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Abstract

Objective: Assess the capacity of brain state of the newborn (BSN) to predict

neurodevelopment outcomes in neonatal encephalopathy. Methods: Trends of

BSN, a deep learning-based measure translating EEG background to a continu-

ous trend, were studied from a three-channel montage long-term EEG monitor-

ing from a prospective cohort of 92 infants with neonatal encephalopathy and

neurodevelopmental outcomes assessed by Bayley Scales of Infant Development,

3rd edition (Bayley-III) at 18 months. Outcome prediction used categories

“Severe impairment” (Bayley-III composite score ≤70 or death) or “Any

impairment” (score ≤85 or death). Results: “Severe impairment” was predicted

best for motor outcomes (24 h area under the curve (AUC) = 0.97), followed

by cognitive (36 h AUC = 0.90), overall (24 h AUC = 0.84), and language

(24 h AUC = 0.82). “Any impairment” was best predicted for motor outcomes

(12 h AUC = 0.95), followed by cognitive (24 h AUC = 0.85), overall (12 h

AUC = 0.75), and language (12 and 24 h AUC = 0.68). Optimal BSN cutoffs

for outcome predictions evolved with the postnatal age. Low BSN scores

reached a 100% positive prediction of poor outcomes at 24 h of age. Interpre-

tation: BSN is an excellent predictor of adverse neurodevelopmental outcomes

in survivors of neonatal encephalopathy after therapeutic hypothermia, even at

24 h of life. The trend provides a fully automated, objective, quantified, and

reliable interpretation of EEG background. The high temporal resolution sup-

ports continuous bedside brain assessment and early prognostication during the

initial dynamic recovery phase.

Introduction

Neonatal encephalopathy (NE) is a significant concern in

the neonatal period1 with hypoxic–ischemic encephalopa-

thy (HIE) being the principal etiology.1 Very early prog-

nostication of neurodevelopmental outcomes is essential

for guiding optimal neurocritical care in neonatal inten-

sive care units. It is typically done by incorporating infor-

mation from multiple modalities.2–5

Continuous brain monitoring with scalp-recorded elec-

troencephalography (EEG) during the first days of life is

crucial for neuroprognostication, which is best done by

assessing the recovery of normal spontaneous cortical

activity (also known as “EEG background (activity)”),

including re-appearance of sleep–wake cycling.2,6–8 It is

well established that a persisting severely abnormal EEG

background predicts adverse neurodevelopmental out-

comes, while early recovery of EEG background and

emergence of sleep–wake cycles support favorable

outcomes.2,6–8 Unfortunately, reliable bedside assessments

of these key EEG characteristics present a challenge.9 A

time-compressed trend called amplitude-integrated EEG
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(aEEG) is used to facilitate bedside review.7,10 However,

aEEG interpretation is still subjective and requires sub-

stantial expertise.2,6,9 Thus, there remains a need for

objective, quantified and preferably automated bedside

assessment of neonatal EEG and aEEG monitoring.

A fully automated trend measure, brain state of the

newborn (BSN), was recently developed for a quantified

and objective assessment of EEG background through

brain recovery in NE during the first days of life.11 It is

an open-access, validated, and reliable tool that could

facilitate and harmonize neonatal EEG monitoring for

clinical and research purposes.11 BSN can be produced

with a single bipolar channel, but including additional

channels was shown to provide more stable BSN trends,

which can be displayed on a bedside monitor with adjust-

able time resolutions (minutes to hours).11 The prior

BSN development study reported early diverging BSN

trends in infants with severely abnormal outcomes.11

Using clinical outcome categories at 4 years of age (favor-

able, cerebral palsy, cerebral palsy with epilepsy, and

death), BSN showed accurate outcome predictions during

early hours after birth asphyxia.12 BSN also distinguished

between severity of encephalopathy and predicted abnor-

mal neurodevelopmental outcomes at 2 years.13 It is not

well established, however, whether BSN could provide

very early prediction of more detailed neurodevelopmen-

tal outcomes, such as differential predictions of the neu-

rodevelopmental domains (motor, cognitive and

language) that are commonly assessed in neuropsycholog-

ical batteries.

We aimed to assess how the early BSN trends can

predict domain-specific neurodevelopmental outcomes in

NE in a larger prospectively cohort. BSN trends were

computed offline from EEG data of an observational

prospective cohort of infants with NE, and they were

used to predict the domain-specific neurodevelopmental

outcomes at 18 months. We hypothesized that low or

slow-to-improve BSN trends in NE undergoing thera-

peutic hypothermia would predict adverse neurodevelop-

mental outcomes, while high or fast-to-recover BSN

trends would predict favorable neurodevelopmental

outcomes.

Methods

Study design and participants

A secondary analysis of a cohort of infants with NE used

to assess how BSN can predict domain-specific neurode-

velopmental outcomes. The infants were recruited at a

single outborn tertiary center, the Hospital for Sick Chil-

dren in Toronto, between 2014 and 2019. This observa-

tional cohort was created to assess the role of dysglycemia

during NE.14 The dysglycemia information was not used

for this specific project. Infants were eligible if they pre-

sented with NE, defined by abnormal consciousness with

either neonatal seizures or abnormalities in tone or

reflexes.15 Exclusion criteria included PMA less than

36 weeks, birth weight below 1500 g, congenital malfor-

mations, inborn errors of metabolism, or congenital

infections. Infants who could not be recruited by 6 h of

life were excluded.

The infants received standard of care for NE, including

therapeutic hypothermia. Therapeutic hypothermia status,

such as rewarmed early, was not an exclusion criterion to

improve generalizability. Demographic and clinical data

were collected. Informed consent was obtained from par-

ents or legal guardians following a protocol approved by

the Hospital for Sick Children’s Research Ethics Board.

Apart from EEG signals, study data were managed using

research electronic data capture (REDCap, Vanderbilt

University, Tennessee)16 hosted at the Hospital for Sick

Children. STROBE checklist for observational cohort

studies was respected for this project.

EEG monitoring

Continuous EEG monitoring was started as soon as possi-

ble and continued for at least 48 h. We recorded the EEG

signals at 200, 250, or 256 Hz17,18 using either Stellate

Harmonie or Xltek Brain Monitor ICU video-EEG sys-

tems (Natus Neurology, Oakville, Ontario, Canada).

Using Elefix electrode paste, 11 or 20 grass gold cup sur-

face electrodes were attached individually following the

International 10–20 system using Pz as reference, evolving

from the 10–20 system modified for neonates to the full

10–20 system before the end of the study period. The

EEG signals were saved in the generic European Data For-

mat (.edf) using a three-channel montage that was both

available in the whole cohort and that closely corre-

sponded to the limited-channel aEEG monitoring9: two

hemispheric signals (Fp1-C3 and Fp2-C4) and one

cross-cerebral signal (C3-C4).

Generating the BSN trends

After re-montaging and EDF conversion, the EEG signals

were submitted to a computational server (www.

babacloud.fi) for a fully automated analysis pipeline,11

which outputs channel-wise BSN values and an auto-

mated artifact classification19 for each second of the

EEG file. The Babacloud server operates fully automati-

cally, and it only requires the user to upload the EEG

file using a simple web interface, followed by download-

ing the analysis results for each EEG file.20 As an alter-

native to the web browser, the analysis pipeline can be
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also used directly via Python-based API script. The

training and external validation of the analysis algorithm

was previously explained.11 The BSN algorithm converts

the raw EEG signals into a continuous score from 0 to

100, where 0 corresponds to a fully inactive EEG, and

100 represents continuous EEG with sleep–wake cycles.11

Sleep–wake cycling are presented in BSN by high score

with relatively low amplitude rhythmic fluctuations

going downward for quiet sleep and up toward 100 for

active sleep and wake state.11 The BSN outputs reported

in this work present average BSN values from the

accepted bipolar derivations (see Appendix p. 3) and

their confidence intervals, jointly visualized as BSN

trends (Fig. 1). During this post-processing, artifacts and

seizures were automatically removed (see Appendix p.

3). We visually inspected the individual BSN trends with

their corresponding aEEG trends for an ad hoc quality

assurance and to ensure sufficient clinical explainability21

of the BSN findings.

Neurodevelopmental assessment

The survivors of NE had a neurodevelopmental assess-

ment at 18 months including Bayley Scales of Infant

Development, 3rd edition (Bayley-III), administered by a

trained assessor supervised by a registered psychologist.

Reported composite scores included motor, cognitive, and

language. Participants who were unable to engage in test-

ing were assigned specific scores14 following literature.22

A diagnosis of cerebral palsy (CP) was assigned a com-

posite score for motor, cognitive, and language of 70 (�2

standard deviation (SD) on Bayley-III) if their CP severity

was Gross Motor Function Classification System

(GMFCS) III (n = 1) and 45 (�3SD) if their severity was

GMFCS IV or V (n = 1). Participants unable to engage in

testing received a motor composite score of 100 if they

walked independently by 14 months (n = 3) and a lan-

guage composite score of 70 if they were non-verbal

(n = 2).

Outcome grouping

We studied two alternatives to define adverse neurodeve-

lopmental outcomes. The more conservative approach

(“severe impairment”) used death or a Bayley-III compos-

ite score ≤70 corresponding to �2 standard deviation

(SD) and moderate–severe impairment.23 The more inclu-

sive approach (“any impairment”) used death or a

Bayley-III composite score ≤85 corresponding to �1SD

and mild or at risk of impairments.23 Overall adverse

neurodevelopmental outcomes were defined as a

below-threshold score in at least one of the composite

scores or death prior to follow-up.

Statistical analysis

Descriptive statistics were performed on the demographics

and clinical information. Receiver operating characteristic

(ROC) curves were calculated for BSN values at 12, 24,

36, and 48 h of life. The BSN-based prediction in the

ROC curves was considered poor (area under the curve

(AUC) = 0.50–0.69), acceptable (AUC = 0.70–0.79),
excellent (AUC = 0.80–0.89), or outstanding (AUC

>0.90).24 The evolution of the optimal BSN cutoff levels

and their corresponding positive predictive value (PPV)

and negative predictive values (NPV) were analyzed as a

function of postnatal age and presented in 3D plots. To

produce the ROC curves and the 3D plots with PPVs and

NPVs, the median BSN value over the specific time, pre-

ceding, and following hour were used (e.g., BSN at

12 h = median [BSN at 11 h, BSN at 12 h, and BSN at

13 h]). Statistical analysis was done using Matlab version

R2022b and STATA 18.0 software (Stata Corp., College

Station, TX). The BSN outputs and figures were visual-

ized with Matlab version R2022b.

Role of funding source

None of the funders had a role in the design and conduct

of the study, collection, management, analysis, and inter-

pretation of the data; preparation, review, or approval of

the manuscript; or decision to submit the manuscript for

publication.

Results

Of the 100 infants from the cohort involved in this pro-

ject, six participants were removed from the analysis due

to absence of Bayley-III evaluation (withdrew (n = 1),

lost to follow-up (n = 4), and missed follow-up (n = 1)),

one because a suspected genetic condition, and another

due to technically inadequate EEG. The final analyses

included 92 infants, 61% males, who underwent neonatal

continuous EEG and neurodevelopmental evaluation at

18 months.

The demographic and clinical characteristics are pre-

sented in Table 1. We considered the cohort to represent

neonates receiving therapeutic hypothermia in NE since

only one infant received no therapeutic hypothermia.

Continuous EEG was connected on average by

17.62 � 8.35 h. Only 26 infants were connected before

12 h of life. Neonatal seizures were reported in 49 infants

(53%), and 50 infants (54%) received at least one

anti-seizure medication (ASM) before or during EEG

recording. At least one analgesic or sedative agent was

administered to 97% of infants by 24 h of life, principally

morphine infusion (84%), but bolus of morphine,
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fentanyl, or dexmedetomidine were also used. No infant

remained naive to neuroactive medication, including

ASMs, sedation, and analgesia.

All the participants had a neurodevelopmental assess-

ment between 17 and 25 months (mean: 18.95 � 1.69).

Neurodevelopmental outcomes are presented in Table 2.

All participants had composite scores completed for the

three domains of the Bayley-III, except for one infant

who could not be tested for language due to a language

barrier. There were nine neonatal deaths and one

post-neonatal death.

The recoveries of the individual BSN trends were visu-

ally compared to neurodevelopmental outcomes. Visual

analysis of BSN trends was essential to understand pat-

terns and identify outliers. However, the time-linked

ROC analyses, PPVs, and NPVs offer the most objective

analysis of BSN prediction capacity. Hence, observational

descriptive terms suggest 24–36 h to part early or quick

Figure 1. Illustrative examples of brain state of the newborn (BSN) trends with their corresponding amplitude-integrated EEG (aEEG) trends. The

color in BSN trends is coding for the level (0–100), while the shade around the BSN trends shows confidence interval. Observational descriptive

terms suggest 24–36 h to part early or quick versus late or slow, while >80–90s is offered for high BSN score and <30 for low. aEEGs shown

correspond to the signal from channels C3–C4. (A) High BSN scores reflect a good background and normal neurodevelopmental outcomes. The

relatively low amplitude rhythmic fluctuations of the high score BSN trends represent the sleep–wake cycling, with the BSN trends going

downward for quiet sleep and going up towward 100 for active sleep or wake state. aEEG with continuous normal voltage and sleep–wake

cycling. (B) BSN scores with some initial non-rhythmic variability but remaining high, reflecting a good background and normal

neurodevelopmental outcomes. The low amplitude rhythmic fluctuation of sleep–wake cycling becomes more evident in the second half of the

recording. aEEG with continuous normal voltage and sleep–wake cycling. (C) Low BSN scores reflect poor background and severe

neurodevelopmental impairments. aEEG with burst suppression. (D) Low BSN scores reflecting poor background in a participant with neonatal

death. aEEG with burst suppression. (E) BSN scores with early improvement and normal neurodevelopmental outcomes. aEEG with initially low

voltage with evolution to discontinuous normal voltage and finally continuous normal voltage with sleep–wake cycle. (F) BSN scores with slower

improvement and adverse neurodevelopmental outcomes. aEEG with burst suppression initially, which evolved to discontinuous normal voltage.
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versus late or slow, while >80–90s is offered for high BSN

score and <30 for low. The most frequent observation

was that early and sustained high BSN levels with sleep–
wake cycling were observed in neonates with favorable

outcomes (Fig. 1A,B). Low BSN levels were observed in

neonates with adverse outcomes (Fig. 1C,D), including

moderate–severe neurodevelopmental impairments or

neonatal death. Early improvement in BSN was observed

in neonates with favorable outcomes (Fig. 1E), while slow

and late BSN improvement was observed with adverse

outcomes (Fig. 1F).

Ten infants were identified with higher BSN levels that

abruptly dropped to lower BSN levels, showing a subse-

quent BSN recovery and reassuring outcomes (six normal

and four mild impairment) (see Appendix p. 4, Fig. S1A–
C for illustrative examples). One participant with “severe

impairment” had a BSN drop with a plateau before slow

recovery (Fig. S1D). Hence, the later improved BSN

trend, with their preceding BSN if the decrease was at an

older age, appeared to predict respective outcomes as nor-

mal or mild impairments, while a drop with a persisting

lower or slow-to-recover BSN score was seen with adverse

Table 1. Subject demographics with clinical and therapeutic characteristics.

Variables Entire cohort (N = 92)

Overall adverse neurodevelopmental outcomes

Severe impairment

(N = 21)

Any impairment

(N = 40)

Sex Male 56/92 (61%) Male 13/21 (62%) Male 25/40 (63%)

Post-menstrual age, weeks 39.6 � 1.3 39.4 � 1.3 39.6 � 1.2

Birth weight, g 3411 � 510 3343 � 436 3442 � 523

Umbilical cord gas

pH 7.00 � 0.17 6.97 � 0.22 7.01 � 0.20

Base excess �15.21 � 6.95) �17.14 � 7.34 �15.63 � 6.78

APGAR at 5 min 4.0 (3.0–6.0) 4.0 (1.0–6.0) 3.5 (1.5–6.0)

Sarnat score

Mild 2/92 (2%) 1/21 (5%) 1/40 (3%)

Moderate 77/92 (84%) 7/21 (33%) 26/40 (65%)

Severe 13/92 (14%) 12/21 (62%) 13/40 (33%)

Therapeutic hypothermia

Complete (72 h) 86/92 (93%) 19/21 (90%) 37/40 (92.5%)

Partial (<72 h) 5/92 (5%) 2/21 (10%) 3/40 (7.5%)

None 1/92 (1%) 0/21 (0%) 0/40 (0%)

Age at the start of EEG, h 17.6 � 8.4

(range: 6.1–44.8)

14.5 � 7.0

(range: 6.1–31.0)

15.1 � 7.0

(range: 6.1–35.6)

Infants with neonatal seizure 49/92 (53%) 17/21 (81%) 28/40 (70%)

Antiseizure medication,a number of agents 1.0 � 1.2 2.0 � 1.4 1.5 � 1.5

Analgesic and sedative medication,a number of agents 1.3 � 0.5 1.4 � 0.7 1.3 � 0.6

Neuroactive medication,a number of agents 2.4 � 1.4 3.4 � 1.7 2.8 � 1.6

Deceased prior to 18 months follow-up 10/92 (11%) 10/21 (48%) 10/40 (25)

Diagnosis cerebral palsy at 18 months follow-up 6/92 (7%) 6/21 (55%) 6/40 (20%)

Maternal education

Less than high school 2/92 (2%) 0/21 (0%) 1/40 (3%)

High school diploma 4/92 (4%) 0/21 (0%) 0/40 (0%)

College or specialized training 21/92 (23%) 2/21 (10%) 8/40 (20%)

Undergraduate university degree 8/92 (9%) 1/21 (5%) 3/40 (8%)

Graduate degree 5/92 (5%) 1/21 (5%) 1/40 (3%)

Not available 52/92 (57%) 17/21 (81%) 27/40 (68%)

Primary language spoken at home

English 36/92 (40%) 3/21 (14%) 12/40 (30%)

Other than English 5/92 (5%) 1/21 (5%) 2/40 (5%)

Not available 51/92 (55%) 17/21 (81%) 26/40 (65%)

Overall adverse neurodevelopmental outcomes of Bayley-III when “severe impairment” corresponds to at least one Bayley-III composite score ≤70

or death while “any impairment” corresponds to at least one composite score ≤85 or death. Neuroactive medication includes anti-seizure medica-

tion, sedation, or analgesia. Data are n/N (%), mean � SD, or median (IQR).
aPrior to or during EEG recording.
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outcomes. The abrupt drops in BSN were at times related

to a clinical change, such as seizures and ASM; however,

some BSN drops were not associated with an identifiable

clinical event. The same proportion of participants with

and without a clinical correlation for the BSN drop and

with either normal or mild developmental concerns were

detected precluding the identification of a pattern.

We also identified infants with an apparent mismatch

between high initial BSN levels (BSN ~90 before 24 h)

and adverse neurodevelopmental outcomes (see Appendix

p. 5, Fig. S2A–F). One such infant died of sudden infant

death syndrome (SIDS) after the neonatal period

(Fig. S2A). The infant was kept in the analyses because it

was impossible to exclude the role of HIE in later

SIDS.25,26 Four other outliers showed high early BSN

levels and moderate-to-severe impairment in at least one

development domain, but all included language (Fig. S2C–
F). An infant had high BSN levels with moderate-to-

severe impairment in all domains, but the EEG was

started after 30 h (Fig. S2B). This disproportional

involvement of language (14/15 participants) was more

marked when including Bayley-III composite score 71–85
with isolated language impairment in 9/15 participants.

Only one participant was confirmed to have a primary

language other than English, but primary language was

unavailable for 10 out of 19 infants with language impair-

ment and high BSN trend. Maternal education, a marker

for socioeconomic status, was unavailable for most partic-

ipants (52/92).

Further analysis with ROC curves showed how predic-

tion by BSN levels changes over time and between out-

come groups (Fig. 2). BSN was excellent to outstanding

at predicting “severe impairment” for the four postnatal

ages assessed. Time-linked ROC analyses showed AUCs of

0.80 to 0.97 for severe overall impairment. BSN

best-predicted motor outcomes at 24 h of life

(AUC = 0.97), followed by overall outcomes

(AUC = 0.84) and language (AUC = 0.82) outcomes,

while cognitive outcomes were maximally predicted at

36 h (AUC = 0.90). The 3D graphs of PPV and NPV of

BSN score per postnatal age (Fig. 3) showed that the

“severe impairment” group required a lower BSN score to

reach the same PPV than the “any impairment” group; at

24 h overall outcome had a PPV of 100% for both

groups, but the required BSN score was 15 for “severe

impairment” and 40 for “any impairment” (see Appendix

p. 6, Tables S1 and S2). For the “any impairment” group,

the prediction capability of BSN was more variable, with

AUCs between outstanding and poor (Fig. 2). The predic-

tion was the strongest for motor outcome at 12 h of life

(AUC = 0.95), followed by overall outcomes (AUC =
0.75), and language (AUC = 0.68), while cognitive out-

comes were maximally predicted at 24 h (AUC = 0.85).

ROC curves of adverse neurodevelopmental outcomes in

function of BSN score for our two outcome groups

showed that adverse outcomes were better predicted using

≤70 as the composite score limit at the four postnatal

ages assessed.

The three-dimensional (3D) relationships (BSN-level 9

time 9 PPV/NPV) were assessed using time-varying anal-

ysis of PPVs and NPVs through all possible BSN cut-off

levels using our two neurodevelopmental outcome groups

(Fig. 3). This approach depicted the “optimal BSN” cutoff

levels with the highest possible PPV/NPV at each point in

time. The maximal PPV and NPV at four postnatal ages

with their corresponding BSN scores are reported for the

two outcome groups in Tables S1 and S2. As example,

using “severe impairment,” the maximal PPV at 24 h was

100% for all domains for BSN scores of 15, while maxi-

mal NPV was 93% for overall, motor 100%, cognitive

96%, and language 93% for BSN scores of 60. For all

developmental spheres in the two groups, the maximal

PPVs declined in the first 24 h of life before showing sus-

tained high PPV. After 24 h of life, there was a general

trend where the best prediction was obtained with higher

BSN cut-off levels as the infants grew older. Thus, with

“severe impairment,” motor maximal PPV was 86% at

12 h but 100% at 24, 36, and 48 h, but the respective

BSN scores were 45, 15, 60, and 80. The increasing opti-

mal BSN cut-off was most apparent for the overall (PPV)

and motor (PPV and NPV) outcomes. Comparison

between outcome domains shows that the best PPV of

cognitive or language outcomes comes from much lower

BSN levels than overall and motor outcomes; however,

NPV of the cognitive and language outcomes is optimal

at high BSN levels. Using “any impairment” at 24 h,

maximal motor PPV was 100% for BSN score of 40,

while cognitive maximal PPV was 100% for BSN score of

15 and maximal NPV was 94% for a BSN score 60. The

relatively wide difference in BSN levels between PPV and

NPV for cognitive and language outcomes is also reflected

Table 2. Domain-specific neurodevelopmental outcomes at

18 months.

Bayley-III

(composite scores)

Adverse neurodevelopmental outcomes

(N = 92)

Severe impairment Any impairment

Overall 21 (23%) 40 (43%)

Motor 17 (18%) 23 (25%)

Cognitive 18 (20%) 25 (27%)

Language 20 (21%) 37 (40%)

Adverse neurodevelopmental outcomes for each composite score of

Bayley-III when “severe impairment” corresponds to a Bayley-III com-

posite score ≤70 or death while “any impairment” corresponds to a

composite score ≤85 or death.
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Figure 2. Receiver operating characteristic (ROC) curves for neurodevelopmental outcome predictions. Each ROC curve depicts adverse

neurodevelopmental outcomes in function of brain state of the newborn (BSN) at four different postnatal time points (12, 24, 36, and 48 h). The

“severe impairment” group corresponds to a Bayley-III composite score ≤70 or death, while the “any impairment” group corresponds to a

composite score ≤85 or death. AUC, area under the curve.
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in the lower corresponding AUC values. With any lan-

guage impairment, the PPV of 100% at 24 h corre-

sponded to BSN 20, but the NPV of 70% had a BSN

score of 90 while the AUC was 0.68. PPV of cognitive

outcomes was influenced by the Bayley-III cutoff used;

PPV at 36 h was 100% for both cut-offs, but BSN score

was 20 for “severe impairment” and 60 for “any

impairment.”

A diagnosis of CP was given to six participants, all with

adverse motor outcomes regardless of the cutoff used.

Using PPVs, adverse motor outcomes could be predicted

at 100% at 24 h in two participants (BSN <15) and two

others at 36 h (BSN <60). A participant with CP was an

outlier (Fig. S2B) and the EEG of the sixth participant

was started too late (>48 h) to assess BSN prediction.

Our findings suggest favorable neurodevelopment when

BSN levels are persistently over 60 by 36–48 h of life;

however, BSN may offer strong prediction already by

24 h. Tables S3 and S4 (see Appendix p. 7) present PPVs

and NPVs for specific BSN scores and postnatal ages for

the two outcome groups. Hence, using “severe impair-

ment,” a BSN score of 60 at 36 h gives NPVs above 90%

for all domains with a PPV of 100% for overall, 83% for

motor, and 73% for cognitive and language. However, a

Figure 3. Change in outcome predictions by different brain state of the newborn (BSN) levels during the first 2 days of life. These

three-dimensional graphs show how choosing different BSN cutoff values would affect positive predictive value (PPV) and negative predictive

value (NPV). The light purple line follows the optimal BSN level at each hour, showing what BSN level would have maximal PPV or NPV,

respectively. The color scales depict PPV and NPV levels scaled to the same color schemes across the whole figure (see color bar on the right

side); darker colors indicate higher predictive value. The “severe impairment” group corresponds to a Bayley-III composite score ≤70 or death,

while the “Any impairment” group corresponds to a composite score ≤85 or death. NaN, data not available for calculation.
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BSN of 60 at 24 h also gives NPVs above 90% for all

domains, but with a PPV of 73% for overall and motor,

and 67% for cognitive and language. The neurodevelop-

mental prediction by BSN at 24 h was outstanding for

motor and excellent for cognitive regardless of the

Bayley-III cutoff used (Fig. 2). The prediction of overall

outcomes went from excellent to acceptable with

Bayley-III ≤70 versus ≤85. Language prediction was more

affected by the Bayley-III score used, going from excellent

with ≤70 to poor with ≤85. BSN offered high PPV and

NPV at 24 h (Fig. 3). The maximal PPV at 24 h used

lower BSN (BSN ≤15) for overall and motor “severe

impairment” than for “any impairment” (BSN ≤40). At
24 h, maximal NPV was around BSN 60 for “severe

impairment” but 90 for “any impairment” for overall,

motor, and language outcomes.

Discussion

Our results show that BSN trends at 24 h can predict later

domain-specific neurodevelopmental outcomes in NE

receiving therapeutic hypothermia. BSN trends offer effec-

tive, explainable, and intuitive displays of the recovery of

cortical activity during the first days of life in NE. These

findings concord with the extensive literature where visually

analyzed aEEG27 and EEG background shows predictions of

later outcomes.6,7,10 We extend those findings by demon-

strating that the analysis of EEG and aEEG signals can be

fully automated to provide an objective, continuous mea-

sure of the EEG background activity. Moreover, our results

show that such continuous trend measures can provide

accurate outcome predictions as early as the first day of life

in hypothermia-treated infants, which is a significant

improvement to the visual EEG analyses that become pre-

dictive by 36 h or more.7,10,27–29

The changes in specificity and sensitivity of BSN-based

predictions are compatible with the previous literature

using visual observations of EEG and aEEG trends7,10,12,27;

sensitivity decreases and specificity increases over the early

neonatal period. Compared to the visual EEG and aEEG

assessments, BSN shows an earlier prediction, with peak

AUCs between 12 and 36 h for each developmental

domain. This is a clinically significant improvement pro-

vided by BSN, as therapeutic hypothermia is commonly

known to delay prognostication by conventional EEG or

aEEG from 24–36 h to 48–72 h.7,27–29 A more recent

meta-analysis, only using studies with follow-ups of

18 months or more, identified the highest diagnosis odd

ratio of aEEG at 36 h.10

Our analyses demonstrate robust dynamics in the

BSN-based prediction, supporting ways to customize and

optimize outcome predictions for individual cases or

trial designs. For instance, BSN can have a PPV of

100% by 24 h of life when using a very low BSN score

(BSN ≤15). This degree of precision with BSN is due to

its continuous value instead of the conventionally used

discrete classes of background, which reported PPVs of

66% at 24 h, 85% at 48 h, and 89% at 72 h for persis-

tently abnormal aEEG and adverse neurodevelopment

outcomes.27 Without age division, a meta-analysis

reported an AUC of 0.78 for unfavorable neurological

outcomes using aEEG background patterns, while EEG

was 0.88.30 In a meta-analysis of EEG in therapeutic

hypothermia, the sensitivity and specificity of burst sup-

pression, low voltage, and flat trace pattern, respectively

varied between 0.84 to 0.87 and 0.60 to 0.94.7 A detailed

comparison of the prior literature7,10,27,30 to the present

study is challenged by the differences in the EEG mea-

sures used in each study. However, a combination of

discrete background patterns and sleep–wake cycle in the

aEEG trend was found to predict adverse 2-year neuro-

developmental outcomes with Bayley <70 as the thresh-

old, with AUCs ranging from 0.89–0.91 for 12–24 h to

0.90–0.92 for 24–36 h.3

Prognostication of neurodevelopmental outcomes fol-

lowing therapeutic hypothermia in NE is multimodal using

tools outside EEG. Moderate-to-severe modified Sarnat

score before 6 h of life showed an AUC of 0.72 for adverse

neurodevelopment outcomes at 2 years.31 Their outcome

definition was closer but more inclusive than our overall

“any impairment” with an AUC of 0.74 at 24 h.31 Using

2 years outcomes, visual evoked potential showed a PPV of

91% for adverse outcomes.32 However, NPV was only

58%.32 A meta-analysis reported an AUC of 0.88 for MRI

within 2 weeks of age to predict unfavorable neurological

outcomes.30 Since, it was brought forward that MRI predic-

tive capacity is reduced in the absence of severe brain injury

and cannot accurately discriminate the degree of neurode-

velopmental impairments.33

Adverse neurodevelopmental outcomes have diverse

definitions, including variability in standardized tests and

thresholds used, as well as the practical implications of

neurodevelopmental compromise in different walks of

life.7,23,34 Our work used both common cutoffs for

adverse neurodevelopmental outcomes to facilitate com-

parison with literature. The findings show the expected

trade-offs: The BSN-based prediction was excellent to

outstanding in predicting adverse neurodevelopmental

outcomes when using death or Bayley-III composite score

≤70, but it was outstanding to poor when using ≤85.
Higher specificity with less false positives may be clinically

useful, if BSN is used for supporting clinical management

of NE, including discussions around goals of care and

redirection.

Unfortunately, most studies do not assess the predictive

capacity by developmental domains but use composite
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adverse outcomes. Regarding domain-specific prediction,

our ROC analyses presented that BSN trends show best

prediction of motor outcomes and lowest prediction of

language outcomes. However, our ad hoc observation of

reassuring BSN trends in infants with poor language out-

comes was compatible with the idea that language might

be substantially modified by later environmental factors

beyond the effects of early brain injury, obviously not

predictable in the newborn EEG data.35,36 The literature

increasingly reports the role of socioeconomic status and

environment on outcomes after neonatal brain injury,35,37

with language and cognitive being the domains the most

influenced by these modifying factors.35,36 Also, with mul-

ticulturalism, bilingualism and English as a secondary lan-

guage need to be considered during testing and

analysis.38,39 Furthermore, the reported overall prevalence

of neurodevelopmental impairment in the general pediat-

ric population, 7.6% to 17.8%,40,41 coincides closely with

the 7% proportion of apparent prediction failures after

therapeutic hypothermia in NE.27

Despite measuring the same phenomenon, EEG back-

ground, the advantage of BSN12 to aEEG27 or EEG.6,7,10 is

likely attributed to the key differences between visual

analysis and the BSN construct.11 Visual EEG and aEEG

analyses are based on identifying discrete categories (e.i.

inactive, burst-suppression, and continuous), forming a

continuum from worst (inactive) to best (fully active).

The discrete nature of EEG background categories over-

comes constraints in human visual perception, which

contradicts extensive empirical data and clinical experi-

ence on a confluence between neonatal brain states. With

BSN, such artificial constraints are removed by replacing

the categories with a continuous value, increasing the

“depth resolution” of EEG background activity. In prac-

tice, this becomes important for outcome predictions

because infants with NE may show a prolonged recovery

with an almost normalized EEG activity. Such EEG activ-

ity may look partly discontinuous and abnormal to vary-

ing degrees. However, its visual classification is often

confusing5–7,27 falling between different categories. In the

aEEG nomenclature, it can be called discontinuous nor-

mal voltage2,5,6 but the classification is ambiguous and

subject to confounders. BSN also allows the inclusion of a

richer repertoire of EEG and aEEG information content

that can be visually perceived. Thus, we propose that the

good performance of BSN in early prediction comes from

its continuous measure that spans through the gray zones

in visual classifications (BSN levels between 50 and 80).

Limitations

There are limitations in the present study. First, we were

unable to assess infants before 12 h of life because

monitoring was delayed from being an outborn center.

Second, minutes with seizures were removed, respecting

the design of BSN focusing on background analysis.11

Visual or automated seizure detection is needed to sup-

plement BSN in potential clinical use.8,9 Third, any neu-

roactive agents, given to all infants in our cohort, are

known to affect EEG and aEEG background,29 and hence

BSN levels; these effects will require further detailed,

time-linked analyses, due to possible confounding effects.

However, BSN still demonstrated excellent predictive

capacity despite using neuroactive agents supporting its

generalizability to its relevant population; infants with

encephalopathy receiving various neuroactive agents.

Fourth, longer follow-up periods could allow more com-

plex neurodevelopmental evaluations. However, such

work would come at the cost of confounding the neonatal

effects with other early life effects that the EEG or aEEG

monitoring cannot explain during the first days of life.

Fifth, visual inspection of the BSN trends was not blinded

to outcomes because understanding the interaction

between BSN trends and neurodevelopment was intrinsic

to this project; knowledge of outcomes was necessary to

identify if a BSN trend was concordant or not with

expectations but may have introduced some bias. Finally,

diagnosis of autism spectrum disorder was not collected

and only limited information about primary language

spoken at home and maternal education were available

precluding their assessment for possible confounding

impacts on neurodevelopmental outcomes.

Conclusion

BSN may provide excellent prediction of domain specific

adverse neurodevelopmental outcomes in survivors of NE

after therapeutic hypothermia. Low or slowly improving

BSN trend links to adverse neurodevelopmental outcomes,

while high or fast recovering BSN trend links to favorable

neurodevelopmental outcomes. Prediction of more severe

neurodevelopmental outcomes is more specific, providing

critical information for management. The principal advan-

tage of BSN over aEEG is its earlier predictive capability,

which is maximal already at 24–36 h of life. Other benefits

of BSN against aEEG or EEG include its objectivity, quan-

tifiability, and reliability from being an open-access auto-

matic algorithm, which also alleviates the need for expert

interpretation. In summary, BSN is a promising

open-access algorithm that interprets EEG background in

NE and offers bedside neuroprognostication.
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