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ABSTRACT
KRAS mutations are common in non-small cell lung cancer (NSCLC) and are associated with patient 
prognosis; however, targeting KRAS has faced various difficulties. Currently, immunotherapy, chemother-
apy, and chemoimmunotherapy play pivotal roles in the first-line treatment of KRAS-mutated NSCLC. 
Here, we summarize the current evidence on first-line therapies and compare the treatment outcomes 
and biomarkers for different regimens. KRAS inhibitors and other emerging alternative treatments are 
also discussed, as combining these drugs with immunotherapy may serve as a promising first-line 
treatment for KRAS-mutated NSCLC in the future. We hope that this review will assist in first-line 
treatment choices and shed light on the development of novel agents for KRAS-mutated NSCLC.
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1. Introduction

Lung cancer has high morbidity and mortality rates 
worldwide.1 The most common type of lung cancer is non- 
small cell lung cancer (NSCLC).2 Currently, first-line treat-
ment options for unresectable NSCLC without driver 
mutations include chemotherapy, anti-PD-1/PD-L1 immu-
notherapy, and chemotherapy combined with 
immunotherapy.3 Advanced NSCLC with driver gene 
mutations, such as epidermal growth factor receptor 
(EGFR) mutations, are treated with targeted therapies, 
such as epidermal growth factor receptor tyrosine kinase 
inhibitors (EGFR-TKIs).3

Kirsten rat sarcoma viral oncogene (KRAS) is a common 
driver oncogene mutation in NSCLC that plays a crucial role in 
cancer development and evolution.4,5 As a member of the 
GTPase family, it functions to catalyze GTP hydrolysis.6 

KRAS mutations are common in NSCLC; the mutation sites 
include amino acids 12, 13, and 61, with the G12C mutation 
being the most common, followed by G12V, G12D, and G12A 
mutations.7,8 KRAS mutations reduce GTPase activity, leading 
to sustained KRAS activation and increased signaling in the 
downstream pathways. The mitogen-activated protein kinase 
(MAPK) and phosphatidylinositol-3-kinase (PI3K)-protein 
kinase B (AKT) pathways are important downstream pathways 

of RAS signaling (Figure 1). The MAPK cascade plays an 
important role in cell proliferation and tumorigenesis.9 On 
the other hand, RAS also binds to and activates PI3K, leading 
to AKT phosphorylation and stimulation of the mammalian 
target of the rapamycin (mTOR) pathway.10 This contributes 
to cell proliferation and survival, which are essential for tumor 
development and maintenance.10 However, the efficacy and 
safety of the currently available drugs targeting KRAS remain 
unsatisfactory.11 Therefore, chemotherapy and immunother-
apy still play important roles in the first-line treatment of 
NSCLC with KRAS mutations (KRASm).

Although numerous studies have focused on chemotherapy 
and immunotherapy for KRASm NSCLC, the results from 
previous studies are inconsistent owing to the heterogeneity 
of KRASm NSCLC. This review focuses on the best options for 
the first-line treatment of KRASm NSCLC by reviewing the 
current evidence from clinical studies.

2. Chemotherapy is the cornerstone of first-line 
treatment for KRASm NSCLC

First-line chemotherapy for KRASm NSCLC resulted in worse 
treatment outcomes than that for KRASwt NSCLC (Table 1). 
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A retrospective study by Metro et al. showed that patients with 
KRASm NSCLC (n = 77) treated with first-line platinum- 
containing chemotherapy had a significantly lower objective 
response rate (ORR), disease control rate, progression-free 
survival (PFS), and overall survival (OS) than the KRASwt 
group (n = 127).12 Similarly, in a single-center retrospective 
study, Hames et al. compared the outcomes of patients with 
KRASm (n = 80) and driver gene-negative (n = 70) advanced 
NSCLC treated with first-line platinum-containing 
chemotherapy.13 The median PFS in the KRASm group was 
shorter than that of the driver gene-negative group by 1.2  
months (4.5 vs. 5.7 months, p = .008), and the median OS 
was 4.7 months shorter (8.8 vs 13.5 months, p = .038), with 
subgroup analyses for adenocarcinoma and metastatic disease 
suggesting similar results.13 Eklund et al. also demonstrated 
that the OS of 104 patients with stage IV KRASm NSCLC 
treated with first-line chemotherapy was significantly shorter 
than that of 91 patients with KRASwt NSCLC (9 vs. 11 months, 
p = .018). Furthermore, the multivariate Cox analysis showed 
that the KRAS mutation was a risk factor for shorter OS 
(hazard ratio (HR): 1.564, p = .008).14 However, 
a retrospective study by Mellema et al. showed that the ORR 
of KRASm NSCLC (n = 60) for first-line platinum-containing 
chemotherapy was similar to that of KRASwt NSCLC (n =  
101), with a median PFS (4.0 vs. 4.7 months, p = .12) and 
median OS (7.0 vs 9.3 months, p = .25) numerically reduced 
compared to KRASwt NSCLC, without statistical 
significance.15

As a commonly used agent for non-squamous NSCLC, 
the reported efficacy of pemetrexed in KRASm NSCLC 
varies widely between studies. Several studies have 

suggested the survival benefit of pemetrexed-containing 
chemotherapy. A retrospective analysis of 115 patients 
with KRASm NSCLC treated with first-line chemotherapy 
by Liu et al. demonstrated that pemetrexed-containing 
regimens (n = 60) were associated with a longer PFS (10.1 
vs 6.2 months, p < .001) and OS (16.4 vs 14.1 months, p  
= .112), although the OS benefit was not statistically 
significant.30 Similarly, Chen et al. compared the outcomes 
of three first-line chemotherapy regimens, pemetrexed/pla-
tinum (PP, n = 198), gemcitabine/platinum (GP, n = 64), 
and paclitaxel/platinum (TP, n = 38), in KRASm NSCLC.35 

Although there was no significant difference in ORR and 
disease control rate (DCR) among the three regimens, in 
terms of PFS, the PP group (6.4 months) was significantly 
prolonged compared to the GP group (4.9 months, p  
= .033) and the TP group (5.6 months, p = .05); in terms 
of OS, the GP group (17.5 months) was significantly pro-
longed compared to the PP group (24.6 months, p = .03) 
and TP group (26.8 months, p < .001). As KRAS mutations 
are predominantly found in non-squamous NSCLC and 
pemetrexed is more effective in non-squamous cancers, 
pemetrexed-based chemotherapy regimens are more effec-
tive in treating KRASm NSCLC.36

However, a retrospective study by Ricciuti et al., which did not 
differentiate between the number of lines of treatment, suggested 
that treatment outcomes were worse with pemetrexed-containing 
chemotherapy regimens for advanced NSCLC.37 PP-based regi-
mens (n = 81) were associated with a worse ORR (30.9% vs. 
47.4%, p = .05), DCR (51.8% vs. 71.9%, p = .02), PFS (4.1 vs. 7.1  
months, p = .03), and OS (9.7 vs. 26.9 months, p = .002) than non- 
PP-based regimens (n = 57).37

Figure 1. The KRAS signaling pathway.
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Therefore, as the cornerstone of first-line treatment, che-
motherapy is less effective in KRASm-advanced NSCLC than 
in KRASwt NSCLC, and pemetrexed-based chemotherapy 
regimens may result in a better prognosis.

3. Chemotherapy combined with antivascular 
therapy prolongs survival in the first-line treatment 
of KRASm NSCLC

KRAS mutations are associated with overexpression of 
VEGF, which is involved in tumor angiogenesis and pro-
motes lung cancer development and metastasis.38,39 

Antivascular therapy inhibits the process of tumor angio-
genesis by inhibiting the binding of VEGF to its receptor. 
Therefore, chemotherapy combined with antivascular ther-
apy has the potential to serve as a first-line treatment for 
KRASm NSCLC.

Even with first-line chemotherapy combined with anti-
vascular therapy, patients with KRASm NSCLC still had 
poorer treatment outcomes than those with KRASwt 
NSCLC. A study by Ghimessy et al. suggested that compared 
with KRASwt (n = 152), advanced lung adenocarcinoma 
patients with KRASm (n = 95) treated with first-line che-
motherapy combined with bevacizumab had a worse OS 
(14.23 vs. 21.57 months, p = .0255) and PFS (7.03 vs 8.63  
months, p = .0186).16 The association between KRAS muta-
tions and OS was independent of age, sex, smoking status, 
Eastern Cooperative Oncology Group performance status 
(ECOG PS), and tumor stage.16

First-line chemotherapy combined with antivascular ther-
apy improved survival in patients with KRASm NSCLC. 
A single-center retrospective study by Liu et al. demon-
strated that first-line chemotherapy combined with antivas-
cular therapy (n = 58) significantly prolonged PFS (10.0 vs. 
6.5 months, p = .031) and OS (19.7 vs. 13.7 months, p  
= .004).30 Similarly, a retrospective study by Ghimessy et al. 
on advanced KRAS-mutant lung adenocarcinoma in stages 
IIIB – IV demonstrated that first-line platinum-containing 
chemotherapy in combination with bevacizumab (n = 95) 
had a significant OS benefit compared to platinum- 
containing chemotherapy alone (n = 75) (14.23 vs. 10  
months, p = .0002).16

Regarding specific drug selection, Liu et al. showed that 
among 58 patients treated with chemotherapy combined 
with antivascular therapy, the ORR in the paclitaxel com-
bined with antivascular drug group (59.09% vs. 30.56% vs. 
12.5% vs. 26.92%, p = .032, p = .001, and p = .024) was sig-
nificantly higher than that in the pemetrexed combined with 
antivascular drug group, the pemetrexed group, paclitaxel 
group, while PFS (14.0 vs. 4.0 vs. 8.0 vs. 5.0 months, p = .009, 
p = .008, and p < .001) and OS (25.0 vs. 10.0 vs. 19.0 vs. 11.0  
months, p = .006, p = .508, and p < .001) in the pemetrexed- 
combined antivascular group were significantly longer than 
those in the pemetrexed group, the paclitaxel combined 
antivascular drug group, and the paclitaxel group.30 

Similarly, a study by Mellema et al. showed that paclitaxel 
combined with antivascular therapy had the highest ORR 
(62%, n = 38) than paclitaxel (50%, n = 30), pemetrexed 
(21%, n = 334), and gemcitabine (25%, n = 62).40

Thus, first-line chemotherapy combined with antivascular 
therapy remains significantly less effective in patients with 
KRASm NSCLC than in those with KRASwt NSCLC but does 
improve survival in patients with KRASm NSCLC.

4. Immunotherapy is the mainstay of first-line 
treatment for KRASm NSCLC

4.1. The efficacy of immunotherapy in patients with 
KRASm NSCLC is not inferior to those with KRASwt NSCLC

Unlike chemotherapy or chemotherapy combined with anti-
vascular therapy, the efficacy of first-line immunotherapy may 
be superior in KRASm NSCLC compared to KRASwt (Table 1). 
A meta-analysis integrating three trials (IMpower-150, 
Keynote-189, and Keynote-042) demonstrated that 
KRASm NSCLC had better survival with first-line immu-
notherapy than KRASwt NSCLC (χ2 = 6.26, p = .01).41 In the 
BIRCH trial, advanced NSCLC with PD-L1 expression ≥5% in 
tumor cells or tumor-infiltrating immune cells was treated 
with first-line atezolizumab in 33 patients that were 
KRASm patients and 67 patients that were KRASwt.17 The 
ORR (27% vs. 16%), PFS (8.4 vs. 4.8 months), and OS (NE 
vs. 20.1 months) were higher in patients who were 
KRASm than in those who were KRASwt.17 Similarly, 
a retrospective study by Liu et al. suggested that 20 patients 
with KRASm NSCLC treated with first-line anti-PD-1/PD-L1 
therapy had a significantly longer PFS than 49 patients with 
KRASwt NSCLC.18 Sun et al. demonstrated that OS (21.1 vs. 
13.6 months, p = .03) was significantly longer in 
KRASm NSCLC (n = 363) than in KRASwt NSCLC (n = 342) 
with first-line immunological monotherapy, and that the asso-
ciation between KRAS mutation status and OS remained sig-
nificant in the multivariate Cox model (HR = 0.77).19 In 
addition, a study by Eklund et al. showed that stage IV 
NSCLC with KRASm (n = 20) had a significant OS (23 vs. 6  
months, p = .006) benefit from first-line immunotherapy com-
pared to KRASwt (n = 17) and that KRAS mutation was 
a favorable prognostic factor for OS in a multifactorial Cox 
regression (HR = 0.349, p = .016).14 In advanced adenocarci-
nomas with PD-L1 expression ≥50% treated with first-line 
pembrolizumab, KRASm NSCLC (n = 62) showed 
a significant PFS benefit compared to KRASwt (n = 57) (13.3 
vs. 6.2 months, p = .05), with no significant difference in OS 
(23.4 vs. 26.1 months, p = .74).20 A retrospective study by Li 
et al. demonstrated that first-line pembrolizumab in combina-
tion with carboplatin, paclitaxel (for squamous cancers), or 
pemetrexed (for non-squamous cancers) for the treatment of 
KRASm NSCLC (n = 23) had a higher PFS (12.8 vs. 9.7  
months, p < .05) and OS (21.4 vs. 26.1 months, p = .74) than 
KRASwt (n = 57), with KRAS mutation as a favorable factor for 
prolongation of OS (HR = 2.552, 95% confidence interval (CI): 
1.141–5.708; p = .023).21

In addition, a retrospective study of long-term respon-
ders (LTRs) to first-line immunotherapy in NSCLC showed 
that KRAS mutations were more common in LTRs than in 
non-responders (39.4% vs. 28%, n = 13 vs. 7, p = .366).42 

Similarly, a study by Notario et al. showed the enrichment 
of KRAS G12C mutations in LTRs (64%, p = .09).43 The 
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response and efficacy of KRASm NSCLC cells to immu-
notherapy may be related to the immune microenviron-
ment. A retrospective study by Liu et al., which did not 
limit the number of lines of immune checkpoint inhibitor 
(ICI) treatment, showed that an increased tumor muta-
tional burden (TMB) was associated with increased immu-
nogenicity and that KRASm NSCLC responded better to 
ICIs.44

However, other studies have suggested no significant 
difference between the efficacy of first-line immunotherapy 
for advanced KRASm and KRASwt NSCLC, either as ICI 
monotherapy or as immunochemotherapy. In terms of ICI 
monotherapy, the analysis of Justeau et al. based on 
a multicenter retrospective study (ESCKEYP) showed that 
among patients with non-squamous advanced NSCLC with 
PD-L1 ≥50% treated with first-line pembrolizumab, the 
KRAS G12C mutation group (n = 86), the KRAS non- 
G12C mutation group (n = 141), and the KRAS wild-type 
group (n = 454) were not significantly different regarding 
PFS (7 vs. 4.8 vs. 8.5 months, p = .2284) and OS (18.4 vs. 
20.6 vs. 27.1 months, p = .5664).22 In addition, 
a retrospective study by Noordhof et al. showed that in 
patients with stage IV adenocarcinoma with PD-L1 expres-
sion ≥50% treated with first-line pembrolizumab, OS (19.2 
vs. 16.8 months, p = .86) was not significantly different.23 

Similarly, a study by Kartolo et al. demonstrated that 
advanced NSCLC with PD-L1 expression ≥50% treated 
with first-line anti-PD-1/PD-L1 monotherapy showed no 
significant difference in the ORR (37% vs. 26%, p = .268), 
PFS (6.0 vs. 5.4 months, p = .416), OS (12.9 vs. 19.3 months, 
p = .87) between the KRASm group (n = 30) and the 
KRASwt group (n = 29).24 In terms of immunochemother-
apy, a KEYNOTE-189-based analysis by Gadgeel et al. 
showed that 59 cases of KRASm NSCLC treated with first- 
line pembrolizumab combined with chemotherapy had 
a similar ORR (40.7% vs. 47.6%), PFS (9 vs. 9 months), 
and OS (21 vs. 23 months) compared to 145 cases of 
KRASwt NSCLC.25 A study by Alessi et al. also found no 
significant differences in ORR, PFS, or OS between first-line 
immunochemotherapy in the KRASm group (n = 351) and 
the KRASwt group (n = 526) in advanced non-squamous 
NSCLC.27 Other studies that did not differentiate between 
ICI monotherapy and immunochemotherapy also suggested 
that the outcomes of first-line immunotherapy for 
KRASm and KRASwt NSCLC were not significantly differ-
ent. Sun et al. showed that although OS in 363 cases of 
KRASm NSCLC treated with first-line immunologic mono-
therapy was significantly longer than in 342 KRASwt 
NSCLC (21.1 vs. 13.6 months, p = .03), OS in 210 
KRASm NSCLC treated with first-line immune- 
combination chemotherapy was not significantly different 
from that in 212 cases of KRASwt NSCLC (20.0 vs 19.3  
months, p = .93).19 A study by Veccia et al. showed no 
significant difference in OS (14.7 vs. 14.9 months, p = .529) 
between KRASm (n = 50) and KRASwt (n = 69) NSCLC 
treated with first-line immunochemotherapy or ICI 
monotherapy.28

Therefore, the results of several studies suggest that the 
efficacy of first-line immunotherapy for KRASm NSCLC may 

be superior or at least comparable to that for KRASwt NSCLC, 
especially in patients with positive PD-L1 expression.

4.2. ICI monotherapy improves treatment outcomes in 
KRASm NSCLC

First-line ICI monotherapy improves treatment outcomes in 
patients with KRASm NSCLC compared to chemotherapy. In 
the analysis by Mok et al., based on the KEYNOTE-042 trial, 
30 cases of KRASm and 127 cases of KRASwt advanced NSCLC 
with PD-L1 expression ≥1% were treated with first-line 
pembrolizumab.29 Patients with KRASm showed significantly 
improved ORR (56.7% vs. 18%), PFS (12.3 vs. 6.2 months, HR  
= 0.51), and OS (28.4 vs. 11.0 months, HR = 0.42) compared to 
chemotherapy.29 Another single-center retrospective study by 
Liu et al. also showed that first-line single-agent immunother-
apy (n = 50) significantly improved the ORR (44.00% vs. 
30.43%), DCR (96.00% vs. 80.00%), PFS (11.7 vs. 7.0 months, 
p < .001), and OS (28.4 vs. 11.0 months, HR = 0.42) in 
KRASm NSCLC compared to chemotherapy (n = 115).30 

Further subgroup analyses showed that in NSCLC with PD- 
L1 expression ≥1%, first-line immunotherapy was associated 
with a significantly higher PFS (12.9 vs. 9.0 months, p = .011) 
and a significantly lower risk of disease progression (HR =  
0.377, p = .020) compared to chemotherapy.30

In patients with KRASm NSCLC with PD-L1 expres-
sion ≥50%, ICI monotherapy could serve as the first-line ther-
apy. A real-world study by Velcheti et al. of advanced NSCLC 
with PD-L1 expression ≥50% treated with first-line pembroli-
zumab demonstrated that the median real-world time on 
treatment (rwToT) for first-line pembrolizumab in 164 
patients with KRASm with ECOG PS scores of 1–2 was 7.6  
months (95% CI: 6.3–10.6 months), and the median rwToT for 
166 patients with KRASwt was 7.0 months (95% CI: 5.3–9.3  
months).45 Thus, first-line ICI monotherapy showed a survival 
benefit in patients with PD-L1-overexpressing NSCLC, with or 
without KRAS mutations.

Therefore, first-line ICI monotherapy improves treatment 
outcomes in KRASm NSCLC compared to chemotherapy, 
especially in patients with PD-L1 expression ≥50%.

4.3. Immunochemotherapy is more effective than other 
treatments in KRASm NSCLC

First-line immunochemotherapy was more effective than che-
motherapy in treating KRASm NSCLC. An analysis based on 
KEYNOTE-189 by Gadgeel et al. showed that in treating 
KRASm advanced NSCLC, first-line pembrolizumab in combi-
nation with platinum-containing chemotherapy (n = 59) had 
a significantly higher ORR (40.7% vs. 26.7%) and a trend 
toward a prolonged PFS (9 vs. 5 months; HR = 0.47, 95% CI: 
0.29–0.77) and OS (21 vs. 14 months; HR = 0.79, 95% CI: 
0.45–1.38) compared with the chemotherapy group (n = 30).25 

Similar results have been obtained in multiple retrospective 
studies. A study by Gu et al. showed that first-line ICI com-
bined with platinum-containing chemotherapy (n = 33) in 
KRASm NSCLC significantly increased PFS (7.4 vs. 4.5 months, 
p = .035) and OS (24.1 vs. 13.2 months, p = .007) compared to 
platinum-containing chemotherapy (n = 37).31 A retrospective 
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study by Wang et al. also demonstrated that the OS (17 vs. 12  
months, p = .11) was longer in the first-line immunochem-
otherapy group (n = 11) than in the non-immunotherapy 
group (n = 10, including chemotherapy and antivascular ther-
apy) for KRASm NSCLC, but the difference was not 
significant.32 Similarly, a pooled analysis by Nakajima et al. 
showed that for first-line treatment of KRASm NSCLC, immu-
nochemotherapy (n = 219) had ORR (46% vs. 35%) and OS 
(22.4 vs. 17.1 months) benefits over chemotherapy (n = 201).26

Compared to chemotherapy combined with antivascular 
therapy, KRASm NSCLC was better treated with first-line 
immunochemotherapy. Sun et al. showed that in advanced 
KRASm NSCLC (n = 76), first-line immunochemotherapy 
had a significant benefit in terms of ORR (47.4% vs. 31.1% 
vs. 21.2%), PFS (16.9 vs. 4.6 vs. 7.0 months), and OS (37.1 vs. 
19.8 vs. 20.7 months) over chemotherapy (n = 74) or che-
motherapy combined with antivascular therapy (n = 33).33

KRASm NSCLC was treated more effectively with first- 
line immunochemotherapy than with ICIs alone. 
Nakajima et al. demonstrated that compared with first- 
line ICIs alone, KRASm NSCLC with first-line immuno-
chemotherapy (n = 219) resulted in an improved ORR 
(46% vs. 37%) and OS (22.4 vs. 16.2 months).26 

However, in patients with KRASm NSCLC and high PD- 
L1 expression, first-line immunochemotherapy did not 
show an additional survival benefit compared with ICI 
monotherapy. Sun et al. demonstrated that among 573 
patients with KRASm NSCLC and PD-L1 expres-
sion ≥50%, first-line immunochemotherapy (n = 210) and 
ICI monotherapy (n = 363) showed no significant differ-
ences in OS (20.0 vs. 21.1 months, p = .78).19

Thus, first-line immunochemotherapy is superior to other 
therapies, such as chemotherapy, chemotherapy combined 
with antivascular therapy, and ICI monotherapy, in patients 
with KRASm NSCLC. In patients with high PD-L1 expression, 
the efficacy of immunochemotherapy is similar to that of ICI 
monotherapy.

4.4. Immunotherapy combined with chemotherapy and 
antivascular therapy improves outcomes in the first-line 
treatment of KRASm NSCLC

Combining antivascular therapy with immunochemotherapy 
improves the outcomes of first-line treatment for 
KRASm NSCLC. Based on the IMpower150 trial, West 
et al. showed that in KRASm non-squamous NSCLC, first- 
line atezolizumab/bevacizumab/carboplatin/paclitaxel 
(ABCP) was more effective in prolonging PFS (8.1 vs. 5.8 
vs. 4.8 months) and OS (19.8 vs. 9.9 vs. 11.7 months) com-
pared to either the bevacizumab/carboplatin/paclitaxel (BCP) 
regimen (n = 71) or the atezolizumab/carboplatin/paclitaxel 
(ACP) regimen (n = 74).34 The ABCP regimen improved the 
OS (HR = 0.50; 95% CI: 0.34–0.72 vs. HR = 0.63; 95% CI: 
0.43–0.91) and PFS (HR = 0.42; 95% CI: 0.29–0.61 vs. HR =  
0.80; 95% CI: 0.56–1.80) more significantly than the ACP 
regimen. Thus, immunotherapy combined with chemother-
apy and antivascular therapy may further improve the first- 
line treatment outcomes.

5. Impact of KRAS mutant subtypes on the efficacy of 
immunotherapy

In advanced KRASm NSCLC, G12C is the most common 
mutated subtype. Several studies have shown that first-line 
immunotherapy is more effective for patients with KRAS 
G12C mutations than for those with other KRAS muta-
tions. For first-line immunotherapy in combination with 
chemotherapy, Elkrief et al. showed a significant PFS (6.8 
vs. 5.4 months, p = .006) and OS (15 vs. 12 months, p = .12) 
benefit in the KRAS G12C group (n = 138) over the non- 
G12C group (n = 185).46 Cefalì et al. demonstrated that 11 
of 44 patients with KRASm NSCLC with PD-L1 expres-
sion ≥50% treated with first-line ICI showed a significantly 
longer PFS in the KRAS G12C than in the non-G12C 
group (14.6 vs. 6.5 months, p = .03).47 Similarly, NSCLC 
with PD-L1 expression ≥50% treated with first-line pem-
brolizumab showed significant benefits in ORR (63.3% vs. 
36.0%, p = .05) and PFS (19.8 vs. 5.8 months, p = .001) in 
32 cases in the KRAS G12C group than in the non-G12C 
group, with a non-significant trend toward a longer OS 
(HR = 0.50, 95% CI: 0.25–1.01, p = .06).20 Attili et al. 
showed that for stage IV non-squamous NSCLC with PD- 
L1 expression <50%, the G12C mutation was significantly 
associated with PFS benefits with first-line immunochem-
otherapy (HR = 0.29, 95% CI: 0.10–0.91).48

However, other studies have shown no significant dif-
ference in the efficacy of first-line immunotherapy between 
KRAS G12C mutations and non-G12C mutations. Justeau 
et al. demonstrated that in advanced NSCLC patients with 
PD-L1 expression ≥50% treated with first-line pembrolizu-
mab, the KRAS G12C mutation group (n = 86) and the 
KRAS non-G12C mutation group (n = 141) showed no sig-
nificant difference in ORR (47% vs. 40%), PFS (7 vs. 4.8  
months), and OS (18.4 vs. 20.6 months).22 A retrospective 
study by Arbour et al. showed that in NSCLC receiving 
first-line immunotherapy, patients with the KRAS G12C 
mutation (n = 352) had comparable PFS (3.7 vs. 3.3  
months, p = .89) to the non-G12C mutation group (n =  
418).49

The relationship between KRAS mutant subtypes and immu-
notherapy efficacy may be associated with PD-L1 expression 
levels. Several studies have suggested that the G12D mutation 
is associated with low PD-L1 expression, whereas the G12C 
mutation is associated with high PD-L1 expression.50,51 In 
vitro experiments suggested that ICIs combined with paclitaxel 
can recruit CD8+ tumor-infiltrating lymphocytes (TILs) by 
increasing CXCL10/CXCL11 levels and can inhibit tumor 
growth more effectively than ICIs alone in tumors with KRAS 
G12D mutations, suggesting that patients with KRAS G12D 
mutations can be treated with first-line ICI combined with 
paclitaxel therapy.51 For G12C, an analysis based on clinical 
genomic data from 10,023 patients with NSCLC showed that 
KRAS G12C-mutated NSCLC was associated with a high TMB 
and PD-L1 expression ≥50%.8,52

In summary, first-line immunotherapy for KRAS G12C 
mutations may have a better prognosis than that for other 
mutation subtypes, which may be related to PD-L1 expression 
levels.
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6. Concurrent mutations are associated with the 
prognosis of KRASm NSCLC

Concurrent mutations in STK11, KEAP1, and TP53 were asso-
ciated with the prognosis of KRAS-mutant NSCLC, and had 
implications on first-line treatment strategies.

The STK11 co-mutation was consistently associated with 
poor prognosis in KRASm NSCLC. Several retrospective stu-
dies showed that patients with KRAS and STK11 mutations 
have shorter overall survival (OS) and progression-free survi-
val (PFS) than those without these co-mutations.53–56 

Similarly, the KEAP1 co-mutation was also related to worse 
PFS and OS in KRASm NSCLC patients.34,54,55,57 The adverse 
prognostic roles of STK11 and KEAP1 co-mutations might be 
related to lower PD-L1 expression. Analysis of Negrao et al. 
suggested that negative PD-L1 expression (PD-L1 < 1%) was 
more common in KRASm patients with the STK11 or KEAP1 
mutation and was related to decreased PFS and OS.58

On the other hand, the role of TP53 co-mutation in 
KRASm NSCLC was more complex. While some research 
posed that TP53 co-mutations were not related to survival 
outcomes, others suggested that TP53 co-mutations were 
related to survival benefits of KRASm NSCLC, especially in 
first-line immunotherapy.21,27,55,57 Additionally, Aredo et al. 
showed that TP53 co-mutations were more frequently found 
with high PD-L1 expression (≥50%).53 This association may 
explain the prolonged survival in KRASm patients with TP53 
co-mutations receiving immunotherapy.

Co-mutations with STK11, KEAP1 and TP53 had substantial 
implications on first-line treatment strategies for 
KRASm NSCLC. For STK11 or KEAP1 co-mutations, first-line 
treatment options primarily include chemoimmunotherapy or 
the combination of chemotherapy and antivascular therapy. 
West et al. showed that first-line ABCP regimens had significant 
PFS (6.0 vs. 3.2 vs. 3.4 months) and OS (11.1 vs. 7.9 vs. 8.7  
months) benefits over ACP or BCP regimens in KRASm NSCLC 
with STK11 or KEAP1 co-mutations.34 However, Sun et al. 
suggested that KRASm/STK11m NSCLC patients with first- 
line chemotherapy combined with bevacizumab had a PFS ben-
efit (7.0 vs. 4.4 vs. 3.9 months, p = .043) compared with che-
moimmunotherapy and chemotherapy groups.33

On the other hand, for KRASm NSCLC with TP53 co- 
mutation, first-line chemoimmunotherapy should be consid-
ered. Analyzing the IMpower 150 trial showed that PFS (14.3 
vs. 4.6 vs. 4.2 months) and OS (30.6 vs. 11.7 vs. 9.5 months) in 
the first-line ABCP regimen were significantly longer than in 
ACP or BCP regimens.34 Consistently, research by Sun et al. 
indicated that PFS (18.7 vs. 6.1 vs. 6.8 months, p < .0001) of 
KRASm NSCLC with TP53 mutation were significantly longer 
in ICI combined with chemotherapy than those in the che-
motherapy alone or chemotherapy combined with antivascular 
therapy.33

Therefore, concurrent mutations of STK11 or KEAP1 
were negative prognostic factors for KRASm NSCLC, while 
TP53 seemed to be associated with improved survival out-
comes. Combining immunotherapy and chemotherapy 
enhanced the outcomes in KRAS-mutant NSCLC patients 
with these concurrent mutations and could be applied in 
first-line treatment.

7. Kras-targeting therapies

Various new therapeutic approaches are available as first-line 
candidates for treating NSCLC with KRAS mutations. These 
therapies include KRAS-targeting therapies, metabolic thera-
pies, and their combinations with existing first-line agents. 
Currently, these therapies are still being evaluated in clinical 
trials as second-line or higher treatment options.

7.1. KRAS(OFF) inhibitors

Drugs targeting the switch region of the KRAS G12C protein, 
including sotorasib (AMG 510) and adagrasib (MRTX849), 
have been developed (Table 2). Sotorasib (AMG 510), the 
first KRAS G12C inhibitor, binds to a cysteine residue in the 
switch II region and prevents activation of KRAS.59 Based on 
the results of phase 1 and single-arm phase 2 trials, sotorasib 
was first approved by the Food and Drug Administration 
(FDA) in 2021 for the treatment of advanced NSCLC in 
the second line and beyond.60–62 In the phase 3 trial, sotorasib 
had a significantly longer PFS than docetaxel (5.6 vs. 4.5  
months, HR = 0.66, p = .0017), with fewer grade 3 or 4 adverse 
events.63 A first-line trial of sotorasib (NCT04933695) is cur-
rently underway. Thus, there is growing evidence that sotor-
asib is a promising candidate for treating NSCLC with KRAS 
G12C mutation.

Adagrasib (MRTX8499) is a recently developed KRAS 
G12C inhibitor. Based on a phase I/IB study, NSCLC patients 
with KRAS G12C mutations treated with adagrasib had 
a median PFS of 11.1 months.64 In 2022, adagrasib was 
approved for patients with advanced NSCLC with KRAS 
G12C mutations who had previously received systemic 
therapy.65 In the phase 2 study, among 112 patients for 
whom baseline disease assessment was available, the ORR 
was 42.9%, the median PFS was 6.5 months, the median OS 
was 12.6 months, and the incidence of treatment-related 
adverse events of grade 3 or higher was 44.8%.66 Preliminary 
results from the phase 1/2 KRYSTAL-12 trial (NCT04685135) 
showed that in patients with KRAS G12C-mutated NSCLC 
who had previously received chemotherapy or immunother-
apy, after 9.4 months of follow-up, the adagrasib group showed 
significant benefit in ORR (31.9% vs. 9.2%, p < .0001) and PFS 
(5.49 vs. 3.84 months, p < .0001) compared to the docetaxel 
group, with a similar incidence of grade 3 and higher TRAE 
(47.0% vs 45.7%).67 Further clinical trials are ongoing to 
explore the efficacy and safety of adagrasib monotherapy and 
combination therapy in advanced NSCLC.

Combination therapies for other KRAS inhibitors have also 
shown better efficacy. For combining immunotherapy, preli-
minary results from the phase 1/2 LOXO-RAS-20001 trial 
(NCT04956640) of the second-generation KRAS G12C inhi-
bitor, olomorasib (LY3537982), in combination with pembro-
lizumab to treat advanced NSCLC, demonstrated an ORR of 
63% in 50 patients at 6-month follow-up (95% CI: 44–80%), 
suggesting that KRAS inhibitors in combination with ICI may 
have superior efficacy.68 For combination chemotherapy, in 
the phase Ib CodeBreaK 101 (NCT04185883) study, 58 
patients treated with first-line sotorasib in combination with 
pemetrexed and carboplatin had an ORR of 65% (95% CI: 
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46.5–80.3) and a median PFS of 10.8 months (95% CI: 5.4-NE 
months), with 30 patients (52%) experiencing grade 3–4 TRAE 
and 1 patient death.69 In terms of combining other targeted 
therapies, 27 patients with advanced NSCLC receiving the 
first-line KRAS G12C inhibitor fulzerasib (GFH925) in com-
bination with the EGFR inhibitor cetuximab had an ORR of 
80.0% (95% CI: 56.3–94.3%) in the phase II KROCUS study 
(NCT05756153), with a DCR of 100% (95% CI: 83.2–100.0%), 
with 5 patients experiencing grade 3 or higher TRAE.70 Thus, 
combination therapies with KRAS inhibitors are expected to 
be a future first-line treatment option.

Several ongoing trials are evaluating the outcomes of sotor-
asib and adagrasib monotherapies and in combination with 
other therapies (Table 2).

7.2. KRAS(ON) inhibitors

Sotorasib and adagrasib are classified as KRAS(OFF) inhibi-
tors, targeting the KRAS protein in its inactive state. In con-
trast, KRAS(ON) inhibitors specifically target the active, GTP- 
bound KRAS to combat KRAS-driven cancers.71 Several 
KRAS(ON) inhibitors have been developed and tested in pre-
clinical and clinical studies, including RMC-6236, RMC-4998, 
and RMC-7977.

RMC-6236 combined cyclophilin A (CYPA) to target KRAS 
in an active state, forming a tri-complex that inhibited down-
stream signal transduction.72 Preclinical results suggested that 
RMC-6236 down-regulated RAS signaling, leading to tumor 
regression in the mouse xenograft model.73 Clinical trials are 
ongoing to evaluate RMC-6236 as a monotherapy and in 
combination with immune checkpoint inhibitors 
(NCT05379985, NCT06162221). Similarly, tri-complex 

inhibitor RMC-4998 could overcome resistance to sotorasib 
both in vitro and in vivo.74 Combining RMC-4998 and sotor-
asib inhibited cell proliferation and downstream signal trans-
duction with increased efficacy on KRAS-mutant tumors.74 

Currently, a phase 1/2 clinical trial is ongoing to test RMC- 
6291 in KRAS-mutant tumors (NCT05462717). In addition, 
RMC-7977 was a tri-complex RAS inhibitor targeting KRAS, 
NRAS, and HRAS. In preclinical studies, RMC-7977 led to the 
regression of KRAS-mutant tumors and showed substantial 
efficacy in tumor models with KRAS exon 12 alterations.75 

Recently, RMC-7977 has been assessed in patients with KRAS- 
mutant solid tumors (NCT05379985).

Further research was needed to evaluate the efficacy and 
safety of KRAS(ON) inhibitors before application in the clinic.

In addition to the drugs mentioned above, several KRAS 
G12C inhibitors (LY3499446, GDC-6036, D-1553, JDQ443, BI 
1,823,911, LY3537982, JAB-21822, YL-15293, and RMC-6291) 
and KRAS G12D inhibitors (KRpep-2d, KS-58, and 
MRTX1133) have been used in preclinical and clinical 
trials.76–79 Further evidence is needed for KRAS-targeted 
therapies as the first-line treatment of KRAS-mutant NSCLC.

8. Conclusion and future perspectives

KRAS mutations are common in NSCLC. Clinical evidence has 
shown that first-line chemotherapy or chemotherapy com-
bined with antivascular therapy for KRASm NSCLC is not as 
effective as for KRASwt NSCLC, but first-line immunotherapy 
is better than or at least comparable to KRASwt NSCLC. 
Chemotherapy combined with immunotherapy is the pre-
ferred first-line treatment for KRASm NSCLC, with better 
efficacy when combined with antivascular therapy. ICI 

Table 2. Ongoing clinical trials for sotorasib and adagrasib in KRAS mutant NSCLC.

Treatment Regimen Trial number

Sotorasib
Sotorasib monotherapy Sotorasib NCT03600883, NCT03600883, NCT04303780, NCT04625647, NCT05398094, NCT04933695, NCT05451056, 

NCT05273047, NCT05311709, NCT06127940, NCT06333678, NCT05400577, NCT05631249
Sotorasib +  

Chemotherapy
Sotorasib + Platinum 

doublet
NCT05920356, NCT05118854

Sotorasib + Antivascular 
therapy

Sotorasib + MVASI NCT05180422

Sotorasib + Aurora 
A kinase inhibitor

Sotorasib + VIC-1911 NCT05374538

Sotorasib + CXCL-8 
inhibitor

Sotorasib + Ladarixin NCT05815173, NCT05815186

Sotorasib + Tyrosine 
kinase inhibitor

Sotorasib + Lenvatinib/ 
Tarloxotinib

NCT06068153

Sotorasib + HER2 
inhibitor

Sotorasib + Tarloxotinib NCT05313009

Sotorasib + RAF/MEK 
inhibitor

Sotorasib + Avutometinib  
+ (Defactinib)

NCT05074810

Sotorasib + SHP2 
inhibitor

Sotorasib + RMC-4630/ 
BBP-398

NCT05054725, NCT05480865

Sotorasib + Proteasome 
inhibitor

Sotorasib + Carfilzomib NCT06249282

Adagrasib
Adagrasib monotherapy Adagrasib NCT03785249, NCT04685135, NCT05853575, NCT05673187
Adagrasib +  

Immunotherapy
Adagrasib +  

Pembrolizumab/ 
Nivolumab

NCT04613596, NCT05472623

Adagrasib + RAF/MEK 
inhibitor

Adagrasib + Avutometinib NCT05375994

Adagrasib + mTOR 
inhibitor

Adagrasib + Nab-Sirolimus NCT05840510
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monotherapy was also an option for patients with a PD-L1 
tumor proportion score ≥50%. In addition to chemotherapy, 
antivascular therapies, and immunotherapy, a variety of emer-
ging treatments are expected to become first-line therapies in 
the future, and KRAS inhibitors, such as sotorasib and ada-
grasib, may gradually become first-line treatments for 
KRASm NSCLC.
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