion of various types of cancer. In breast cancer, ERα is 
associated with tumor progression and is upregulated in 
~75% of breast cancer tissues, in contrast to ~10% in healthy 
tissues (50). ERα is more prevalent in the luminal A type, 
compared with the basal type of breast cancer. ERα interacts 
with estrogen to promote tumor growth (51). Given these 
properties, anti‑hormone therapies that target ERα, such as 
aromatase inhibitors, tamoxifen and fulvestrant, have proven 
to be effective in breast cancer (52,53).

Aromatase inhibitors reduce estrogen levels by inhibiting 
the enzyme aromatase, which is responsible for converting 
the androgen hormone androstenedione and androstenediol 
into E1 and E2, respectively. As a result, these inhibitors are 
used in the treatment of ER(+) breast cancer to lower estrogen 
levels, thus suppressing cell proliferation and invasion (54). By 
contrast, tamoxifen is an anti‑estrogen drug that blocks the 
activity of estrogen in breast cancer. Tamoxifen directly binds 
to ERα, which prevents estrogen from exerting its effects, 
thereby inhibiting cell proliferation and tumor growth (55). 
The clinical study by Arpino et al (56) on patients with breast 
cancer demonstrated that the ER(+)/PR(‑) breast cancer group 
is less sensitive to tamoxifen, which targets ER, compared with 
the ER(+)/PR(‑) breast cancer group. This is because tamoxifen 
inhibits the estrogen effect, which influences the expression of 
the PR gene (57). As a result, PR(‑) patients experience reduced 
efficacy from tamoxifen treatment. Moreover, these patients 
tend to exhibit increased expression levels of other recep‑
tors, such as HER‑1 and HER‑2, which contributes to more 
aggressive tumor characteristics, including therapy resistance, 
faster proliferation and a higher probability of metastasis. 
Specifically, HER‑2 positive tumors are known to exhibit 

resistance to tamoxifen therapy, while HER‑1 expression is 
predominantly observed in ER‑negative tumors, which are 
associated with poor prognosis (58). Therefore, tamoxifen and 
fulvestrant are specifically used in ER(+) breast cancer, regard‑
less of PR status, but their efficacy may vary depending on the 
presence or absence of PR. Additionally, ERα is comprised 
of 595 amino acids with a molecular weight of 66 kDa, and 
alternative splicing results in several isoforms such as ERα46 
and ERα36, with the ERα46 isoform acting as a competitive 
inhibitor when co‑expressed with ERα66 (59‑61).

In prostate cancer, ERα promotes cell proliferation and 
inhibits apoptosis, thereby facilitating tumor growth (62). 
Notably, ERα expressed in stromal tissue has been shown to 
stimulate the growth of prostatic epithelium through growth 
factors (63). An in vivo study has demonstrated that knocking 
down ERα suppresses tumor growth (64), and research indi‑
cates that patients with high ERα expression levels have poor 
prognoses (65). In the majority of prostate cancer subtypes, ERα 
activation is associated with tumorigenesis and cancer progres‑
sion (66‑68). ERα typically promotes cancer cell proliferation 
by activating pathways such as IL‑6 signaling, which supports 
cell survival and resistance to ADT. This is particularly 
relevant in CRPC, where androgen‑independent mechanisms 
serve a pivotal role in sustaining tumor growth (66,67). In 
aggressive prostate cancer subtypes, including neuroendocrine 
prostate cancer and CRPC, elevated ERα levels contribute to 
increased malignancy and facilitate cancer cell survival and 
invasiveness, often through interactions with AR‑mediated 
pathways (68).

Ovarian cancer exhibits ERα expression in ~80% of 
patients (69). ERα significantly promotes cell migration and 
the epithelial‑mesenchymal transition (EMT) process by 
upregulating EMT‑associated transcription factors such as 
Snail and Slug, and by downregulating the epithelial marker 
E‑cadherin (70). Furthermore, a study by Chan et al (71) 
demonstrated that cell growth induced by E2 treatment 
was reduced when ERα was knocked down using siRNA, 
confirming its role in cell proliferation. The aforementioned 
anti‑estrogen treatments, such as aromatase inhibitors, 
tamoxifen and fulvestrant, are generally less effective due 
to the modest response rate in patients with ovarian cancer 
compared with patients with breast cancer, and are thus not 
commonly used (52,72).

Non‑small cell lung cancer (NSCLC), the most common 
type of lung cancer, is characterized by ERα promoting tumor 
progression by enhancing macrophage infiltration, which 
alters the tumor microenvironment to favor cancer growth and 
increases cell invasion (73). Clinical data also demonstrates 
that within the same elderly cancer patient group, women have 
a higher survival rate compared with men. Lung adenocarci‑
noma, a common subtype of NSCLC, commonly occurs in 
non‑smokers, with a higher incidence rate in women (19.6%) 
compared with men (11.8%) (74). Premenopausal women 
with lung adenocarcinoma had a median survival of 643 days 
compared with 735 days for postmenopausal women (P=0.01). 
Additionally, premenopausal women presented with more 
advanced stages of the disease, with 66% in stage IV compared 
with 53% in postmenopausal women. This highlights the 
significant impact of menopausal status on disease progression 
and survival outcomes. A study by Hsu et al (75) indicated that 
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E2 stimulates cancer cell migration, while ER antagonists such 
as tamoxifen, targeting the estrogen signaling pathway, inhibit 
lung cancer cell growth. Another study reported that women 
>60 years have a survival advantage compared with younger 
women, though this age effect is not observed in men (76).

Meanwhile, research on gastric cancer suggests that ERα 
may have a dual role. A study showed that transfection‑induced 
overexpression of ERα decreases β‑catenin expression, thus 
inhibiting cell proliferation and invasion (77). Additionally, 
ERα and ERβ mRNA levels in tumors, compared with normal 
tissues, have been associated with increased metastatic 
potential in gastric cancer (78). By contrast, it has also been 
suggested that knockdown of ERα inhibits the proliferation, 
migration and invasion of gastric cancer cells by regulating 
the expression of factors such as p53 and CDK inhibitor 1A 
(CDKN1A), associated with poor prognosis in patients (79).

Colon cancer is significantly influenced by estrogen 
and exhibits varying effects depending on which estrogen 
receptor it interacts with. ERα promotes the development and 
proliferation of colon cancer cells (80,81). The type of ERs 
interacting with estrogen varies with colon cancer stage, with 
ERα predominantly driving tumor progression in late stages. 
Conversely, the isoform ERα36 shows lower expression in 
tumor tissue compared with healthy colorectal tissue and 
decreases with advancing Dukes' stage (A+B>C+D, P=0.017) 
and lymph node metastasis stage (N0>N1/N2, P=0.049), 
suggesting a function opposite to full‑length ERα66 (82).

In hepatocellular carcinoma (HCC), the most common 
type of liver cancer, ERα is expressed at lower levels compared 
with adjacent normal tissue, and its promoter is hypermethyl‑
ated (83). Hou et al (84) reported that ERα acts as a tumor 
suppressor by upregulating the expression of tyrosine phospha‑
tase receptor type O, which promotes apoptosis and inhibits 
cell proliferation. However, in HCV‑related HCC, ERα mRNA 
and protein expression levels are elevated, and increased ERα 
expression is associated with increased levels of inflammatory 
and oncogenic genes, such as NF‑κB and cyclin D1, suggesting 
a role in promoting liver cancer progression (85).

ERβ. ERβ, discovered in 1996 (86), interacts with various 
molecules across different types of cancer and serves a 
significant role in tumor progression. Recognized as a crucial 
hormone receptor, ERβ functions as a tumor suppressor (87). 
ERβ is composed of AF‑1, AF‑2, DBD and LBD domains (88). 
The transcriptional activation domains, AF‑1 and AF‑2, are 
situated in the NTD and C‑terminal domain (CTD), respec‑
tively. ERβ has several isoforms due to alternative splicing, 
with the primary ones being ERβ1, ERβ2, ERβ3, ERβ4 and 
ERβ5 (89). Among them, ERβ1, the full‑length protein, is 
commonly referred to as ERβ (90).

In breast cancer, ERβ generally exhibits lower expression 
levels and has a weak negative correlation with ERα (Spearman 
R=‑0.18, P=2.2x10‑16) (91). ERβ is more abundantly expressed 
in basal‑like or normal‑like breast cancer subtypes (91). In 
ERα(+) breast cancer, ERβ suppresses ERα and thus inhibits 
tumor growth. Conversely, ERβ can act as a carcinogen in 
ERα(‑) breast cancer (89). Moreover, ERβ interacts with various 
signaling pathway molecules including AR, p53, E‑cadherin, 
cell cycle arrest molecules, phosphatase and PTEN, PI3K and 
AKT, all of which contribute to either inhibiting or promoting 

cancer growth (92). Notably, stable expression of ERβ in the 
ERα(+) cell line MCF7 results in decreased cell proliferation. 
Of the 921 differentially expressed genes after E2 treatment 
in ERβ(+) compared with ERβ(‑) breast cancer cells, 424 had 
ERβ binding sites within 10 kb. These target genes are crucial 
in regulating cell proliferation, death, differentiation, motility, 
adhesion, signal transduction and transcription (93).

In the prostate gland, ERβ isoforms range from ERβ1 to 
ERβ5 (94), each having distinct functions that can act either 
as tumor suppressors or oncogenes. Typically, ERβ acts as 
a tumor suppressor contrary to ERα in prostate cancer (95), 
upregulating E‑cadherin to inhibit EMT (96). Furthermore, 
ERβ enhances prolyl hydroxylase domain 2 expression, 
which hydroxylates hypoxia‑inducible factor 1‑α (HIF‑1α), 
marking it for degradation by the Von Hippel‑Lindau tumor 
suppressor (97,98). ERβ also upregulates forkhead box O3, 
subsequently increasing the expression of the apoptotic gene 
p53 upregulated modulator of apoptosis (PUMA) and the cell 
cycle arrest genes p21 and p27, thereby inhibiting tumor cell 
proliferation (68). When activated by ligands such estradiol or 
the selective ERβ agonist LY3201, ERβ functions as a tumor 
suppressor by inhibiting AR activation and the response of 
AR target genes (99). ERβ activation induces cellular differ‑
entiation and inhibits proliferation, particularly in early‑stage 
or low‑grade prostate cancer. ERβ exerts these effects by 
promoting the degradation of pro‑tumorigenic factors such as 
HIF‑1α, which helps maintain a differentiated, non‑invasive 
state in the prostate (68). However, in advanced or high‑grade 
prostate cancer, including CRPC, ERβ expression is frequently 
downregulated, leading to the loss of its protective effects and 
contributing to tumor progression (68,100). However, when 
ERβ1 forms heterodimers with ERβ2 or ERβ5, it correlates 
with poorer patient outcomes, promoting increased cell 
migration and invasion (101).

In the context of ovarian cancer, it has been hypothesized 
that ERβ serves as a tumor suppressor. Indeed, studies 
have demonstrated that in epithelial ovarian cancer (EOC), 
comprising 90% of ovarian cancer, the expression of ERβ 
is diminished in tumor tissues compared with normal 
tissues (102). Overexpression of ERβ has been observed to 
suppress the expression and activity of ERα, and to decrease 
levels of pAKT, cyclin D1 and cyclin A2. An in vivo study 
employing orthotopic xenograft mouse models showed that 
overexpression of ERβ curbs tumor growth (103). In EOC, 
ERβ interacts with an indole derivative (3‑{[2‑chloro‑1‑ 
(4‑chlorobenzyl)‑5‑methoxy‑6‑methyl‑1H‑indol‑3‑yl]methylene}‑ 
5‑hydroxy‑6‑methyl‑1,3‑dihydro‑2H‑indol‑2‑one) to inhibit 
ovarian cancer cell proliferation (104).

Lung cancer studies, particularly in NSCLC, suggest that 
ERβ facilitates tumor progression and adversely affects patient 
prognosis (95,105). ERβ expression positively correlates with 
tumor size, lymph node metastasis, clinical stage and differen‑
tiation. Silencing ERβ in vitro reduces cell invasion and colony 
formation (105). Overexpression of ERβ in in vivo mouse 
models has been shown to accelerate tumor progression via the 
ERβ/circ‑TMX4/miR‑622/CXCR4 signaling pathway (106).

In gastric cancer, ERβ operates as a tumor suppressor and 
manifests at reduced levels in gastric cancer tissues compared 
with normal gastric mucosa (107,108). Knockdown of ERβ in 
gastric cancer cell lines AGS and MKN45 activates growth 
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arrest and DNA damage inducible α, leading to increased 
apoptosis and autophagy through inhibition of the MAPK 
pathway. Furthermore, ERβ knockdown results in fewer colo‑
nies formed (109). Clinical studies have reported a negative 
correlation between ERβ expression levels, tumor grade and 
Lauren type in gastric cancer (110).

In colon cancer, ERβ is recognized as a tumor 
suppressor (111‑115). When expressed in the colon cancer cell 
line SW480, ERβ reduces cell proliferation, induces cell cycle 
arrest in the G1 phase, increases tp21 and p53 expression levels 
and decreases the expression levels of c‑Myc (112). Treatment 
with the ERβ‑selective agonist ERB‑041 has shown anticancer 
effects in colorectal cancer, including reduced metastasis and 
tumorigenesis in zebrafish xenograft and mouse models, as 
well as decreased migration and survival in colorectal cancer 
cell lines (113). During the transition from healthy tissue to 
cancer, the expression of ERβ decreases (114), and negatively 
correlates with survival rates in patients (115).

In liver cancer, ERβ also acts as a tumor suppressor, 
notably in HCC, where ERβ interacts with E2 to exert 
anti‑proliferative and anti‑inflammatory effects (116). It has 
been reported that ERβ induces the expression of suppressor 
of cytokine signaling 1 and inhibits the JAK1‑STAT6 pathway, 
preventing the polarization of tumor‑associated macrophages 
to the M2 phenotype, thereby inhibiting HCC growth (117). 
Intrahepatic cholangiocarcinoma treatment with the ERβ 
antagonist KB9520 has shown to increase apoptosis and reduce 
cell proliferation in vitro using HuH‑28 cells and in vivo in 
a thioacetamide‑induced experimental model of intrahepatic 
cholangiocarcinoma (118). These findings collectively affirm 
that ERβ functions as a tumor suppressor in liver cancer.

ARs. AR was discovered in the 1960s, and since then, its 
structural functions and mechanisms have been extensively 
studied (119‑122). AR consists of several domains: NTD, 
DBD, hinge region, LBD and CTD. Similar to ERβ, AF‑1 is 
located in the NTD and AF‑2 is in the LBD. The hinge region, 
positioned between the DBD and LBD, contains the nuclear 
localization signal, facilitating the translocation of AR from 
the cytoplasm to the nucleus (120‑122). Although the functions 
of AR are well documented in prostate cancer, its roles in other 
cancer types are less clearly understood.

In prostate cancer, AR promotes tumor progression. A 
previous study reported that IL‑6 activates the NTD of AR 
in LNCaP cells, enhancing cell proliferation via MAPK 
and signal transducer and activator of STAT3 signaling 
pathways (123). Consequently, primary cancer therapy 
for prostate cancer frequently utilizes ADT, which aims 
to inhibit androgens or block their binding to AR, thus 
suppressing tumor growth (124). However, as the cancer 
advances, it may evolve into CRPC, which resists both ADT 
and drugs such as abiraterone and enzalutamide (125‑127). 
Due to this resistance, extensive research on ADT therapy 
continues to explore mechanisms of resistance and develop 
novel therapeutic strategies (128,129). Shiota et al (130) 
investigated organelles generating reactive oxygen species 
(ROS) following AR inhibition and reported that ROS are 
primarily induced in peroxisomes through peroxisome 
proliferator‑activated receptor α (PPARα) activation. 
Additionally, inhibiting PPARα reduced cell proliferation 

and restored sensitivity to enzalutamide. Inhibition of 
enhancer of zeste homolog 2 (EZH2) or achaete‑scute 
homolog 1 (ASCL1) have been shown to re‑sensitize pros‑
tate cancer cells to enzalutamide. EZH2, a component of 
the polycomb repressive complex 2, functions as a histone 
methyltransferase. In CRPC, EZH2 can promote AR 
signaling independent of its histone modification role, 
even in the absence of androgens (100,131). ASCL1, a 
transcription factor involved in neuroendocrine differentia‑
tion, is linked to resistance against AR‑targeted therapies, 
including enzalutamide, due to its role in promoting neuro‑
endocrine‑like characteristics in prostate cancer. Inhibiting 
either EZH2 or ASCL1 shifts the cancer cells back to a 
phenotype more reliant on AR signaling, thereby restoring 
sensitivity to enzalutamide (66).

In breast cancer, multiple studies have investigated the 
antitumor activity of AR, highlighting its potential to suppress 
estrogen‑regulated tumorigenesis and improve clinical 
outcomes, particularly in ER(+) breast cancer (36,132‑135). 
AR activation displaces ER and key co‑activators such as p300 
and SRC‑3 from chromatin, leading to the downregulation of 
ER‑regulated genes and the upregulation of tumor suppressor 
genes and AR target genes. This antitumor activity remains 
effective even in ER(+) breast cancer resistant to CDK4/6 
inhibitors (36,132). Conversely, in ER(‑) breast cancer, AR 
promotes tumor progression. Treatment with the AR agonist 
dihydrotestosterone (DHT) has been shown to increase cell 
proliferation, migration, invasion and metastasis, as confirmed 
using in vivo mouse models (133). Additionally, AR is acti‑
vated by various signaling pathways, including the PI3K, 
MAPK and mTOR pathways, further contributing to tumor 
progression (134,135).

In ovarian cancer, ARs are known to promote tumor 
progression (136). Research has demonstrated that ARs are 
upregulated in >50% of EOC cases, leading to extensive 
investigations into its role (137,138). Treating EOC with 
DHT has been shown to decrease the expression levels of 
TGF‑β1 receptors (TGFBR1‑TGFBR2) and CDKN1A (139). 
Moreover, androgen treatment in OVCAR‑3 and SKOV‑3 cell 
lines, using androgen‑supplemented medium, increased cell 
proliferation and invasion, a process mediated by the androgen 
receptor coactivator p44 (140). Martins et al (141) reported 
that in high‑grade serous ovarian cancer, AR overexpression 
suppresses the tumor suppressor PTEN, thereby facilitating 
tumor progression.

Whether ARs act as a tumor suppressor or an oncogene 
in lung cancer remains unresolved. Liu et al (142) reported 
that ARs impede cell invasion in NSCLC and diminishes 
the expression of the oncogene tumor protein D52 via the 
circular‑SLCO1B7/microRNA (miR)‑139‑5p axis, thereby 
impeding tumor progression. Additionally, miR‑224‑5p, 
which hampers apoptosis and accelerates tumor growth, 
directly targets ARs and patients with NSCLC with high AR 
expression levels have a significantly longer overall survival 
rate [hazard ratio (HR)=0.5, log rank P=8.9x10‑16] (143). By 
contrast, Li et al (144) demonstrated that treating the NSCLC 
cell line A549 with luteolin suppressed AR expression 
and subsequently reduced cell proliferation. Additionally, 
Recchia et al (145) reported that the interaction between 
AR and the EGFR‑enhanced A549 cell proliferation via the 
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mTOR/CD1 pathway. Thus, further research into the detailed 
mechanism of AR is essential.

In regards to gastric cancer, similar to lung cancer, the 
precise role of AR is not well defined, but the majority of studies 
suggest that AR promotes tumor progression. Liu et al (146) 
reported that AR upregulates the oncogenic miR‑125b 
in gastric cancer, which inhibits apoptosis and promotes 
proliferation. Conversely, treatment with the AR antagonist 
bicalutamide induces apoptosis and inhibits proliferation. 
Furthermore, Xia et al (147) found that the AR splice variant 
AR‑v12 is more highly expressed in tumor tissues compared 
with normal tissues and upregulates myosin light chain 
kinase, enhancing cell migration and invasion. Soleymani 
Fard et al (148) reported that >50% of the 60 patients with 
gastric cancer exhibited upregulated ARs, which were signifi‑
cantly associated with the upregulation of EMT‑related genes, 
including Snail, β‑catenin, Twist1 and STAT3. AR upregula‑
tion is associated with poor survival outcomes (HR=3.478, 
P=0.001), and treatment with enzalutamide has been found to 
inhibit tumor progression.

The role of AR in colon cancer remains unclear. Studies 
suggest that the activation of membrane‑associated AR inhibits 
the PI3K/AKT pathway, induces apoptosis and subsequently 
suppresses tumor growth in colorectal cancer (149,150). 
Conversely, Rodríguez‑Santiago et al (151) reported that ARs 
promote tumor progression, noting that their upregulation in 
tumor tissues is associated with increased tumor size, differ‑
entiation and metastasis. AR activation not only diminishes 
antitumor immune activity but also increases the secretion 
of tumor‑promoting factors from the nervous system, thereby 
facilitating tumor growth.

In liver cancer, similarly to colon cancer, the role of AR is 
not well‑defined. Acosta‑Lopez et al (152) observed increased 
expression levels of AR in tumor tissues compared with normal 
tissues in HCC, associating increased AR activity with poorer 
prognosis in advanced HCC. Furthermore, Ren et al (153) 
suggested that mTORC1 phosphorylates AR at serine 
residue 96, which promotes tumor progression. Meanwhile, 
Ren et al (154) reported that treatment with DHT escalates 
cell proliferation, invasion and migration in the HepG2 cell 
line, while Ouyang et al (155) determined that AR inhibits 
cell migration and invasion in HCC cell lines HA22T and 
SK‑HEP‑1 via the miR‑325/ACP5 signaling pathway.

The present review investigated the effects of three 
hormone receptors across seven major types of cancer. The 
impact of sex hormone receptors on each type of cancer is 
summarized in Table I. Studies on the influence of these 
receptors on tumor progression have advanced consider‑
ably in hormone‑responsive organs, although their effects in 
non‑responsive organs remain less understood.

3. Role of key transcription factors in mediating hormone 
receptor‑driven tumor progression

Key cancer‑related transcription factors activated through 
interactions with hormone receptors. The sex hormones 
examined in the present study activate mechanisms of cancer 
malignancy or suppression through their respective recep‑
tors. In this process, various transcription factors are known 
to regulate the expression of key molecules involved in these 
mechanisms via sex hormone signaling. Prominent transcrip‑
tion factors include specificity protein 1 (SP1), ETS‑related 
gene (ERG), β‑catenin, activator protein 1 (AP‑1), c‑Myc, 
NF‑κB and STAT3. Table II provides a summary of how these 
key transcription factors influence cancer progression through 
their interactions with sex hormone receptors.

SP1 is a transcription factor that binds to specific promoter 
regions containing GC‑rich sequences and serves a key role 
in activating the expression of various genes. SP1 is known 
to function as an oncogene through the three sex hormone 
receptors examined in this study. In breast cancer, the 
ER/SP1 complex binds to DNA, promoting the expression 
of estrogen‑induced genes such as c‑Myc, creatine kinase 
B‑type (CKB), cathepsin D, retinoic acid receptor α (RARα) 
and heat shock protein 27 (Hsp27), thereby facilitating tumor 
progression (156). In ovarian cancer, estrogen stimulates the 
expression of genes related to angiogenesis in the endome‑
trium and endothelial cells through the SP1/ERβ complex, 
with this abnormal angiogenesis promoting tumor growth and 
invasion (157). Furthermore, in prostate cancer, the AR/SP1 
complex binds to the VEGF core promoter in chromatin, and 
androgen increases VEGF expression via the SP1 binding site, 
driving angiogenesis and tumor progression (158).

ERG is a key transcription factor belonging to the ETS 
family that serves a key role in various biological processes 
such as angiogenesis, cell differentiation, migration and 

Table I. Function of hormone receptors in different types of cancer.

 Type of cancer
Hormone ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
receptor Breast Prostate Ovarian Lung Gastric Colon Liver (Refs.)

ERα Oncogene Oncogene Oncogene Oncogene Dual Oncogene Oncogene (50‑85)
     function
ERβ Dual Dual Tumor Oncogene Tumor Tumor Tumor (68,91‑118)
 function function suppressor  suppressor suppressor suppressor 
AR Dual Oncogene Oncogene NC NC NC NC (36,123‑153)
 function       

NC, not classified; ER, estrogen receptor; AR, androgen receptor.
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metastasis (159,160). In prostate cancer, ERG is notably 
upregulated due to gene fusion with transmembrane serine 
protease 2 (TMPRSS2), and this upregulation has been associ‑
ated with aggressive prostate cancer (159). Setlur et al (159) 
demonstrated that TMPRSS2‑ERG expression increased 
following ERα agonist treatment, which also led to increased 
prostate cancer cell viability. Conversely, ERβ agonist 
treatment resulted in a decrease in both TMPRSS2‑ERG 
expression and cancer cell viability, indicating that the impact 
on cancer progression varies depending on whether ERα or 
ERβ is activated by estrogen stimulation. Moreover, an in vitro 
study by Kohvakka et al (160) demonstrated that the abnormal 
expression of prostate cancer‑specific long non‑coding 
RNAs (lncRNAs) further promotes tumor development and 
progression.

β‑catenin, a key molecule in the Wnt signaling pathway, 
exerts varying effects on cancer malignancy depending on 
the type of sex hormone receptor involved. Experimental 
overexpression of ERα via vector‑based transfection inhibits 
β‑catenin, thereby suppressing the growth, proliferation and 
invasion of gastric cancer cells, halting their entry into the 
G1/G0 phase and promoting apoptosis (77). Meanwhile, in 
prostate cancer, androgen interacts with AR to promote tumor 
progression, whereas estrogen stimulates cell proliferation 
specifically in androgen‑responsive prostate cancer (63,126). 
Increased expression levels of β‑catenin via ERβ increases 
the incorporation of [methyl‑3H]thymidine and upregulates 
cyclin D2 expression, promoting cell cycle progression (161). 
Furthermore, β‑catenin stimulates AR transcriptional activity 
through transcriptional intermediary factor 2 and glucocor‑
ticoid receptor‑interacting protein 1, thereby activating AR 
signaling. This activation increases androgen affinity, reduces 
the efficacy of anti‑androgen therapies and accelerates tumor 
progression in prostate cancer (162).

The AP‑1 family of transcription factors, including 
c‑Fos and c‑Jun, increases cell proliferation in breast cancer 
via E2‑ERα signaling. However, through ERβ signaling, 
AP‑1‑mediated transcription is suppressed by the recruitment 
of the transcriptional repressor C‑terminal binding protein, 
which counteracts the proliferation driven by ERα (87,163). 
In prostate cancer, AR not only mediates androgen‑induced 
cancer progression but also interacts with AP‑1 to form a 
complex, wherein they mutually inhibit each other's binding 
affinity to DNA‑binding sites (164,165).

Estrogen stimulation enhances the interaction between 
c‑Myc and ERα, with both binding closely to the VEGF 
promoter. A study by Dadiani et al (166) demonstrated that 
estrogen activates c‑Myc expression via ERα in ERα(+) breast 
cancer cells, promoting cell growth and proliferation while 
inhibiting differentiation. Additionally, estrogen transiently 
induces the transcription of VEGF, a key factor in angiogen‑
esis, thereby facilitating cell migration (166). By contrast, 
ERβ signaling suppresses c‑Myc transcription, modulating the 
expression levels of proliferation‑related genes. For instance, 
ERβ increases the production of antiproliferative genes such 
as p21 and p27, leading to G1 or G2 cell cycle arrest and 
inhibiting the proliferation of breast and colorectal cancer 
cells (112,167). Moreover, c‑Myc is a major target gene of AR 
signaling, with AR enhancing the transcription and expres‑
sion levels of c‑Myc, thereby promoting prostate cancer cell 
growth and progression. Consequently, c‑Myc upregulation is 
associated with the development and progression of prostate 
cancer (168).

NF‑κB is known to mutually inhibit ERα, yet when co‑acti‑
vated, NF‑κB modifies ERα function, leading to endocrine 
resistance and promoting breast cancer metastasis and recur‑
rence, making ER(+) tumors more aggressive (169). In prostate 
cancer, the effects of NF‑κB vary depending on the receptor 
involved. Estrogen‑activated ERβ mediates the proteasomal 
degradation of HIF‑1α, which suppresses NF‑κB activation, 
thereby reducing inflammation and potentially inhibiting 
the development of malignant tumors (170). Conversely, 
Zhang et al (171) reported that NF‑κB expression activates AR 
promoter transcription, increasing AR expression levels and 
cell proliferation while inhibiting apoptosis. This ultimately 
promotes metastasis and angiogenesis, thereby accelerating 
tumor progression.

STAT3 functions as a key transcription factor involved 
in various cancer progression pathways, including cellular 
transformation, proliferation, survival and angiogenesis, often 
through its interaction with sex hormone receptors (172‑174). 
In breast cancer cells, leptin signaling increases ERα expres‑
sion, which in turn enhances STAT3 activity, improving 
ERα‑dependent cell viability and promoting tumor progres‑
sion (172‑174). In lung cancer cells, STAT3 activation 
upregulates ERβ signaling, leading to increased cell prolif‑
eration (173). In prostate cancer, AR directly interacts with 
STAT3, enhancing its activity. Yamamoto et al (174), reported 

Table II. Key cancer‑related transcription factors activated by hormone receptor interactions.

Transcription factor ERα ERβ AR (Refs.)

SP1 Oncogene Oncogene Oncogene (156‑158)
ERG Oncogene Tumor suppressor Oncogene (159,160)
β‑catenin Tumor suppressor Oncogene Oncogene (77,161,162)
AP‑1 Oncogene Tumor suppressor Tumor suppressor (87,163‑165)
c‑Myc Oncogene Tumor suppressor Oncogene (112,166‑168)
NF‑κB Oncogene Tumor suppressor Oncogene (169‑171)
STAT3 Oncogene Oncogene Oncogene (172‑174)

SP1, specificity protein 1; ERG, ETS‑related gene; AP‑1, activator protein 1.
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that AR activation neutralizes the inhibitory effects of the 
STAT3 protein inhibitor PIAS3, thus protecting STAT3 from 
inhibition. Since STAT3 is an oncogene that mediates cellular 
transformation and promotes prostate cancer, its interaction 
with AR further accelerates tumor progression.

Cancer‑related transcription factors linked to hormone 
receptor interactions: Insights from database analysis. To 
identify sex‑specific key transcription factors involved in 
hormone receptor‑driven cancer progression across seven 
major types of cancer (breast, prostate, ovarian, colon, lung, 
liver and gastric cancer), a comprehensive data analysis 
approach using the SignaLink 3.0 database (http://signalink.
org) was employed. The SignaLink database integrates 
experimentally validated and curator‑inferred protein‑protein 
interactions (PPIs) and regulatory mechanisms from multiple 
sources, focusing on homo sapiens to ensure human‑specific 
relevance. The dataset includes curated data from OmniPath 
(https://www.omnipathdb.org), BioGRID (https://thebi‑
ogrid.org), Reactome (https://reactome.org) and ComPPI 
(https://comppi.linkgroup.hu/) (175).

The initial analysis of SignaLink 3.0 identified 6,738 
transcription factors associated with ERα, ERβ and AR. This 
set was filtered to focus on transcription factors that either 
regulate or are regulated by all three hormone receptors (ERα, 
ERβ and AR). Through this process, 31 transcription factors 
were identified that are regulated by all three hormone recep‑
tors and 10 transcription factors that regulate these receptors 
(Fig. 1; Table III) (176‑219). Notably, there was no overlap 
between the two groups.

To further refine the selection, a text mining approach was 
conducted by combining data from GeneCards (https://www.
genecards.org/) and PubMed (https://pubmed.ncbi.nlm.nih.
gov/). GeneCards is a comprehensive database that provides 
detailed information on human genes, including their 
functions, interactions and involvement in diseases (220). 
GeneCards was used to explore the biological roles of each 
transcription factor and utilized PubMed to analyze how they 
interact with hormone receptors. The selection criteria focused 
on transcription factors that, as evidenced in the literature, 
both regulate and are regulated by at least two of the three 
hormone receptors and have demonstrated significant roles in 
cancer progression. Through this process, studies were identi‑
fied that demonstrated the critical roles of these transcription 
factors in modulating hormonal signaling pathways, which are 
implicated in sex‑specific tumor biology. These interactions 
were further analyzed to assess their impact on tumor progres‑
sion, with a focus on understanding the mechanisms by which 
these transcription factors regulate hormone receptor activity 
across various types of cancer.

These transcription factors are primarily known to influence 
hormone‑related cancer progression through various pathways, 
including the PI3K/AKT/mTOR signaling pathway and the 
Hippo‑YAP/TAZ pathway. PI3K/AKT/mTOR signaling is a 
common pathway modulated by multiple transcription factors 
such as PPARG and AR, leading to enhanced tumor growth 
and survival, especially in prostate cancer (191,207,208). 
SMARCA4 and the Hippo‑YAP/TAZ signaling pathway are 
implicated in lung cancer, where they promote tumorigenicity 
by regulating gene transcription involved in cell proliferation 

and metastasis (213). Consequently, six key transcription 
factors were identified: CCCTC‑binding factor (CTCF), fork‑
head box A1 (FOXA1), retinoic acid receptor α (RARA), 
PBX homeobox 1 (PBX1), GATA binding protein 2 (GATA2) 
and CDKN1A, as candidate hormone‑related transcription 
factors. It was then investigated how interactions between 
these transcription factors and hormone receptors affect tumor 
progression, summarizing the pathways influenced by these 
interactions (Fig. 2).

The CTCF has been extensively studied in breast cancer. 
Montes‑de‑Oca‑Fuentes et al (221) revealed that in the ER(+) 
breast cancer cell line MCF7, CTCF binds with ERα and 
regulates its gene expression. By contrast, in the ER(‑) cell line 
MDA‑MB‑231, this binding site is methylated, which prevents 
binding. Additionally, Rossi et al (222) reported that CTCF 
influences the transcriptional activity of both ERα and ERβ. 
In a mouse model overexpressing HER2/neu, CTCF binds to 
both ERα and ERβ, supporting their transcriptional activity 
and indirectly contributing to tumor progression. Moreover, in 
prostate cancer, CTCF is known to interact with AR and tends 
to suppress the expression of AR target genes (219).

FOXA1 has been extensively researched in breast cancer and 
is known to interact with ERα, regulating estrogen responses 
and transcription activity and activating oncogene expres‑
sion (223‑226). Additionally, FOXA1 has a positive correlation 
with AR (r=0.8975, P<0.001) (227,228). Tsirigoti et al (229) 
reported that FOXA1 regulates AR expression levels in TNBC 
and is inversely correlated with Snail Family Transcriptional 
Repressor 1 (SNAI1) (Spearman's R=‑0.377, P<2.2x10‑16), and 
suggested that in SNAI1‑knockout TNBC, FOXA1 induces 
AR expression, fostering basal‑luminal plasticity. In prostate 
cancer, FOXA1 is positively correlated with ERβ (epithelial, 
ρ=0.41, P<0.001; stromal, ρ=0.354, P<0.001), and FOXA1 
knockdown via siRNA inhibits cell proliferation and migration 
in LNCaP and PC‑3 cell lines (230). FOXA1 is also implicated 
in promoting tumor progression in prostate cancer and HCC 
through AR‑mediated signaling (231,232).

RARA has gained substantial attention in breast cancer. It 
binds ERα to mediate transcription of ERα target genes (233). 
Salvatori et al (234) reported that, once activated by retinoic 
acid, RARA suppresses EGFR expression, while ERα, acti‑
vated by E2, enhances EGFR expression. Nevertheless, in the 
absence of ligands, ERα interacts with RARA to augment its 
ability to suppress EGFR expression, functioning as a tumor 
suppressor. RARA also participates in the AR‑related tran‑
scription network in prostate cancer, inversely regulating the 
expression of target genes such as polo‑like kinase 3 (PLK3). 
Specifically, RARA increases PLK3 expression, while AR 
reduces it, contributing to tumor progression (235). Notably, 
in the HepG2 HCC cell line, ERβ does not interact with 
the RARA promoter in the presence of estrogen, but upon 
4‑hydroxytamoxifen (4‑OHT) treatment, ERβ activates tran‑
scription of RARA (236).

PBX1 is predominantly studied in breast cancer, specifi‑
cally for its interaction with ERα compared with other hormone 
receptors. PBX1 serves as both a transcription and pioneer 
factor in the estrogen signaling pathway, binding to chromatin 
before ERα to enhance its accessibility and elevate the expres‑
sion of estrogen‑responsive genes linked to aggressive tumor 
behavior. This mechanism supports PBX1 as a poor prognostic 
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biomarker for breast cancer (237,238). Although direct interac‑
tions between PBX1 and AR are not documented, evidence 
suggests an indirect regulatory pathway. Kikugawa et al (239) 

demonstrated that promyelocytic leukemia zinc finger (PLZF), 
an AR‑regulated tumor suppressor gene, inhibits PBX1 
expression. Thus, when androgen interacts with AR, PLZF 

Figure 1. Transcription factors related to hormone receptors. (A) Workflow of identification of sex‑specific key transcription factors. (B) Transcription factors 
regulated by hormone receptors. (C) Transcription factors that regulate hormone receptors. (D) Schematic of hormone regulation of 31 transcription factors 
and their related pathways in cancer. Transcription factors in the red box promote cancer progression. Transcription factors in the blue box suppress cancer 
progression. Transcription factors in the green box can function as both. ER, estrogen receptor; AR, androgen receptor; HRE, hormone response element; 
CTCF, CCCTC‑binding factor; FOXA1, forkhead box A1; RARA, retinoic acid receptor α; PB1, PBX homeobox 1; GATA2, GATA binding protein 2; 
CDKN1A, CDK inhibitor 1A.
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Table III. Key cancer‑related transcription factors associated with hormone receptor interactions from database analysis.

A, Regulated by hormone receptors (n=31)

Function in cancer Transcription
progression factors Regulatory mechanism Type of cancer (Refs.)

Promotion  ADORA1 Promotes transcriptional activity of ERα Breast  (176)
 ANGPTL4 Activates ERK1/2 pathway Ovarian  (177)
 AVP AVPR1A/ERK/CREB pathway Prostate  (178)
 BCL9 Enhances the Wnt/β‑catenin signaling Gastric and TNBC (179,180)
 CAPN2 AKT/mTOR signaling pathway Prostate  (181)
 CRH IL‑6/JAK2/STAT3 signaling pathway and  Colon  (182)
  VEGF‑induced tumor angiogenesis
 EGFR Activates the MEK/pERK signaling pathway HCC (183)
 GRIN2D Enhances glycolysis, gluconeogenesis and LUAD (184)
  the E2F signaling pathway
 JUN Activates the MAPK/AP‑1 signaling pathway Various  (185)
 MKNK2 Enhances the phosphorylation of eIF4E NSCLC (186)
 NCOA3 Activates the PERK‑ATF4 pathway Breast  (187)
 NR5A2 Increases the resistance of endocrine therapy  Breast  (188,189)
 PBX1 Controls the TGFβ, ERα, NOTCH3 signaling Various  (190)
  pathway
 PPARG Activates the PI3K/AKT pathway Prostate  (191)
 PRUNE1 Enhances the canonical Wnt/β‑catenin NSCLC (192)
  signaling
 SERPINE1 Activates the VEGFR‑2 signaling pathway Gastric  (193)
 SMARCA1 Activate the Ras signaling, Rap1 signaling Breast  (194)
  and the cGMP‑PKG signaling pathway
 TGFA Activates the EGFR signaling pathway Breast  (195)
 TGM2 Activates the Erk activity and EGFR signaling Colorectal, (196,197)
  pathway and the NF‑κB survival pathway breast and
   ovarian
 TNC Activate the PI3K/AKT/NF‑κB pathways Prostate  (198)
 VEGFA Activates the AKT signaling pathway Colon  (199)
 SMARCA2 Deactivates AR through SWI/SNF ATPase Prostate  (200)
  degradation via SMARCA2 loss
Suppression  CDKN1A Inhibits the activity of cyclin‑CDK complexes, Prostate  (201)
  cyclin D‑CDK4/6 and cyclin E‑CDK2
 PNRC1 Suppresses Grb2‑mediated Ras/MAP‑kinase Breast  (202)
  activation
 POU1F1 Phosphorylation by MEK/ERK signaling Breast  (203)
  pathways sensitizes cancer cells to
  chemotherapy.
 RARA Modulates retinoic acid and estrogen Breast  (204)
  signaling
Dual function NOTCH2 Promotes the apoptosis in ER(‑) breast cancer Breast, (205,206)
  Induced biliary differentiation and stem‑ HCC and
  like maintenance  gastric
  Enhances EMT and contributes to
  chemoresistance via Wnt/β‑catenin
  signaling
Unknown CHAT ‑ ‑ ‑
 CRYZ ‑ ‑ ‑
 NBPF15 ‑ ‑ ‑
 NOTCH2NLA ‑ ‑ ‑



ONCOLOGY LETTERS  29:  93,  2025 11

expression increases, which subsequently suppresses PBX1 
expression and inhibits tumor progression.

GATA2 has been extensively studied in relation to AR, 
particularly in prostate cancer, where it significantly affects 
AR. GATA2 activates AR and the AR signaling pathway, 
which promotes tumor progression. GATA2 also enhances 
the expression of TGFβ1, further driving tumor progression 
through interaction with the AR signaling pathway (240‑242). 
In breast cancer, GATA2 inhibits AR translocation from the 
cytoplasm to the nucleus, thereby suppressing the expres‑
sion of the tumor suppressor PTEN (243). Treeck et al (244) 
showed that in the ovarian cancer cell line HEC‑1A, a three‑
fold increase in GATA2 expression occurred following ERβ 
knockdown. Additionally, GATA2 closely interacts with 
TP53.

CDKN1A, also known as p21, is a key transcription factor in 
various types of cancer. CDKN1A acts as a tumor suppressor in 
breast cancer. The presence of estrogen leads to ERα inhibiting 
p53 transcriptional activity, which reduces CDKN1A expres‑
sion and promotes tumor progression (245,246). Conversely, 
treatment with tamoxifen or ERα inhibitors elevates CDKN1A 
expression and decreases cell proliferation (245‑247). ERβ 
also regulates CDKN1A indirectly; in breast cancer, ERβ 
suppresses CDKN1A expression in the presence of wild‑type 
p53, but increases CDKN1A expression levels in cases with 
mutant p53, as demonstrated in vitro (248). The effects of ERβ 
have been explored in ovarian cancer; He et al (249) concluded 
that LY500307, an ERβ agonist, increases CDKN1A levels and 
apoptosis in ovarian cancer stem cells. Kim et al (201) showed 
that the interplay between AR and CDKN1A in prostate 

Table III. Continued.

B, Regulators of hormone receptors (n=10)

Function in cancer Transcription
progression factors Regulatory mechanism Type of cancer (Refs.)

Promotion  AR Activates the PI3K/AKT/mTOR signaling Prostate  (207,208)
  pathway
 EGR1 Activates the AR signaling pathway Prostate  (209)
 ESR1 Crosstalk with the PI3K/AKT/mTOR signaling Various  (210)
  pathway 
 FOXA1 Promotes the binding the other transcription Prostate, LUAD (211,212)
  factors
  Activates the glycolysis pathway
 GATA2 Activates the AR signaling Prostate  (208)
 SMARCA4 Activates the Hippo‑YAP/TAZ signaling Lung  (213)
  pathway
 STAT3 Activated the STAT3 transactivation activity Breast  (172,214)
 YBX1 Promotes the PI3K/AKT pathway Various  (215)
Suppression  SPI1 Promotes the apoptotic pathway LUAD (216)
Dual function CTCF Regulates estrogen‑responsive genes, cell Breast and prostate  (217‑219)
  cycle and epigenetic regulation
  Interacts with AR and suppresses AR target
  gene expression

ADORA1, adenosine A1 receptor; ANGPTL4, angiopoietin like 4; AVP, arginine vasopressin; BCL9, B‑cell CLL/lymphoma 9; CAPN2, 
calpain 2; CRH, corticotropin‑releasing hormone; EGFR, epidermal growth factor receptor; GRIN2D, Glutamate Ionotropic Receptor NMDA 
Type Subunit 2D; JUN, Jun proto‑oncogene; MKNK2, MAP kinase interacting serine/threonine kinase 2; NCOA3, nuclear receptor coactivator 3; 
NR5A2, nuclear receptor subfamily 5 group A member 2; PBX1, PBX homeobox 1; PPARG, peroxisome proliferator‑activated receptor 
gamma; PRUNE1, prune homolog 1; SERPINE1, serpin family E member 1; SMARCA1, SWI/SNF‑related matrix‑associated actin‑dependent 
regulator of chromatin subfamily A member 1; TGFA, transforming growth factor alpha; TGM2, transglutaminase 2; TNC, tenascin C; VEGFA, 
vascular endothelial growth factor A; SMARCA2, SWI/SNF‑related matrix‑associated actin‑dependent regulator of chromatin subfamily A 
member 2; CDKN1A, cyclin‑dependent kinase inhibitor 1A; PNRC1, proline‑rich nuclear receptor coactivator 1; POU1F1, POU class 1 
homeobox 1; RARA, retinoic acid receptor alpha; NOTCH2, Notch receptor 2; CHAT, choline O‑acetyltransferase; CRYZ, crystallin zeta; 
NBPF15, neuroblastoma breakpoint family member 15; NOTCH2NLA, Notch 2 N‑terminal like A; AR, androgen receptor; EGR1, early 
growth response 1; ESR1, estrogen receptor 1; FOXA1, forkhead box A1; GATA2, GATA binding protein 2; SMARCA4, SWI/SNF‑related 
matrix‑associated actin‑dependent regulator of chromatin subfamily A member 4; STAT3, signal transducer and activator of transcription 3; 
YBX1, Y‑box binding protein 1; SPI1, Spi‑1 proto‑oncogene; CTCF, CCCTC‑binding factor; ER, estrogen receptor; CRPC, castration‑resistant 
prostate cancer; TNBC, triple negative breast cancer; HCC, hepatocellular carcinoma; LUAD, lung adenocarcinoma; NSCLC, non‑small cell 
lung cancer; SWI/SNF, switch/sucrose non‑fermenting.
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cancer demonstrates AR inhibiting cyclin D1/2 and CDK4/6 
transcription while increasing CDKN1A transcription, leading 
to cell cycle arrest and reduced cell proliferation.

Studies on the interaction between hormone receptors 
and their transcription factors in cancer are limited and 
mainly focused on breast cancer. This focus is due to the 
high hormone dependency of breast cancer, with the majority 
of cases expressing hormone receptors, especially estrogen 
receptors, crucial for cancer cell growth and progression (250). 
Prostate cancer, also sensitive to hormones, shows significant 
influence from androgen receptors in its development and 
progression (251,252). By contrast, cancers such as gastric and 
lung cancer are less dependent on hormone signaling, resulting 
in fewer studies and less evidence on the impact of hormone 
receptor interactions. The established role of hormone therapy 

in treating breast and prostate cancer further stimulates 
research in these areas, while the absence of similar thera‑
peutic approaches in other types of cancer restricts research 
on hormone receptor interactions.

4. Conclusions

In hormone‑dependent types of cancer such as breast and 
prostate cancer, the interplay between AR, ER and other 
hormone receptors serves a key role in tumor progression 
and therapy resistance. In ER(+) breast cancer, when ER 
signaling is inhibited, AR can compensate by becoming 
more active, potentially driving tumor progression or 
resistance to treatment (253). Similarly, ER may assume a 
more prominent role when AR activity is diminished. This 

Figure 2. Graphical representation of how different hormone receptors, ERα, ERβ and AR, influence the activity or expression of the key transcription 
factors: CTCF, FOXA1, RARA, PB1, GATA2 and CDKN1A. ER, estrogen receptor; AR, androgen receptor; E2, estradiol; CTCF, CCCTC‑binding factor; 
FOXA1, forkhead box A1; RARA, retinoic acid receptor α; PB1, PBX homeobox 1; GATA2, GATA binding protein 2; CDKN1A, CDK inhibitor 1A; PLZF, 
promyelocytic leukemia zinc finger; ESR1, estrogen receptor 1; PLK3 polo like kinase 3.
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compensatory relationship also extends to other types of 
cancer such as prostate cancer, where AR is the main driver 
of tumor growth, but ER can contribute to cancer progression 
under certain conditions (254). The compensatory dynamics 
between AR and ER underscore the need for therapies that 
target both receptors simultaneously to prevent one from 
compensating for the inhibition of the other (255). The 
interactions between these hormone receptors are important 
in understanding cancer malignancy and developing more 
effective, comprehensive therapeutic strategies.

The present study underscores the roles of sex‑specific 
hormone receptors ERα, ERβ and AR across seven types of 
pan‑cancer, highlighting their interactions with key transcrip‑
tion factors such as CTCF, FOXA1, RARA, PBX1, GATA2 
and CDKN1A, and their impact on tumor progression. In 
conclusion, sex hormone receptors can either function as onco‑
genes or tumor suppressors depending on the type of cancer, 
and may exhibit both roles within a single tumor. Moreover, 
key transcription factors that interact with these hormone 
receptors serve crucial roles in regulating cancer prognosis 
and tumor progression. In certain types of cancer closely asso‑
ciated with sex hormones, such as breast and prostate cancer, 
hormone receptors significantly influence cancer prognosis 
and progression. Utilizing these sex‑specific characteristics 
in cancer treatments enables precision medicine tailored to 
the unique characteristics of each patient, and transcription 
factors that interact with sex hormone receptors in pan‑cancer 
may serve as novel anticancer therapeutic targets. To advance 
therapeutic strategies, further in‑depth studies are essential 
in several areas: The molecular mechanisms that underlie the 
dual roles of sex hormone receptors as oncogenes and tumor 
suppressors, the specific interactions between hormone recep‑
tors and transcription factors in various types of cancer, and 
the development of targeted therapies that exploit these inter‑
actions. Additionally, further research is required to explore 
the sex‑specific differences in cancer biology and their impli‑
cations for treatment, as well as the potential for personalized 
medicine approaches based on hormone receptor status and 
transcription factor profiles.
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