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eLife assessment
This paper presents a valuable pipeline based on state-of-the-art analytical software that was used 
to study genetic pleiotropy between neuropsychiatric disorders. The presented evidence supporting 
the claims is convincing and now includes an appropriate comparison to previously published 
methods as well as a detailed exploration of the findings. The created pipeline can thus be used by 
researchers from diverse fields to study different combinations of diseases and traits.

Abstract Continued methodological advances have enabled numerous statistical approaches for 
the analysis of summary statistics from genome-wide association studies. Genetic correlation anal-
ysis within specific regions enables a new strategy for identifying pleiotropy. Genomic regions with 
significant ‘local’ genetic correlations can be investigated further using state-of-the-art methodolo-
gies for statistical fine-mapping and variant colocalisation. We explored the utility of a genome-wide 
local genetic correlation analysis approach for identifying genetic overlaps between the candidate 
neuropsychiatric disorders, Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), frontotem-
poral dementia, Parkinson’s disease, and schizophrenia. The correlation analysis identified several 
associations between traits, the majority of which were loci in the human leukocyte antigen region. 
Colocalisation analysis suggested that disease-implicated variants in these loci often differ between 
traits and, in one locus, indicated a shared causal variant between ALS and AD. Our study identified 
candidate loci that might play a role in multiple neuropsychiatric diseases and suggested the role 
of distinct mechanisms across diseases despite shared loci. The fine-mapping and colocalisation 
analysis protocol designed for this study has been implemented in a flexible analysis pipeline that 
produces HTML reports and is available at: https://​github.​com/​ThomasPSpargo/​COLOC-​reporter.
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Introduction
The genetic spectrum of neuropsychiatric disease is diverse and various overlaps exist between traits. 
For instance, genetic pleiotropy between amyotrophic lateral sclerosis (ALS) and frontotemporal 
dementia (FTD) is increasingly recognised, and ALS is genetically correlated with Alzheimer’s disease 
(AD), Parkinson’s disease (PD), and schizophrenia (Van Rheenen et al., 2021; Li et al., 2021; Ranga-
nathan et al., 2020). Improving understanding of the genetic architecture underlying these complex 
diseases could facilitate future treatment discovery.

Advances in genomic research techniques have accelerated discovery of genetic variation asso-
ciated with complex traits. Genome-wide association studies (GWAS), in particular, have enabled 
population-scale investigations of the genetic basis of human diseases and anthropometric measures 
(Abdellaoui et al., 2023). Summary-level results from GWAS are being shared alongside publications 
with increasing frequency over time (Reales and Wallace, 2023), and a breadth of approaches now 
exist for downstream analysis based on summary statistics which can enable their interpretation and 
provide further biological insight.

Genetic correlation analysis allows estimation of genetic overlap between traits (Bulik-Sullivan 
et al., 2015; Werme et al., 2022; Zhang et al., 2021; Shi et al., 2017). A ‘global’ genetic correla-
tion approach gives a genome-wide average estimate of this overlap. However, genetic relationships 
between traits can be obscured when correlations in opposing directions cancel out genome-wide 
(Werme et al., 2022). Recent methods allow for a more nuanced analysis, of ‘local’ genetic correlations 
partitioned across the genome (Werme et al., 2022; Zhang et al., 2021). This stratified approach to 
genome-wide analysis could prove effective for identifying pleiotropic regions and designing subse-
quent analyses aiming to identify genetic variation shared between traits.

A number of methods aim to disentangle causality within associated regions. This is important 
because the focus on single-nucleotide polymorphisms (SNPs), which are markers of genetic vari-
ation, in GWAS produces results that can be difficult to interpret, and causal variants are typically 
unclear. More so, because of linkage disequilibrium (LD), GWAS associations often comprise large 
sets of highly correlated SNPs spanning large genomic regions. Statistical fine-mapping is a common 
approach for dissecting complex LD structures and finding variants with implications for a given trait 
among the tens or hundreds that might be associated in the region (Zou et al., 2022).

Interpretation of regions associated with multiple traits can also be challenging, since it is often 
unclear whether these overlaps are driven by the same causal variant. Statistical colocalisation analysis 
can disentangle association signals across traits to suggest whether the overlaps result from shared 
or distinct causal genetic factors (Wallace, 2021; Giambartolomei et al., 2018; Foley et al., 2021). 
Traditionally, this analysis was restricted by the assumption of at most one causal variant for each trait 
in the region. However, recent extensions to the method now permit analysis based on univariate 
fine-mapping results for the traits compared and, therefore, analysis of regions with multiple causal 
variants.

Accordingly, we conducted genome-wide local genetic correlation analysis across five neuropsychi-
atric traits with recognised phenotypic and genetic overlap (Li et al., 2021; Ranganathan et al., 2020; 
Ferrari et al., 2017; Weintraub and Mamikonyan, 2019 Beck et al., 2013): AD, ALS, FTD, PD, and 
schizophrenia. Although several previous studies have performed global genetic correlation analyses 
between various combinations of these traits (Van Rheenen et al., 2021; Li et al., 2021; Wainberg 
et al., 2023; McLaughlin et al., 2017), we believe that this is the first to compare them at a genome-
wide scale using a local genetic correlation approach. Loci highly correlated between trait pairs were 
further investigated with univariate fine-mapping and bivariate colocalisation techniques to examine 
variants driving these associations.

Materials and methods
Sampled GWAS summary statistics
We leveraged publicly accessible summary statistics from European ancestry GWAS meta-analyses 
of risk for AD (Kunkle et al., 2019), ALS (Van Rheenen et al., 2021), FTD (Ferrari et al., 2014), 
PD (Nalls et al., 2019), and schizophrenia (Trubetskoy et al., 2022). European ancestry data were 
selected to avoid LD mismatch between the GWAS sample and reference data from an external Euro-
pean population.

https://doi.org/10.7554/eLife.88768
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Procedure
Figure 1 summarises the analysis protocol for this study; further details are provided below.

Processing of GWAS summary statistics
A standard data cleaning protocol was applied to each set of summary statistics (Pain et al., 2021). 
We retained only SNPs, excluding any non-SNP or strand-ambiguous variants. SNPs were filtered 
to those present within the 1000 Genomes phase 3 (1KG) European ancestry population reference 
dataset (Auton et al., 2015) (N = 503). They were matched to the 1KG reference panel by GRCh37 
chromosomal position using bigsnpr (version 1.11.6) (Privé et al., 2018), harmonising allele order with 
the reference and assigning SNP IDs.

If not reported, and where possible, effective sample size (Neff) was calculated from per-SNP case 
and control sample sizes. When this could not be determined per-SNP, all variants were assigned a 
single Neff, calculated as a sum of Neff values for each cohort within the GWAS meta-analysis (Grot-
zinger et al., 2023).

Further processing was performed where possible, excluding SNPs with p-values ≤0 or >1 and 
Neff >3 standard deviations from the median Neff. Imputation INFO scores indicate the probability of 
each genotype given the available data and reference panel - we removed variants with INFO <0.9 
if indicated. We filtered to include only variants with minor allele frequency (MAF) ≥0.005 in both the 
reference and GWAS samples and excluded SNPs with an absolute MAF difference of >0.2 between 
the two.

Genome-wide analyses
Global heritability and genetic correlations
LDSC (version 1.0.1) (Bulik-Sullivan et al., 2015; Bulik-Sullivan et al., 2015) was applied to estimate 
genome-wide univariate heritability (h2) for each trait on the liability scale. The software was also 
applied to derive ‘global’ (i.e., genome-wide) genetic correlation estimates between trait pairs and 
estimate sample overlap from the bivariate intercept. The latter of these outputs was taken forward 
as an input for the local genetic correlation analysis using LAVA (see 2.2.2.2). Since global genetic 

Figure 1. Overview of the analysis procedure for this study. SuSiE (sum of single effects) is a univariate fine-mapping approach implemented within the 
R package susieR. ‘coloc’ is an R package for bivariate colocalisation analysis between pairs of traits. h2 = heritability, rg = bivariate genetic correlation. 
The analysis steps shaded in blue have been implemented within a readily applied analysis pipeline available on GitHub, copy archived at Spargo, 
2023.

https://doi.org/10.7554/eLife.88768
https://github.com/ThomasPSpargo/COLOC-reporter
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correlation analysis across the traits studied here is not novel and associations reported in past studies 
are congruent across different tools (Wainberg et al., 2023), the compatibility between LDSC and 
LAVA motivated our use of LDSC for this analysis.

These analyses were performed using the HapMap3 (Altshuler et al., 2010) SNPs and the LD score 
files provided with the software, calculated in the 1KG European population. No further MAF filter 
was applied (therefore variants with MAF ≥0.005 were included) and the other settings were left to 
their defaults.

Local genetic correlation analysis
LAVA (version 0.1.0) (Werme et al., 2022) was applied to obtain local genetic correlation estimates 
across 2495 approximately independent blocks delineating the genome, based on patterns in LD. We 
used the blocks provided alongside the LAVA software which were derived from the 1KG European 
cohort. Bivariate intercepts from LDSC were provided to LAVA to estimate sample overlap between 
trait pairs.

LAVA was the most appropriate local genetic correlation approach for this study for several reasons 
(Werme et  al., 2022). First, unlike SUPERGNOVA (Zhang et  al., 2021) and rho-HESS (Shi et  al., 
2017), LAVA makes specific accommodations for analysis of binary traits. Second, other tools focus 
on bivariate correlation between traits while LAVA offers this alongside multivariate tests such as 
multiple regression and partial correlation, enabling rigorous testing of pleiotropic effects. Lastly, 
LAVA is shown to provide results which are less biased than those from other tools.

In accordance with prior studies, genetic correlation analysis was performed following an initial 
filtering step. Univariate heritability was estimated for each genomic block across SNPs in-common 
between a pair of traits, and only loci with local h2 p-values below a threshold of 2.004 × 10−5 
(0.05/2495) in both traits continued to the bivariate analysis. This step ensures that univariate herita-
bility is sufficient in both traits for a robust correlation estimate.

Targeted genetic analyses
Fine-mapping and colocalisation analysis
Statistical fine-mapping and colocalisation techniques were applied to further analyse associations 
between trait pairs in regions where the false discovery rate (FDR) adjusted p-value of local genetic 
correlation analysis was below 0.05 (after adjusting for all bivariate comparisons performed). Addi-
tional analysis was conducted at loci where significant correlations occurred between two trait pairs 
but not between the final pairwise comparison across the three implicated traits.

Fine-mapping was performed with susieR (v0.12.27) (Zou et al., 2022; Wang et al., 2020a), which 
implements the ‘sum of single effects’ (SuSiE) model to represent statistical evidence of causal genetic 
variation within ‘credible sets’ and per-SNP posterior inclusion probabilities (PIPs). A 95% credible set 
indicates 95% certainty that at least one SNP included within the set has a causal association with the 
phenotype and higher PIPs indicate a greater posterior probability of being a causal variant within a 
credible set. Multiple credible sets are identified when the data suggest more than one independent 
causal signal.

Colocalisation analysis was implemented with coloc (v5.1.0.1) (Wallace, 2021; Giambartolomei 
et  al., 2018; Giambartolomei et  al., 2014), which calculates posterior probabilities that a causal 
variant exists for neither, one, or both of two compared traits, testing also whether evidence for 
a causal variant in both traits suggests a shared variant (i.e., hypothesis 4 (H4); colocalisation) or 
independent signals (hypothesis 3 (H3)). Colocalisation analyses can be performed across all variants 
sampled in a region, under an assumption of at most one variant implicated per trait. It can also be 
performed using variants attributed to pairs of credible sets from SuSiE, relaxing the single variant 
assumption (Wallace, 2021). When evidence of a shared variant is found, the individual SNPs with the 
highest posterior probability of being that variant can be assessed. With a 95% confidence threshold, 
these are termed 95% credible SNPs.

Analysis pipeline
We conducted colocalisation and fine-mapping analysis within an open-access pipeline developed for 
this study using R (v4.2.2) (R Development Core Team, 2021): https://github.com/ThomasPSpargo/​
COLOC-reporter, copy archived at Spargo, 2023.

https://doi.org/10.7554/eLife.88768
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Briefly, in this workflow (see Figure 1), GWAS summary statistics are harmonised across analysed 
traits for a specified genomic region, including only variants in common between them and available 
within a reference population. An LD correlation matrix across sampled variants is derived from a 
reference population using PLINK (v1.90) (Purcell et al., 2007; Purcell, 2009).

Quality control is performed per-dataset prior to univariate fine-mapping analysis. Diagnostic tools 
provided with susieR are applied to test for consistency between the LD matrix and Z-scores from the 
GWAS and identify variants with a potential ‘allele flip’ (reversed effect estimate encoding) that can 
impact fine-mapping.

Fine-mapping is performed for each dataset with the coloc package runsusie function, which 
wraps around susie_rss from susieR and is configured to facilitate subsequent colocalisation anal-
ysis. Sample size (Neff for binary traits) is specified as the median for SNPs analysed. Colocalisation 
analysis can be performed with the coloc functions ​coloc.​abf and ​coloc.​susie when fine-mapping 
yields at least one credible set for both traits and otherwise using ​coloc.​abf only. Genes located 
near credible sets from fine-mapping and credible SNPs from colocalisation analyses are identified 
via Ensembl and biomaRt (v2.54.0) (Durinck et al., 2005; Durinck et al., 2009; Cunningham et al., 
2022).

Analysis parameters can be adjusted by the user in accordance with their needs. Various utilities 
are included to help interpretation of fine-mapping and colocalisation results, including identification 
of genes nearby to putatively causal signals, HTML reports to summarise completed analyses, and 
figures to visualise the results and compare the examined traits.

Current implementation
In this study, LD correlation matrices were derived from the 1KG European cohort. SNPs flagged 
for potential allele flip issues in either of the compared traits were removed from the analysis. Fine-
mapping was performed with the susie_rss refine=TRUE option to avoid local maxima during conver-
gence of the algorithm, leaving the other settings to the runsusie defaults. Colocalisation analysis was 
performed using the default priors for ​coloc.​susie (p1 = 1 × 10−4, p2 = 1 × 10−4, p12 = 5 × 10−6).

Colocalisation and fine-mapping analyses were performed initially using the genomic blocks 
defined by LAVA, since these aim to define relatively independent LD partitions across the genome 
(Werme et al., 2022). If a 95% credible set could not be identified in one or both traits, we inspected 
local Manhattan plots for the region to determine whether potentially relevant signals occurred 
around the region boundaries. The analysis was repeated with a ±10 kb window around the LAVA-
defined genomic region if p-values for SNPs at the edge of the block were p < 1 × 10−4 for both 
traits and the Manhattan plots were suggestive of a ‘peak’ not represented within the original 
boundaries.

Table 1. Genome-wide association studies (GWAS) sampled.
Each GWAS is a GWAS meta-analysis of disease risk across people of European ancestry.

Trait
Estimated lifetime risk in 
population

GWAS
Liability scale h2 
(standard error)Reference N cases N controls

Alzheimer’s disease 1/10, Chêne et al., 2015†
Kunkle et al., 
2019 21,982 41,944 0.093 (0.0155)

Amyotrophic lateral 
sclerosis

1/350, Alonso et al., 2009; 
Johnston et al., 2006

Van Rheenen 
et al., 2021 27,205 110,881 0.0277 (0.003)

Frontotemporal 
dementia

1/742, Coyle-Gilchrist et al., 
2016

Ferrari et al., 
2014 2154 4308 0.0329 (0.0283)

Parkinson’s disease 1/37, Parkinson’s, 2017 Nalls et al., 2019

15,056
(+18,618 
proxies*) 449,056 0.0506 (0.0046)

Schizophrenia 1/250, Saha et al., 2005
Trubetskoy 
et al., 2022 53,386 77,258 0.1761 (0.0061)

*Proxy cases from the UK Biobank Cohort.
†Estimated from cumulative risk after age 45 after correcting for competing risk of mortality and assuming a lifespan of ~85 years. h2 = 
heritability.

https://doi.org/10.7554/eLife.88768
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Results
Genome-wide analyses
Descriptive information and heritability estimates for the sampled traits and GWAS are presented in 
Table 1. ALS had nominally significant global genetic correlations with schizophrenia (p = 0.045), PD 
(p = 0.013), and AD (p = 0.006); no other bivariate genome-wide correlations were statistically signif-
icant (see Figure 2).

A total of 605 local genetic correlation analyses were performed across all trait pairs in genomic 
regions where both traits passed the univariate heritability filtering step after restricting to SNPs 
sampled in both GWAS (see Table 2; Figure 3; Supplementary file 1a). The number of loci passing to 
bivariate analysis varied greatly across trait pairs and was congruent with the genome-wide heritability 
estimates (and their uncertainty) for each trait, reflecting differences in phenotypic variance explained 
by measured genetic variants and statistical power for each GWAS (see Table 1).

AD

ALS

PD

SZ

FTD

rg � 0.33 (0.12);

p � 0.006

rg � 0.50 (0.30);

p � 0.095

rg � 0.09 (0.15);

p � 0.558

rg � 0.25 (0.32);

p � 0.436

rg � 0.09 (0.09);

p � 0.315

rg � 0.09 (0.05);

p � 0.082

rg � 0.59 (0.45);

p � 0.189
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p � 0.045
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p � 0.978

−1.0

−0.5

0.0

0.5

1.0
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Figure 2. Genome-wide genetic correlation estimates between all trait pairs. The heatmap displays genetic 
correlations (rg) each tile is labelled with the rg estimate and with its standard error in parentheses, alongside the 
p-value. AD = Alzheimer’s disease, ALS = amyotrophic lateral sclerosis, FTD = frontotemporal dementia, PD = 
Parkinson’s disease, SZ = schizophrenia.

Table 2. Comparison of genome-wide SNP significance against local genetic correlation significance thresholds in all trait pairs and 
loci analysed.
All loci analysed showed sufficient local univariate heritability across compared traits to allow bivariate correlation analysis. 
Subsequent fine-mapping and colocalisation analyses were performed in this study for regions with at least a false discovery rate 
(FDR) adjusted significance for the local genetic correlation. SNP = single-nucleotide polymorphism.

Number of traits in pair with genome-wide significant (p 
< 5 × 10−8) SNP in locus

Smallest significance threshold for local genetic correlation

Bonferroni (p < 8.26 × 10−5; 
0.05/605)

FDR (pfdr < 
0.05)

Nominal (p < 
0.05)

Non-significant
(p ≥ 0.05)

0 1 17 77 394

1 1 4 18 80

2 0 3 2 8

https://doi.org/10.7554/eLife.88768
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Targeted genetic analyses
Univariate fine-mapping and bivariate colocalisation analyses were subsequently performed to test for 
variants jointly implicated between trait pairs in regions with local genetic correlation pfdr < 0.05. The 
ALS and schizophrenia trait pair was additionally examined at Chr6:32.22–32.45 Mb because signifi-
cant genetic correlations were found between ALS and FTD and between schizophrenia and FTD at 
this locus. The correlation between ALS and schizophrenia at this locus had not been analysed owing 
to insufficient univariate heritability for ALS after restricting to SNPs in common with the schizophrenia 
GWAS.

Fine-mapping identified at least one 95% credible set for each of the compared traits for 7 of the 
27 comparisons performed (see Table 3), and for one trait only in a further 5 (see Supplementary 
file 1b; Supplementary file 1c). This analysis suggested two credible sets for schizophrenia in the 
Chr12:56.99–58.75 Mb locus, for AD in Chr6:32.45–32.54 Mb, and (only when harmonised to SNPs in 
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Figure 3. Local genetic correlation analyses between trait pairs. The lower panel displays a heatmap of genetic correlations (rg) across genomic regions 
where any bivariate analyses were performed; white colouring indicates that the region was not analysed for a given trait pair owing to insufficient 
univariate heritability in one or both traits. The upper panel shows a Manhattan plot of p-values from each correlation analysis, denoting trait pairs by 
colour and comparisons passing defined significance thresholds by shape (square for a strict Bonferroni threshold and triangle for a false discovery rate 
[FDR] adjusted threshold); the hatched line indicates the threshold p-value above which pfdr < 0.05. The panels are both ordered by relative genomic 
position, with bars above and below indicating each chromosome. AD = Alzheimer’s disease, ALS = amyotrophic lateral sclerosis, FTD = frontotemporal 
dementia, PD = Parkinson’s disease, SZ = schizophrenia. Supplementary file 1a provides a complete summary of local genetic correlation analyses 
performed. Twenty-six bivariate comparisons were significant following FDR adjustment (pfdr < 0.05), two of which also passed the stringent Bonferroni 
threshold (p < 8.26 × 10−5; 0.05/605). While some regions included genome-wide significant single-nucleotide polymorphisms (SNPs) (p < 5 × 10−8) for 
one or both traits, others occurred in regions where genome-wide association studies (GWAS) associations were weaker (see Table 2). Five of these 
associations occurred at loci within the human leukocyte antigen (HLA) region (GRCh37: Chr6:28.48–33.45 Mb; 6p22.1–21.3, Genome Reference 
Consortium, 2023), and all five traits were implicated in at least one of these.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Comparison of positively and negatively correlated genetic loci.

https://doi.org/10.7554/eLife.88768
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common with the ALS GWAS) for FTD in Chr6:32.22–32.45 Mb (see Supplementary file 1c). Although 
both positive and negative local genetic correlations passed the FDR-adjusted significance threshold, 
we observed only positive local genetic correlations in loci where fine-mapping credible sets were 
identified for both traits in the pair. This reflects that the absolute correlation coefficients and variant 
associations from the analysed GWAS studies were generally stronger in the positively correlated loci 
(see Figure 3—figure supplement 1).

Colocalisation analyses performed across fine-mapping credible sets and across all SNPs in a region 
generally gave support to the equivalent hypothesis (Table 3; Supplementary file 1b). Moreover, 
comparisons suggesting a signal was present in one trait only were largely concordant with the iden-
tification of fine-mapping credible sets in only that trait (Supplementary file 1b). Figure 4—figure 
supplement 1 compares per-SNP p-values across trait pairs for comparisons with evidence of a rele-
vant signal in both traits. Figure 4—figure supplement 2 shows patterns of LD across SNPs assigned 
to credible sets for these analyses.

Strong evidence was found for a shared variant between ALS and AD within the Human leukocyte 
antigen (HLA) region (posterior probability of shared variant = 0.9; see Figure 4). The 95% credible 
SNPs for this association were distributed around the MTCO3P1 pseudogene and rs9275477, the 
lead genome-wide significant SNP from the ALS GWAS in this region, had the highest posterior 
probability of being implicated in both traits. Figure 4—figure supplement 3 presents sensitivity 
analysis showing that the result is robust to a range of values for the shared-variant hypothesis prior 
probability.

Table 3. Colocalisation analysis conducted across 95% credible sets identified during univariate fine-mapping of trait pairs.
N SNPs refer to the number of SNPs present for both traits and the 1000 Genomes reference panel in the region within colocalisation 
and fine-mapping analysis.

Trait
Genomic position 
(GRCh37)

Local genetic 
correlation 
estimate 
(95% 
confidence 
interval)

Fine-
mapping 
credible 
set for 
trait

N 
SNPs

SNP with highest PIP for fine-mapping 
credible set (nearest gene; sense-strand 
base pair distance)

Posterior probability for 
hypothesis¶

1 2 1 2 Trait 1 Trait 2 H0 H1 H2 H3 H4

AD PD
Chr6:32576785–
32639239†

0.406 (0.197, 
0.648) 1 1 958

rs9271247
(HLA-DQA1; +15,844)

rs3129751
(HLA-DQA1; +13,767) <0.01 <0.01 <0.01 0.95 0.05

ALS AD
Chr6:32629240–
32682213*

0.974 (0.717, 
1.000) 1 1 475

rs9275477‡

(MTCO3P1; +1260)
rs9275207 (MTCO3P1; 
+16,191) <0.01 <0.01 <0.01 0.10 0.90

ALS FTD
Chr6:32208902–
32454577§

0.723 (0.370, 
1.000) 1

1

1709
rs9268833
(HLA-DRB9; 0)

rs1980493 (BTNL2; 0) <0.01 <0.01 0.01 0.99 <0.01

2
rs9767620
(HLA-DRB9; +1498) <0.01 <0.01 0.01 0.99 <0.01

ALS SZ

Chr6:32208902–
32454577§ - 1 1 1711

rs9268833 (HLA-
DRB9; 0) rs9268219 (C6orf10; 0) <0.01 <0.01 <0.01 0.98 <0.01

Chr12:56987106–
58748139

0.506 (0.218, 
0.807) 1

1

2260
rs113247976 (KIF5A; 
0)

rs12814239
(LRP1; 0) <0.01 <0.01 <0.01 1.00 <0.01

2 rs324017 (NAB2; 0) <0.01 <0.01 <0.01 1.00 <0.01

PD SZ
Chr17:43460501–
44865832

0.595 (0.266, 
0.950) 1 1 2453 rs58879558 (MAPT; 0) rs62062288 (MAPT; 0) <0.01 <0.01 <0.01 0.81 0.19

SZ FTD
Chr6:32208902–
32454577§

0.669 (0.379, 
0.990) 1 1 1657 rs9268219 (C6orf10; 0)

rs9268877 (HLA-DRB9; 
0) <0.01 <0.01 <0.01 1.00 <0.01

*Indicates comparisons with genetic correlation analysis p < 8.26 × 10−5 (0.05/605).
†Denotes locus extended by ±10 kb for fine-mapping and colocalisation analysis.
‡Variant identified in colocalisation as having the highest posterior probability of being shared variant assuming hypothesis 4 is true (see Figure 4).
§Differences in fine-mapping solutions across trait pairs in the Chr6:32.21–32.45 Mb locus reflect differences in the SNPs retained after restricting to 
those in common between the compared genome-wide association studies (GWAS).
¶H0 = no causal variant for either trait, H1 = variant causal for trait 1, H2 = variant causal for trait 2, H3 = distinct causal variants for each trait, H4 = 
a shared causal variant between traits. PIP = posterior inclusion probability, AD = Alzheimer’s disease, ALS = amyotrophic lateral sclerosis, FTD = 
frontotemporal dementia, PD = Parkinson’s disease, SZ = schizophrenia.
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The other comparisons that found fine-mapping credible sets in both traits suggested that over-
laps from the correlation analysis were driven by distinct causal variants (see Table 3; Supplementary 
file 1b).

Univariate fine-mapping of PD and schizophrenia at Chr17:43.46–44.87 Mb found large credible 
sets spanning many genes, including MAPT (Allen et  al., 2014; Snowden et  al., 2015; Origone 
et al., 2018; Nakayama et al., 2019; Cheng et al., 2020) and CRHR1 (Cheng et al., 2020; Bigdeli 
et al., 2021) which have been previously implicated in the traits we have analysed. These expan-
sive credible sets reflect the strong LD in the region and indicate a signal that is difficult to localise 
(see Figure 4—figure supplement 2F; Supplementary file 1c). The colocalisation analysis suggested 
independent variants for each trait despite many SNPs overlapping across their respective credible 
sets (see Figure 4—figure supplement 2F). Sensitivity analysis showed robust support for the two 
independent variants hypothesis across shared-variant hypothesis priors (Figure 4—figure supple-
ment 3). However, the colocalisation analysis will increasingly favour the two independent variants 
hypothesis as the number of analysed variants increases (Wallace, 2020). Hence, the wide-spanning 
LD of this region may have obstructed identification of variants and mechanisms shared between the 
traits.

Discussion
We examined genetic overlaps between the neuropsychiatric conditions AD, ALS, FTD, PD, and schizo-
phrenia. Through genetic correlation analysis, we replicated genome-wide correlations previously 
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Figure 4. Evidence for colocalisation between amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease (AD) in the Chr6:32.63–32.68 Mb region. (A) 
Single-nucleotide polymorphism (SNP)-wise p-value distribution between ALS and AD across Chr6:32.63–32.68 Mb, in which colocalisation analysis 
found 0.90 posterior probability of the shared-variant hypothesis (see Table 3). (B) (upper) Per-SNP posterior probabilities for being a shared variant 
between ALS and AD, (lower) positions of HGNC gene symbols nearby to the 95% credible SNPs. Posterior probabilities for being a shared-variant sum 
to 1 across all SNPs analysed and are predicated on the assumption that a shared variant exists; 95% credible SNPs are those spanned by the top 0.95 of 
posterior probabilities. The x-axis for Panel B is truncated by the base pair range of the credible SNPs and genomic positions are based on GRCh37.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Single-nucleotide polymorphism (SNP)-wise p-value distribution between trait pairs in comparisons where colocalisation analysis 
suggested a causal variant in both traits.

Figure supplement 2. Heatmaps of linkage disequilibrium (LD) in the 1000 Genomes European reference population across variants assigned to any 
credible set during univariate fine-mapping of trait pairs (A-G).

Figure supplement 3. Sensitivity of colocalisation analysis to the prior probability of a shared variant between traits.

https://doi.org/10.7554/eLife.88768
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described between the studied traits (Van Rheenen et al., 2021; Li et al., 2021; Wainberg et al., 
2023; McLaughlin et al., 2017). Leveraging a more recent local genetic correlation approach, we 
identified specific genomic loci jointly implicated between pairs of traits which were further investi-
gated using statistical fine-mapping and colocalisation techniques.

Significant local genetic correlations were most frequent across genomic blocks within the HLA 
region, implicating each of the studied traits in at least one comparison. Several associated regions 
contained genes with known relevance for the traits studied, such as KIF5A, MAPT, and CRHR1. 
Colocalisation analysis found strong evidence for a shared genetic variant between ALS and AD in 
the Chr6:32.62–32.68 Mb locus within HLA, while the other colocalisation analyses suggested causal 
signals distinct across traits, for one trait only, or for neither trait.

The tendency for association between traits around the HLA region is reasonable, since this is a 
known hotspot for pleiotropy (Werme et al., 2022; Watanabe et al., 2019). The human leukocyte 
antigen (HLA) system is particularly known for its role in immune response and it is implicated in 
various types of disease (Dendrou et al., 2018; Trowsdale and Knight, 2013). Mounting evidence 
has linked HLA and associated genetic variation to the traits we have analysed, and mechanisms 
underlying these associations are beginning to be understood (Dendrou et al., 2018; Trowsdale and 
Knight, 2013; Wang et al., 2020b; Song et al., 2016; Yu et al., 2021; Broce et al., 2018; Ferrari 
et al., 2016; Al-Diwani et al., 2017; Mokhtari and Lachman, 2016; Aliseychik et al., 2018; Zhang 
et  al., 2022). For instance, AD is associated with variants around the HLA-DQA1 and HLA-DRB1 
genes and several SNPs in the non-coding region between them have been shown to modulate their 
expression (Zhang et  al., 2022). Notably, one of the SNPs with a demonstrated regulatory role, 
rs9271247, had the highest probability of being causal for AD across the 95% credible set identified 
in the fine-mapping of the region.

Variants showing evidence for colocalisation between AD and ALS were distributed around the 
MTCO3P1 pseudogene in the HLA class II non-coding region between HLA-DQB1 and HLA-DQB2. 
MTCO3P1 has been previously identified as one of the most pleiotropic genes in the GWAS catalog 
(Chesmore et al., 2018; Sollis et al., 2023). Previous studies have suggested the relevance of this 
region in both traits. HLA-DQB1 and HLA-DQB2 are both upregulated in the spinal cord of people 
with ALS, alongside other genes implicated in various immunological processes for antigen processing 
and inflammatory response (Andrés-Benito et al., 2017). HLA class II complexes, and their subcom-
ponents, have been identified as upregulated in multiple brain regions of people with AD, using both 
gene and protein expression techniques (Aliseychik et al., 2018; Hopperton et al., 2018; Pain et al., 
2023).

Our analysis of this region gave stronger support for colocalisation between the ALS and AD GWAS 
than a previous study (Van Rheenen et al., 2021). The previous study analysed a 200 kb window of 
over 2000 SNPs around the lead genome-wide significant SNP from the ALS GWAS, rs9275477, and 
found ~0.50 posterior probability for each of the shared and two independent variant(s) hypotheses. 
The current analysis used 475 SNPs occurring within a semi-independent LD block of ~50 kb in this 
locus. Since the posterior probability of the two independent variants hypothesis (H3) increases expo-
nentially with the number of variants in the region while the shared-variant hypothesis (H4) scales 
linearly, it is expected that our analysis would give stronger support for the latter (Wallace, 2020). 
Given that the previous study defined regions for analysis based on an arbitrary window of ±100 kb 
around each lead genome-wide significant SNP from the ALS GWAS and we defined each analysis 
region based on patterns of LD in European ancestry populations, it is reasonable to favour the current 
finding.

More broadly, our analyses suggest that regions with a strong genetic correlation between the five 
traits studied often result from adjacent but trait-specific signals, likely reflecting overlaps between LD 
blocks (Watanabe et al., 2019). Correlations also occurred in regions with weaker overall GWAS asso-
ciations (see Table 2), where fine-mapping and colocalisation analyses did not suggest causal asso-
ciations in one or either trait. Such patterns likely reflect a shared polygenic trend across the region, 
rather than associations attributable to discrete variants. Accordingly, other approaches may be better 
suited for identifying regions containing genetic variation jointly causal across diseases, including the 
traditional approach of testing regions around overlapping genome-wide significant variants.

This study has used gold-standard statistical tools to examine genetic relationships between traits. 
The local genetic correlation analysis approach enabled targeted investigation of genomic regions 

https://doi.org/10.7554/eLife.88768
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which appear to overlap between traits. The application of colocalisation analysis alongside a prior 
univariate fine-mapping step allowed for associations to be tested without conflating independent 
but nearby signals under the single-variant assumption of colocalisation analysis across all variants 
sampled in a region.

The study is not without limitation. We necessarily used the 1KG European reference population 
to estimate LD between SNPs. Fine-mapping is ideally performed with an LD matrix from the GWAS 
sample and is sensitive to misspecification when inconsistencies in LD occur between the reference 
and GWAS cohorts. Use of a reference population is not uncommon, and diagnostic tools available 
within the susieR package allow testing for inconsistencies between the reference and GWAS samples 
(Zou et al., 2022) . We accordingly implemented these tools centrally into our workflow and deter-
mined that the LD matrices from the 1KG reference were suitable for the data (estimates of Z-score 
and LD consistency are available in Supplementary file 1c). Nevertheless, repeating this study in 
under-represented populations would be an important future step to validate our findings.

We employed statistical methods to identify and analyse genomic regions containing variants 
which might be jointly implicated across traits. These approaches provide useful associations between 
traits identified from large-scale genomic datasets. However, they alone are not sufficient for transla-
tion into clinical practice. Future studies should aim to extend any associations found by integrating 
functional and multi-omics datasets to gain mechanistic insights into observed trends and facilitate 
treatment discovery (Zhang et al., 2022; Pain et al., 2023).

The fine-mapping and colocalisation analysis pipeline we have used is available as an open-access 
resource on GitHub to facilitate the application of these methods in future studies. Specified genomic 
regions can be readily analysed by providing GWAS summary statistics for binary or quantitative traits 
of interest and a population-appropriate reference dataset for estimation of LD. The pipeline returns 
resources including detailed reports that overview the analyses performed.
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