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Abstract

When making risky choices in social contexts, humans typically combine social information

with individual preferences about the options at stake. It remains unknown how such deci-

sions are made when these preferences are inaccessible or disrupted, as might be the case

for individuals confronting novel options or experiencing cognitive impairment. Thus, we

examined participants with lesions in insular or dorsal anterior cingulate cortex, key regions

implicated in risky decision-making, as they played a gambling task where choices were

made both alone and after observing others’ choices. Participants in both lesion groups

showed disrupted use of standard utility-based computations about risky options. For

socially situated decisions, these participants showed increased conformity with the choices

of others, independent from social utility-based computations. These findings suggest that

in social contexts, following others’ choices may be a heuristic for decision-making when util-

ity-based risk processing is disrupted.

Author summary

When humans make decisions in social situations, we typically weigh both our individual

preferences and information about what others choose. There are also common circum-

stances where individual preferences may be unavailable (e.g., when encountering new

options or for individuals with certain neuropsychiatric conditions). To understand how

choices are made in a social context when individual preferences are unavailable, we eval-

uated individuals with lesions in brain regions that encode risk preferences while these

individuals made risky choices both independently and after viewing others’ choices. We

find that when individual risk preferences are not computed, participants use a cognitive
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shortcut of making the same choices that others make. This shortcut may explain the

heightened influence of others on the choices of some vulnerable individuals.

Introduction

In social contexts, decision-makers sometimes follow a crowd despite their own preferences

toward a different course of action [1,2]. This phenomenon has been documented in various

forms in humans [3] and in nonhuman primates [4]. Recent studies indicate that when mak-

ing socially situated choices, humans combine individual preferences for the options at stake

with individual valuation of social information; contributions from each of these determine

when choices made in a social context diverge (or not) from that which one’s preferences out-

side a social context would predict [5–11]. These previous studies have largely focused on

understanding how social information contributes to choices with respect to individuals’ pref-

erences about risk.

Here, we investigated how risky decisions in social contexts are made when utility-based

risk preferences are disrupted or inaccessible, as might be the case for individuals with certain

psychopathologies or who are confronting novel options (e.g., Gershman & Niv [12]). Specifi-

cally, previous literature on decision-making in humans and non-human primates indicates

that when individuals have a limited amount of private information, they tend to use various

cognitive shortcuts or heuristics (e.g., mimicking other agents) to simplify decision processes

[13–16]. In the current study, we use a risky decision-making task and examine whether such

heuristics facilitate socially situated decision-making about risk when utility processing is

disrupted.

Previous work has shown that individual preferences and information from others are com-

bined during risky decision-making under social influence [7,8,11,17]. Neurally, the insular

and dorsal anterior cingulate cortices (dACC) have been shown to encode an interaction

between one’s own risk preference and information from others. As such, these regions show

greater hemodynamic responses when an individual’s preference differs from the observed

choices of others [8]. The insula and dACC have also been consistently implicated in decision-

making about risky options in non-social contexts, via lesion (insula only), functional neuro-

imaging (insula and dACC), and electrophysiology (insula) studies [18–23]. Thus, in situations

where the structural or functional integrity of these regions is disrupted (e.g., in some neuro-

logical or psychiatric disorders) or where insufficient information or differing abilities impose

constraints, individual computations and decisions about risky options may be disrupted, leav-

ing open the question of how socially informed decision-making occurs in those cases. To

examine this question, we administered a gambling task in both social and non-social contexts

to individuals with focal insula or dACC lesions and tested models that measured the degree to

which utility-based or heuristic-based processes were implemented during decision-making.

Individuals with focal insula (N = 10) or dACC lesions (N = 6) and non-lesioned control

participants (NCs; N = 28) made a series of choices between pairs of gambles alone (‘Solo’ tri-

als) and after observing two others’ choices (‘Info’ trials; Fig 1A–1C; task developed in our pre-

vious work [7,8]). Trials comprised four distinct types: Solo, where participants did not see

others’ choices; Info: ‘safe’, in which both of the two social others’ choices that the participant

observed were the safer (i.e., lower payoff variance) gamble; Info: ‘risky’, in which the two

social others’ choices were the riskier (i.e., higher payoff variance) gamble; and Info: ‘mix’,

where one social other’s choice was the safer gamble, and one other’s choice was the riskier

gamble. Info and Solo trials were intermixed throughout the task.
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Results

Disrupted utility-based decision-making about risky options

To first evaluate non-social decision-making under risk in our participants, we examined how

well a standard utility model (i.e., power utility function [24]) and softmax choice rule [25]; see

Materials and Methods for model specifications) explained behavioral choices in Solo trials.

Per economic utility theory [24], individuals’ preferences about risk can be captured by the

concavity (ρ) of power utility functions (U(x) = xρ) that reflect individuals’ utility computa-

tions about risky options. We thus used a goodness-of-fit metric of the power utility model for

explaining individual participants’ decisions about risky options as an indication of the extent

to which utility-based decision-making was used. Specifically, we used the median negative log

likelihood as it reflects the fit at the median parameter estimates which we use throughout the

paper (see Methods: Behavioral model specifications and model comparison). As expected,

participants with insula or dACC lesions showed worse model fit compared with NCs [i.e.,

comparisons of negative log likelihood (−LL) in Solo trials, P = 0.0072; see also [18–21]

Fig 1. Experimental paradigm and lesion reconstruction. (a) Participants made a series of choices between one ‘safer’ gamble and one ‘riskier’ gamble. On

each trial, participants viewed a new pair of gambles. On some trials, participants made choices alone (Solo trials). On other trials, they were asked to make

choices after observing two other players’ choices (Info trials). The Info trials had three different types based on the composition of the two other players’

choices: ‘safe, safe,’ ‘risky, risky,’ and ‘mix.’ Four trial types (Solo, Info: ‘safe’, Info: ‘risky’, and Info: ‘mix’) were intermixed. Reconstructions of (b) dACC

(N = 6) and (c) insula (N = 10) lesions are shown. The color bar represents the degree of lesion overlap among patients. To show the lesion overlap across

participants, all lesions are shown overlaid on one hemisphere. (d) Power utility model fit for Solo trials as measured by negative log likelihood (−LL; lower

values indicate a better fit) shows that individuals with insula or dACC lesions had significantly worse model fit than non-lesion control participants (NCs;

P = 0.0072; NC vs insula: P = 0.032; NC vs dACC: P = 0.073), suggesting disrupted utility-based risky decision-making in participants with insula or dACC

lesions; see also S1 Fig for model-agnostic data consistent with disrupted sensitivity to risk in lesion participants).

https://doi.org/10.1371/journal.pcbi.1012602.g001
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reporting insula or dACC involvement in utility-based decision-making under risk. This

remained true after controlling for individuals’ risk preference (P = 0.0019). Post-hoc analyses

by lesion area indicated that compared with NCs, participants with insula lesions showed

worse model fit while participants with dACC lesions trended toward worse model fit (P =
0.032 and P = 0.073, respectively; Fig 1d; see Materials and Methods for full details and S1 Fig

for model-agnostic choice behaviors). Participants with insula lesions and participants with

dACC lesions did not differ in model fit (P = 0.87, Bayes factor (BFnull) = 2.27).

Socially situated decision-making about risk

Using these participants with insula or dACC lesions as exemplars, we next sought to examine

whether heuristics may facilitate socially situated decision-making when utility-based risk pro-

cessing is disrupted. Previously, we developed an ‘other-conferred utility (OCU)’ model and

showed that the impact of social information on decisions about risky options is captured by

increased utility to the option chosen by others and thus, increased likelihood of choosing this

option [8]; we refer to this type of social information use as ‘OCU-based’ or ‘utility-based.’

This model, along with its modified version, has been validated in independent simulations

showing both model and parameter recovery [7,26]. Here, to accommodate the possibility of

incorporating social information into decisions independent of utility computations (i.e., ‘heu-

ristic-based’ or ‘OCU-free’ use of social information), we extend our previous OCU model [8]

and introduce weight parameters that allow a mixture between OCU-based and OCU-free

contributions of social information to participants’ decisions (‘hybrid model’ hereafter). The

OCU-free parameters allow the initial testing of zeroth order social heuristics that have been

previously shown to affect decision-making [13]; in the present work, these choices are either

in alignment with or in opposition to the choices made by others [8,9]. We subsequently call

these choices that ‘follow’ or ‘oppose,’ respectively, those of social others. In this mixture

model, weight parameters ωutility, ωfollow, and ωoppose capture the degree to which social infor-

mation is incorporated into decision-making, dependent upon (ωutility) or independent from

(ωfollow and ωoppose) social utility-based processes (Figs 2, S2, S3, and S4 for further model

description and validation information). Note that if an individual uses social information in a

way that fully relies on other-conferred utility (i.e., ωutility = 1), the mixture model prediction is

equivalent to that of the original OCU model [8]; if an individual uses social information in a

manner that is fully free from other-conferred utility (OCU-free; i.e., ωfollow + ωoppose = 1),

their choices would be consistent with the simple heuristics of fully following or opposing

those of social others, regardless of the gamble options. See S5 Fig for model comparison of the

hybrid model against an only OCU-free heuristic model, an only OCU-based model, and a

Solo risk preference model, showing best fit of the hybrid model for explaining participants’

choices.

Compared with non-lesion controls, participants with insula or dACC lesions as a com-

bined group showed significantly larger following weights (ωfollow; Fig 3A; P = 0.014). This

group difference result remained consistent after controlling for individuals’ risk preference

(P = 0.0074). Post-hoc analyses by lesion area indicated that relative to the non-lesion controls,

participants with insula lesions (P = 0.036) and with dACC lesions (P = 0.025) also both

showed significantly larger ωfollow. These results indicate that individuals with focal lesions in

insula or dACC implement a ‘follow others’ choices’ heuristic during decision-making in a

social context, which behaviorally manifests as increased conformity with the choices of

others.

Model-agnostic measures of participants’ tendency to follow the choices of others were cor-

related with the model-derived ωfollow (S2C and S2D Fig; for complete mixture model details,
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see S2A Fig). Tendencies for choices to oppose those of social others (captured in the ωoppose

parameter) did not differ between participants with insula or dACC lesions and controls (Fig

3B, P = 0.20, BFnull = 1.64). A post-hoc analysis additionally shows comparable ωoppose parame-

ters between insula lesion and dACC lesion groups (P = 0.28, BFnull = 1.48). As we hypothe-

sized, participants with insula or dACC lesions, relative to non-lesion control participants, had

diminished ωutility (Fig 3C; P = 0.0041), indicating less use of utility-based risk processing. This

remained the case after controlling for individuals’ risk preference (P = 0.0018). Post-hoc anal-

yses by lesion area indicated that participants with insula lesions had diminished ωutility

(P = 0.0043); participants with dACC lesions did not differ from control participants or partic-

ipants with insula lesions (dACC vs NCs: P = 0.14, BFnull = 1.17; dACC vs insula: P = 0.36,

BFnull = 1.71). See S3 Fig for individual ω estimates and further examination of model weights.

If individuals with impairments in utility-based risky decision-making indeed rely on con-

formity to a greater extent, we may expect a parametric relationship between degree of

impairment and use of the ‘follow others’ choices’ heuristic. In this case, across both lesion and

control groups, individuals who are most disrupted in utility-based risky decision-making

would be expected to show greater use of this heuristic when making decisions under risk in a

social context. To evaluate this possibility, we used model fit (negative log likelihood; −LL) cal-

culated for choices in Solo trials (data presented in Fig 1D) as a measure of disruption in util-

ity-based risky decision-making and examined the association of model fit with individuals’

model-derived following weights (ωfollow). Across all three groups, individuals’ tendencies to

follow the choices of social others (ωfollow) were significantly correlated with greater −LL in

Solo trials (greater −LL indicating more disrupted utility-based risk processing; Pearson’s

r = 0.52, P = 2.7e−04, robust correlation; Fig 3D). This relationship was consistent after

Fig 2. Hybrid social decision-making model visualization and explanation. The hybrid model uses two weights (ωfollow and ωoppose) to represent utility–

independent contributions of social information to participant decisions, indexing the degree to which participants follow or oppose the choices of social

others, independent from utility-based risk processing. (a) Effectively, the ‘follow’ and ‘oppose’ weights act to constrain the probability of choosing a given

option. On Info: ‘safe’ trials, the maximum probability of choosing the safe option (regardless of any gamble information) is equivalent to 1 –ωoppose (shown as

the dotted red lines for different ωoppose values) while the minimum probability of choosing the safe option (regardless of any gamble information) is equivalent

to ωfollow (shown as the dotted green line). Likewise, on Info: ‘risky’ trials (not depicted), the maximum probability of choosing the safe option is 1 –ωfollow, and

the minimum probability of choosing the safe option is ωoppose. The black lines represent the other-conferred utility process, setting the probability of choosing

the safe option as a function of gamble information transformed by one’s risk preference (according to a power utility function), sensitivity to utility (softmax

choice rule), and subjective value conferred by others choosing a particular option (other-conferred utility; OCU). (b) In constructing this model, we remained

agnostic as to whether oppose and follow represent dissociable processes. Nonetheless, after model estimation, we further tested if there was a relationship

between these oppose and follow processes. We find no significant correlation between ωfollow and ωoppose when measured across all participants (Pearson’s r =

–0.11, P = 0.47, robust correlation, BFnull = 6.52), suggesting dissociable processes for individuals’ decisions to follow or oppose social others’ choices. Each

point represents an individual participant, and lines are the regressions between the indicated parameters.

https://doi.org/10.1371/journal.pcbi.1012602.g002
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Fig 3. Model-derived results show increased social following in individuals with disrupted utility-based risky decision-making. (a) Parameter

estimates across all trials showed that individuals with insula or dACC lesions had significantly larger ωfollow estimates than non-lesioned control

participants (NC; NC vs insula: P = 0.036; NC vs dACC: P = 0.025; dACC vs insula: P = 0.89, BFnull = 2.28), indicating that the lesion participants were

more likely to conform with others’ choices during decision-making in a social context. (b) The insula and dACC lesion groups’ ωoppose estimates were

comparable to NC estimates. (c) NC participants had larger ωutility estimates than individuals with lesions (P = 0.0041). Post-hoc analyses revealed that the

difference was specific to individuals with insula lesions (NC vs insula: P = 0.0043; NC vs dACC: P = 0.14, BFnull = 1.17; dACC vs insula: P = 0.36, BFnull =
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PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012602 December 2, 2024 6 / 23

https://doi.org/10.1371/journal.pcbi.1012602


controlling for individuals’ risk preference (Pearson’s r = 0.52, P = 3.0e−04, robust correla-

tion). That is, individuals whose utility-based risky decision-making was most disrupted con-

formed the most with the choices of others. This relationship was replicated in an independent

sample of control participants (S5B Fig), providing convergent evidence supporting the notion

that there is a trade-off between utility-based processes and cognitively less demanding heuris-

tics that facilitates decisions about risky options in a social context.

Discussion

Humans use social information in different ways to guide decision-making [27,28]. The pres-

ent results provide a model-based explanation for how in social situations, individuals with

disrupted utility-based risk processing may make choices about risky options. Using individu-

als with insula or dACC lesions as exemplars, we show that these individuals exhibit disrupted

utility-based risk processing and use social information independent from utility computation

to guide decisions about risky options. These findings suggest social conformity can serve as a

heuristic alternative to using social information in a utility-based way during socially situated

decision-making when individuals’ risk processing is impaired.

In previous studies using the same task, we have shown that when making decisions under

risk, individuals combine social information with personal preferences and do so by adding

other-conferred utility to the option that others choose [7,8]. Here, we identify an alternative

heuristic path of using the same type of social information when personal preferences are not

computed. This discovery was made possible by examining participants with lesions in insula

and dACC (regions that have been consistently implicated in functional neuroimaging studies

of risk processing) as exemplars of individuals with disrupted risk processing [18,19,29,30].

Our post-hoc analyses examined whether insula and dACC participants differed with regard

to disruptions in risk processing; we found no evidence of group differences between insula

and dACC participants in power-utility model fit to their choices on Solo trials. While to our

knowledge, this work is among the first to show evidence of disrupted risk processing in par-

ticipants with dACC lesions, it is perhaps unsurprising, given that dACC and insula frequently

co-activate in functional neuroimaging studies of risk-related decision-making [18,19,29,30].

We also considered our work in the context of prior work implicating dMFC (often extending

into dACC) in social processes [7,26,31–33]; while we did not observe social-specific differ-

ences in our dACC vs insula participants, this is an area of relevant future study.

We emphasize that the ‘follow others’ choices’ heuristic identified in the current study is

consistent with a ‘copy-when-uncertain’ strategy previously demonstrated in perceptual deci-

sion-making, such that individuals are more likely to rely on the behaviors of others when they

are less confident about their own decisions [34–36]. The present study adds to this literature

by demonstrating that a copy-when-uncertain strategy extends to socially situated decision-

making about risky options. Of note, although a ‘follow others’ choices’ heuristic seems quali-

tatively different from utility-based use of social information, one framework that captures

both paths is a Bayesian-like update framework, in which individuals use social information to

update their likelihood of choosing the safe gamble [37–40]. That is, the utility difference

between gamble options may serve as a Bayesian prior, updated by novel information con-

tained in social others’ choices. The extent to which an individual combines their priors with

the novel social information depends on the relative uncertainty between the gamble utility

1.71). (d) We tested a link between decreased utility-based risk processing (measured by negative log likelihood in Solo trials; −LL) and increased ωfollow.

Across all groups, individuals with worse utility-model fit (larger −LL) in Solo trials showed greater ωfollow (Pearson’s r = 0.52, P = 2.7e−04, robust

correlation).

https://doi.org/10.1371/journal.pcbi.1012602.g003
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difference and the social information where the information with lower uncertainty contrib-

utes more to the final decision (i.e., the posterior). In this framework, individuals who have

disrupted utility-based risky decision-making (e.g., the lesion group herein) would be expected

to have a relatively flat prior for the utility difference of gamble options. Starting with this flat

prior, a Bayesian process would indicate that any subsequent choices made under social influ-

ence would be primarily driven by the social information because the social information car-

ries more certainty than does the individuals’ computed utility difference between the choices

at hand. By comparison, individuals with intact utility-based risk processing (e.g., NCs) would

have relatively sharper priors for utility differences between gambles and the social informa-

tion would subsequently carry less impact for participants’ decisions.

Broadly, these results have important implications for circumstances associated with subop-

timal risky decision-making, such as during neurodevelopment in adolescents [41,42] or in

individuals with neurological and psychiatric disorders characterized by altered decision-mak-

ing [43–46]. This disrupted utility-based risk processing may in-turn play a role in the particu-

larly prominent influence of social others in adolescent decision-making [47,48] and also in

the onset and maintenance of substance misuse and related psychopathology [49,50]. In these

cases, disruption to utility-based risk processing may lead to heightened influence of other

people in socially situated decision-making. The presence of heuristic and utility-based pro-

cesses for incorporating information from social others into risky decision-making thus sug-

gests distinct avenues for addressing maladaptive decision-making (e.g., enhancing

preferences vs changing social group composition).

The limitations of the present study suggest some avenues for future investigations. First,

although the information being shown to participants in this study is social information (i.e.,

choices of others), it is possible that influences on participant choices may be due to a more

general visual or information effect, whereby merely seeing other information (regardless of

its source) may influence behavioral choices. While we previously demonstrated in non-

lesioned adults using the same task that effects on participants’ behavior was indeed ‘social’

(i.e., no influence on participants choices were observed in a non-social visually controlled

experiment; Supplemental Fig 8 from [8]), this may not extend to individuals with insula and/

or dACC lesions. Further work is necessary to test whether the ‘follow others’ choices’ effect

when risk processing is disrupted is specific to social information or more general to any type

of information. Second, we combined participants with dACC or insula lesions into a single

‘lesion group’ because of the common role of these regions in risk processing [18–23] and to

maximize power for our primary intention of examining socially situated decision-making

under risk. Still, it is worth noting the unique roles of these regions in other cognitive pro-

cesses. For example, dACC is strongly implicated in social cognition [28] and social learning

[51], while insula is more strongly implicated in interoception [52]. Future studies with larger

samples ought to examine specificity of foci in these regions against more nuanced decision-

making models and distinct social cognitive processes. We might expect relatively stronger

impairment in social information processing in individuals with dACC lesions (and potentially

stronger use of heuristics), whereas we might see stronger effects of risk processing (where

interoception is thought to be a key component [53]) or dissociation of different risk models

(e.g., [54]) in those with insula lesions. Third, we note that the perceptual ‘copy when uncer-

tain’ strategy has exceptions (e.g., [55]) and similarly, the use of a ‘follow others’ choices’ heu-

ristic may not be universally implemented in individuals for whom utility-based risk

preferences may be disrupted, inaccessible, or otherwise not present (e.g., during substance

misuse, individuals with certain psychopathologies, adolescents confronting novel options).

We look forward to future studies examining these possibilities. Lastly, we point out that the

model comparison analyses indicate that the Hybrid model was not well dissociable from the
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OCU-based, OCU-free, and Solo RP models, perhaps due in part to the nested nature of these

models or the presence of multiple overlapping processes during socially-situated decision

making about risky options. While our primary findings are based on robust parameter esti-

mates of heuristic processes within the Hybrid model, the model comparison analyses indicate

that the Hybrid model alone is unlikely to capture the range of social influences on risky deci-

sion-making; future studies are necessary to implement study designs that allow these pro-

cesses to be detangled (see S4 Fig for further discussion).

Social contexts affect the decisions we make [56] and information received from others gov-

erns if and how one’s decisions are influenced by social others [57, 8]. Administering a risky

decision-making task to participants with insula or dACC lesions revealed contributions of

social information to decision-making that are independent from those relying on individuals’

utility-based computations about risk. Our model-based analytic approach and lesion data

point to social conformity as a heuristic alternative in the absence of deliberative utility-based

computation, during socially-situated decision making about risky options.

Materials and methods

Ethics statement

All participants provided written informed consent and were paid for their participation. The

study was approved by the Institutional Review Boards of Virginia Tech and Tiantan Hospital

of Capital University of Medical Sciences, Beijing, China.

Experimental model and subject details

Participants

Forty-six neurologically intact non-lesioned control (NC) subjects (male/female = 27/19,

age = 44.28±7.63), 11 with focal insula lesions (male/female = 5/6, age = 44.00±11.85), and 13

with focal dorsal anterior cingulate cortex (dACC) lesions (male/female = 8/5, age = 38.38

±11.43) participated in the current study. All participants reported no previous or current psy-

chiatric conditions; all controls reported no previous or current neurological conditions. All

participants with lesions were recruited from the Patient’s Registry of Beijing Tiantan Hospital,

Beijing, China. NCs were recruited in local Beijing communities and were matched with

patients for age, sex, and education.

Participants who showed choices that met a priori–defined behavioral exclusion criteria

were excluded from all analyses. Specifically, 11 NCs, one participant with an insula lesion,

and three participants with dACC lesions who chose the option with greater high payoff value

less frequently as the probability of winning increased (comparing average gamble choices

between winning probabilities of 40% to 90%) were excluded. Seven NCs and two participants

with dACC lesions who always chose the safer or riskier gamble on all 24 Solo trials were addi-

tionally excluded. These exclusionary criteria are necessary to ensure that there are enough tri-

als for accurate parameter estimation and that the assumptions underlying model estimation

are met. We note that we excluded these participants from estimation because for participants

who choose all risky or all safe, bi-directional social influence is not possible. That is, partici-

pants who always chose the risky option cannot be influenced to make riskier choices; simi-

larly, participants who always chose the safe option cannot be influenced to make safer

decisions. Finally, two additional participants from the dACC lesion group whose lesions were

not localized within the dACC region were excluded from all analyses. Therefore, the analyzed

sample included 28 NCs (male/female = 17/11, age = 42.82 ± 8.09), 10 participants with insula

lesions (male/female = 4/6, age = 43.10 ± 12.09), and 6 participants with dACC lesions (male/

PLOS COMPUTATIONAL BIOLOGY Social conformity is a heuristic under impaired risky decision-making

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012602 December 2, 2024 9 / 23

https://doi.org/10.1371/journal.pcbi.1012602


female = 4/2, age = 34.33 ± 6.74; see S7 Fig for evaluation and confirmation of our main results

across different exclusion criteria and further discussion).

Groups were well matched in sex (P = 0.59; NC vs insula: P = 0.28; NC vs dACC: P = 0.80;

dACC vs insula: P = 0.34), lesion laterality (P = 0.54), education (P = 0.18; NC vs insula:

P = 0.18; NC vs dACC: P = 0.34; dACC vs insula: P = 0.97), days since surgery (P = 0.37), lesion

size (P = 0.92), and handedness (P = 0.74; NC vs insula: P = 0.44; NC vs dACC: P = 0.14;

dACC vs insula: P = 0.12). Age was comparable between lesion and control groups (P = 0.31),

between NCs and participants with insula lesions (P = 0.93) and between the two lesion groups

(P = 0.13), whereas those with dACC lesions were significantly younger than NCs (P = 0.024).

The lesion group had significantly lower Mini-Mental State Examination (MMSE [58]) scores

than NCs (P = 0.0005; NC vs insula: P = 0.0013; NC vs dACC: P = 0.0091). However, the two

lesion groups had comparable MMSE scores (P = 0.97). Because MMSE and age were different

between at least one lesion group and NCs, we examined whether disrupted utility-based risky

decision-making (Fig 1D) still differed between the lesion group and NCs after accounting for

variation due to these demographics and whether the correlation between model fit and social

heuristic remained significant (Fig 3D). Specifically, we first regressed out age or MMSE in

separate multiple linear regression models and then performed either a group comparison or

robust correlation test on those residuals to confirm lesion group or omega follow, respectively

remained a significant predictor of disruption in utility-based risky decision-making. Indeed

the lesion group was a significant predictor of disruption in utility-based risky decision-mak-

ing after regressing out either age (P = 0.0072) or MMSE (P = 0.0094) and omega follow was

significantly correlated with disruption in utility-based risky decision-making after regressing

out either age (r = 0.46, P = 0.0016) or MMSE (r = 0.43, P = 0.0038) (Table 1).

Method details

Lesion reconstruction

Lesion reconstruction was performed by a research assistant who was blind to the study design

and behavioral results (C.T.) and was confirmed by a senior researcher (X.G.). In brief, lesions

evident on T1- and T2- weighted MRI scans were identified and transcribed onto correspond-

ing sections of a template to create a volume of interest (.voi) file. The template was derived

from an MRI volume of a normal control (ch2.nii) created by Christopher Rorden (University

of South Carolina, Columbia, SC) and provided for use with MRIcron [59]. This.voi file was

Table 1. Participant characteristics.

Non-lesion control

(N = 28)

Insula lesion

(N = 10)

dACC lesion

(N = 6)

Male/Female 17/11 4/6 4/2

Age (years)a 42.82 ± 8.09 43.10 ± 12.09 34.33 ± 6.74

Handedness (R/L) (27/1) (10/0) (5/1)

Education (years) 12.43 ± 1.95 11.4 ± 2.37 11.33 ± 4.63

MMSE 29.57 ± 0.79 28.30 ± 1.42 28.33 ± 1.51

Days since surgery — 555.90 ± 560.31 815.33 ± 520.95

Laterality (R/L) — 5/5 4/2

Lesion size (ml) — 44.93 ± 34.12 46.89 ± 41.73

L, left; R, right; MMSE, Mini-Mental State Examination [58]; aThe age at the testing date; Regression analysis confirmed that our main findings were not affected by

group demographic differences (see Materials and Methods for statistical comparison details). Data are represented as mean ± SD.

https://doi.org/10.1371/journal.pcbi.1012602.t001
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used to measure the location (MNI coordinates) and volume (in ml) of individual lesions and

to create within group overlaps of multiple lesions using the MRIcron program.

Experimental procedures

Participants were asked to make a series of choices between two risky gambles alone (Solo

trials) and after observing others’ choices (Info trials) (Fig 1A) [8]. In each pair of gambles,

one gamble was always riskier than the other gamble; the two gambles had the same high-

and low- payoff probabilities, but the riskier gamble had greater payoff variance. Partici-

pants were instructed that they were playing within a group of five others and that two

other players’ choices would be randomly selected and shown on some trials. To ensure par-

ticipants’ understanding, a brief quiz was administered following the task instruction and

any erroneous answers were addressed. Unbeknownst to participants, for the purpose of the

current study, Info trials were drawn without replacement from a uniform distribution that

comprised equal numbers of trials where both other players chose the safe gamble (Info:

‘safe’), both others chose the risky gamble (Info: ‘risky’), or one player chose the safe and the

other player chose the risky gamble (Info: ‘mix’). Gambles used in the current study were

developed to optimally observe risky decision-making under social influence, as detailed in

Chung et al. [8]. In brief, we developed eight unique lottery menus adapted from Holt and

Laury [60]. For each participant, four lottery menus were randomly selected among the

eight lottery menus and paired with six levels of payoff probabilities (probability of high-

payoff: 40, 50, 60, 70, 80, and 90%). These 24 unique pairs of gambles (one safer and one

riskier gamble) were used in each trial type (Solo; Info: ‘safe’; Info: ‘risky’; and Info: ‘mix’),

so in total, each participant had 96 trials (4 lottery menus × 6 probabilities × 4 trial types).

The trial order was randomized for menu × probability × trial type with a unique order per

participant. Participants were informed that their final payment was not dependent on any

other players’ choices and would be paid at the end of the task based on their choices. At the

end of the task, one of the participants’ choices was randomly selected and carried out to

determine their final payment.

We note that we have previously shown that the present task captures a social influence pro-

cess (as opposed to a more general visual information effect or non-social influence). Specifi-

cally, in our previously published work [8], we introduced the task used here and also enrolled

a separate cohort of N = 30 participants in a non-social condition designed to evaluate the

‘social’ nature of the social influence effect. In the non-social control task, participants were

instructed that the two other ‘players’ were computers choosing between the gamble options,

and the players were labeled as such on the display; all other task aspects were identical to the

social version. In this non-social control, no effect of the computer chosen options on partici-

pants’ choices were observed (see S8, reprinted with permission from [8], for further

information).

Quantification and statistical analysis

Statistical analyses

All statistical tests, except where indicated otherwise, were analyzed using a non-parametric

bootstrapping method [61]. For each test, the data from all groups were drawn with replace-

ment and assigned to groups that each had equal size as the original groups. For 10,000 itera-

tions, the statistical test of interest was then performed on this ‘resampled’ data to obtain the

null distribution. Specifically, for comparison between groups (t-tests and F-tests), a null test

statistic distribution was obtained by randomly selecting data points from a set of pooled data

points from all participants in each group being compared. For within-group analysis
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(correlation and regression tests), data were ‘unpaired’ by independently drawing the depen-

dent and independent variables for each subject from the set of group values for that given var-

iable. For the categorical demographics data, a chi-squared bootstrapped test was used; this

test has been shown to be more accurate than the chi-square test on its own and has been sug-

gested to be better than Fisher’s exact test which has been criticized for being overly conserva-

tive [62]. For all tests, once the null distribution of the test statistic was obtained, significance

could be assessed by comparison with the actual test statistic. Specifically, test statistics whose

absolute value was greater than 9,500 of the absolute value of the null samples were considered

significant (the equivalent of a two-tailed test with alpha level of 0.05). P values were calculated

by getting the total percentage of null samples (absolute value) whose test statistics were greater

than the absolute value of the test statistic of the actual data set. All statistical analysis was done

using MATLAB R2015a (Mathworks) and R 3.3.0 [63]. To test our main hypotheses, we com-

bined the dACC and insula lesion groups. When significant differences were observed, to

assess robustness of differences to individual risk preferences, we performed the same statisti-

cal test again but on the residuals of the variable of interest after regressing out individuals’

risk preference. Additionally, we proceeded with post-hoc analyses comparing dACC and

insula lesion groups separately to explore the possibility of lesion-specific differences. When

non-significant results were observed, we followed up with Bayesian null hypothesis testing

(using the bayesFactor package in MATLAB) to quantify the extent of evidence (BFnull) that

the groups being compared were similar (for t-tests) or that the variables being compared were

unrelated (for correlation tests).

Computational modeling

The full model used in this paper is labeled as the Hybrid model. This model is a mixture of

two different models: OCU-based and OCU-free models. Below, we first define these models

separately, then specify the full model. Note that because the full model is a mixture model, the

OCU-based and OCU-free models are both nested within this full model. We additionally use

the following nested models in a formal model comparison: (i) Solo risk preference, (ii) OCU-

based, and (iii) OCU-free (S4 Fig).

1) Solo risk preference. This model is a standard power utility model used to explain utility-

based risky-decision making. We use this model to test whether insula and dACC lesion

groups had disrupted utility-based risky decision-making on Solo trials. Note that this

model is a nested model of the OCU model (where OCU = 0).

Usafe ¼ PhighðVhigh;safeÞ
a
þ ð1 � PhighÞðVlow;safeÞ

a

Urisky ¼ PhighðVhigh;riskyÞ
a
þ ð1 � PhighÞðVlow;riskyÞ

a

Psafe ¼ ½1þ expð� b ðUsafe � UriskyÞÞ�
� 1

where Phigh is the probability of high-payoff, V is the value of the high- and low- payoffs (as

indicated) in the safe and risky gambles, and α is risk preference where α = 1 indicates risk

neutrality, α> 1 indicates risk seeking, and 0< α< 1 indicates risk aversion. β is the sensitiv-

ity to utility differences between the safe and risky gambles (inverse temperature) where high

value indicates less noisy behavior. The model includes four free parameters (two hyperpara-

meters [mean, variance] × two parameters): β and α.
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2) OCU-based model. The OCU-based model adds utility (positive or negative) to the option

chosen by others, and thus modifies one’s original subjective valuation of the option that

was computed based on their own risk preference:

POCU ¼ ½1þ expð� b ðUsafe � Urisky þ d OCUÞÞ�
� 1

where OCU is an additional utility added to the gamble chosen by others, and δ is an indicator

where δ = 1 for Info: ‘safe’ trials, δ = –1 for Info: ‘risky’ trials, and δ = 0 otherwise. The model

includes six free parameters (two hyperparameters [mean, variance] × three parameters): β, α,

and OCU.

3) OCU-free model. This model assumes that individuals have a mixed tendency to follow oth-

ers’ unanimous choices, and that they use their own risk preference on Solo and Info: ‘mix’

trials (i.e., Psafe = [1 + exp(−β (Usafe − Urisky))]−1).

ωfollow: This ‘follow others’ choices’ weight captures participants’ tendency to select the

same option as chosen by others (the safe or risky gamble), independent of utility computa-

tions.

Pfollow ¼

1; on Info: ‘safe’ trials;

0; on Info: ‘risky’ trials;

not applicable; on Solo and Info: ‘mix’ trials

8
><

>:

ωoppose: This ‘oppose others’ choices’ weight captures participants’ tendency to choose the

different option from the choice of others independent of utility computations.

Poppose ¼

0; on Info: ‘safe’ trials;

1; on Info: ‘risky’ trials;

not applicable; on Solo and Info: ‘mix’ trials

8
><

>:

Note that Pfollow and Poppose are defined as probabilities of choosing the safe gamble, follow-

ing and opposing others’ choices, respectively.

Two normalizing weights—ωfollow and ωoppose—determine a relative relationship. Note that

ωfollow + ωoppose = 1 in this model and that each Info: ‘safe’ and Info: ‘risky’ trial choice is

assumed to arise from a combination of the mixture weights. The model includes five free

parameters (two hyperparameters [mean, variance] × two parameters + two weights minus one):

β, α, and one ω. Note that although there are two weights in this model, only one is considered a

free parameter; the second can only take on only one value since they must add to unity.

4) Social:Hybrid model. We constructed a hybrid model of OCU-based and OCU-free models,

which extends our previously suggested ‘other-conferred utility (OCU)’ model [8]. The

extended mixture model uses weights, combining the three weights described above as

follows:

Psafe ¼

ofollowð1Þ þ oopposeð0Þ þ outilityðPOCUÞ; on Info: ‘safe’ trials;

ofollowð0Þ þ oopposeð1Þ þ outilityðPOCUÞ; on Info: ‘risky’ trials;

POCU; on Solo and Info: ‘mix’ trials

8
><

>:

Note that POCU on Solo and Info: ‘mix’ trials is equivalent to one’s probability of choosing

the safe gamble based on utility differences between the safe and risky gambles (P(safe) = POCU

= [1 + exp(−β (Usafe− Urisky))]−1). The Hybrid model includes eight free parameters (two
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hyperparameters [mean, variance] × three parameters + three weights minus one): inverse

temperature β, risk preference α, OCU, and two ωs.

We extended this model to include the possibility that social information is used in the

decision-making process independently of utility computation. This mixture model (‘Hybrid’

model) consists of three probability weights, including: (i) probability of choosing the same

gamble as others independent of the gamble information, (ii) probability of choosing the dif-

ferent option from others independent of the option information, and (iii) probability of

choosing the safe option determined based on the expected utility [24] difference between the

two options after taking into account the additional utility added to the option chosen by oth-

ers (OCU). Three normalizing weights—ωfollow, ωoppose, and ωutility—determine a relative rela-

tionship. Note that ωfollow + ωoppose + ωutility = 1 and that each choice on Info: ‘safe’ and Info:

‘risky’ trials is represented as a mixture. The OCU weight (ωutility) specifies how much one uses

social information following the OCU-based computation, while the ‘follow others’ choices’

weight (ωfollow) specifies the extent to which one uses the OCU-free heuristic (Fig 2). Alterna-

tive models for risk and social influence are discussed in S1 Text.

Behavioral model specifications and model comparison

For each model, unless otherwise specified, all 96 trials per participant were used for parameter

estimations. Each model was constructed in a hierarchical structure where individuals were

assumed to be sampled from a common group level distribution [64], aside from the weight

parameters. For all hierarchical parameters, the group level distributions were defined as

Gaussian with free group-level mean (μ), SD (σ), and a standard normal distribution (Normal

(0, 1)) following non-centered parameterization [65]. We specified one group level distribu-

tion for each parameter across the lesion and control groups. For inverse temperature, an addi-

tional ‘group difference’ parameter was estimated separately for both the insula and dACC

lesion groups, as these groups differed from NCs in their inverse temperature estimates in pre-

liminary analyses examining Solo trials using the solo risk preference model. For inverse tem-

perature β and risk preference α, we applied an exponential transformation. We estimated the

hyperparameters (i.e., group-level priors) for β, α, and OCU using weak priors: μ ~ Normal(0,

10) and σ ~ half-Cauchy(0, 2.5). Sets of ω were defined as simplex, so that the sum of weights

was always 1. We applied a group-level uniform distribution to ωs, thus the weights were only

estimated at an individual-level.

For all parameter estimations, we used Markov chain Monte Carlo (MCMC) with the No-

U-Turn Sampler (NUTS) [66] variant of Hamiltonian Monte Carlo implemented in Stan [67]

in its R interface [65]. A total of four chains were run where each drew 5000 samples, discard-

ing the first 2000 samples for burn-in (giving a total of 12,000 post-burn-in draws). All values

of the potential scale reduction factor (R̂) were below 1.1 and we visually inspected the chains

for parameter convergence and good mixing [68].

As specified above, the Hybrid model is the most general model. That is, other models can

be represented as a special case of the general model (nested models). When comparing model

fits between participant groups, we calculated the median negative log likelihood (–LL). To

formally compare fits between models including penalties for model complexity, we computed

an integrated Bayesian Information Criteria (iBIC) [69] per model. Note that iBIC evaluates

model fit not just at point estimates, but across the whole posterior distribution [69].

Parameter comparison

Because individuals’ estimated parameters using hierarchical Bayesian estimation are depen-

dent on the group posterior, to allow for group differences to be identified (if they are present),
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we estimated two additional group-level mean difference parameters for both the inverse tem-

perature and risk preference parameters; statistical tests were conducted by examining whether

or not the 95% credible interval (CI) for each group-level parameter crosses zero. Because we

found inverse temperature, but not risk preference, differences between groups in the Solo tri-

als, all models presented here (unless otherwise specified) were estimated using an inverse

temperature mean difference parameter for each lesion group.

Bootstrapped t-tests were used to compare weights among groups. Note that the weights

are not dependent on the group distribution (because they were not part of a hierarchical

structure), and thus, classical t-tests can be used to examine individual differences (Fig 3A–

3C). To examine the correlation between model fit (−LL) and ωfollow, −LL was estimated from

the Solo risk preference model using only Solo trials and ωfollow was estimated from the Hybrid

model (Fig 3D).

Parameter recovery

To confirm that the task design is sensitive enough to capture individual differences within the

model structure, we sampled 44 sets (the same as our sample size) of parameters (α and OCU

for 44 simulated subjects; ‘true parameters’ hereafter) using the mean and standard deviation

for the estimated group-level distributions (estimated from individuals’ raw choice data).

Actual β parameters were used from each subject. For the three weights (ωfollow, ωoppose, and

ωutility), we sampled the weights uniformly from a unit simplex, satisfying ωfollow + ωoppose +

ωutility = 1 and restricting values between minimum and maximum values of subject ωs. Using

the same gamble sequences that were presented to participants, we simulated individual choice

data, and examined whether the true parameters were recovered or not. Because simulated

choices are subject to some randomness, some simulated choice sets generated sequences that

did not meet inclusion criteria for the study. As specified earlier (in Participants), this can

lead to estimation issues. Thus, simulated behaviors went through the same exclusionary crite-

ria as actual participants’ behavior (see Participants for exclusion criteria). If a simulated par-

ticipant’s behavior was excluded, a new set of parameters was generated and used to re-

simulate behavioral choices. The same parameter estimation procedure was used as described

above. All estimated parameters were significantly correlated with the true parameters used to

generate simulated data (inverse temperature (log transform): Pearson’s r = 0.81, P = 1.86e

−11; risk preference: Pearson’s r = 0.86, P = 7.32e−14; OCUnormalized: Pearson’s r = 0.76,

P = 2.75e−09; ωfollow: Pearson’s r = 0.88, P = 4.38e−15; ωoppose: Pearson’s r = 0.90, P = 1.46e

−16; ωutility: Pearson’s r = 0.73, P = 2.44e−08). Note that the OCU parameter was normalized

to show the actual contribution of OCU to the utility function, as follows:

OCUnormalized ¼ ½1þ expð� b�OCUÞ�� 1
:

Stan makes it possible to efficiently estimate models with multiple hierarchical levels and

many parameters. It does so by using a Hamiltonian Monte Carlo algorithm to move quickly

through the posterior distribution with minimal correlation between parameters. To efficiently

sample from the posterior distribution, it simulates a Hamiltonian ‘trajectory.’ Comparing the

initial and final Hamiltonian values in a given iteration provides a straightforward way to

detect potential sampling errors. Specifically, these are detected when Stan’s approximation of

a Hamiltonian trajectory deviates significantly from the true Hamiltonian trajectory, called a

‘divergent transition.’ In practice, when these ‘divergent transitions’ occur, it can bias the pos-

terior distribution. To be clear, none of the models estimated on participant data had any

divergent transitions. However, in model recovery for the Hybrid model, approximately 1.05%

of iterations had divergent transitions. Because we know the actual estimates that the simulated
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data was generated from, we can directly test if the divergent transitions biased the recovery

results. To determine this, we compare the estimates to the true parameters. By definition, if

the divergent transitions bias the posterior, it would push the estimates away from the true

parameters. As we see strong correlations between the true parameters and parameter esti-

mates from simulated data, we conclude that the divergent transitions did not bias the poste-

rior estimates and that the model is sensitive enough to capture individual differences within

the model structure. Similar model estimation issues and logic apply to the model recovery

(S4) and exclusion criteria analyses (S7).

Model recovery

In addition to parameter recovery, we performed model recovery to assess whether the four

models used and tested in this paper are dissociable [70]. To do so, we simulated participant

choices using each of the four models: Hybrid, Solo risk preference, OCU-based, and OCU-

free. We simulated choice data according to each model for 44 subjects (referred to as ‘Simu-

lated model’ hereafter). These data were created based on parameters drawn from the actual

distribution of estimated parameters for each model, restricted to be within the range of

parameter estimates. Actual β parameters were used for each model (in the same way as

Parameter recovery). The data generated from each Simulated model was then used to fit all

four models. We then calculated how well each of these models (Fit model) fit the data using

iBIC. The fits are calculated at the group level as total iBIC (S4a) and at an individual level

using participant counts of best fit for each model, calculated as a proportion summing to

100% for each Simulated model to calculate a confusion matrix (S4b) or calculated as a propor-

tion summing to 100% for each Fit model to calculate the inversion matrix (S4c). We note that

these analyses indicate that these models are not well-dissociable. Thus, while our main results

are based on robust parameter estimates of the Hybrid model, it is important to keep in mind

that the Hybrid model alone is unlikely to fully and uniquely capture the range of social influ-

ences on risky decision-making. See S4 for further discussion of this point.

Supporting information

S1 Fig. Individuals with insula and dACC lesions show impairments in risky decision-mak-

ing. (a) We used multiple linear regression to examine whether the lesion group was indeed

impaired in risky decision-making. Specifically, we set group identity (NC vs lesion), probabil-

ity of winning the high payoff, and their interaction as predictors of individuals’ gamble

choices (proportion of safe choices, P(safe)) on Solo trials. As expected, on average, across all

groups, individuals chose the safe option significantly less as the probability of winning the

high payoff increased (P = 9.2e−4). In addition, the interaction effect was significant (group

(NC vs lesion) × probability interaction: P = 0.022). Specifically, the extent to which individu-

als chose the safe option less as a function of the gamble’ probability was attenuated in the

lesion group compared to NCs. In line with previous reports [20,21], these results suggest that

individuals with insula and dACC lesions are impaired in risky decision-making. (b) Lesion

participants and NC response times in Solo trials were compared. Individuals with insula or

dACC lesions took significantly longer to make a choice compared to NCs (P = 0.026; NC vs

insula: P = 0.045; NC vs dACC: P = 0.066), which provides an additional measure indicating

disrupted decision-making about risky options. Each point represents an individual partici-

pant; Error bars represent s.e.m.

(PDF)
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S2 Fig. Visualization, parameter recovery, and behavioral validation of the Hybrid model.

(a) To confirm that we can identify each parameter independently from other parameters

within the Hybrid model, we conducted a parameter recovery analysis. To do so, we simulated

artificial data and estimated the model on that data to see if the ‘true parameters’ used to simu-

late data could be identified. Correlations between true parameters and estimates indicate

parameter recovery for that specific parameter (see Materials and Methods for parameter

recovery procedure). All parameters included in the model showed positive correlation

between the true and estimated parameters, indicating that the Hybrid model could be recov-

ered: inverse temperature (log transform; Pearson’s r = 0.81, P = 1.86e–11), risk preference

(Pearson’s r = 0.86, P = 7.32e–14), OCUnormalized (Pearson’s r = 0.76, P = 2.75e–09), ωfollow

(Pearson’s r = 0.88, P = 4.38e–15), ωoppose (Pearson’s r = 0.90, P = 1.46e–16), and ωutility (Pear-

son’s r = 0.73, P = 2.44e–08). (b-d) To confirm that the ωfollow and ωoppose parameters are cap-

turing an individual’s behavior, we compared these parameters to a model-agnostic measure

of an individual’s tendency to conform to or oppose the choices of others. In healthy adults,

we previously showed individuals who were more risk averse (or seeking) were more likely to

conform when others chose the safe (or risky) choices but less likely to conform when others

chose the risky (safe) choices. Moreover, in these individuals utilizing the OCU-based model,

the tendency to conform to others’ safe choices was negatively correlated with the tendency to

conform to others’ risky choices. Individuals following this pattern will fall close to the y = 1

− x line in b. Conversely, individuals who tend to use the OCU-free weights to a greater extent

in the decision-making process will fall further away from this line, since they are more likely

to follow or oppose others regardless of the type of information. Thus, to validate our model,

we test if the orthogonal distance from the y = 1 − x line (the solid lines in b are shown as

examples) correlates with the extent to which individuals use the OCU-free weights. As

expected, there is a significant correlation between this model-agnostic measure of conformity

tendency and both ωfollow (c; r = 0.72, P = 4.07e−08, robust correlation) and ωoppose (d, r =

−0.77, P = 1.33e−09, robust correlation) across all individuals, which shows that the model

parameters accurately capture individuals’ behavioral choices. Each point represents an indi-

vidual participant, and lines are the regressions between the indicated parameters.

(PDF)

S3 Fig. Individual model fits and probability normalizing weights. (a-c) Each individual’s

behavioral choices on Info: ‘safe’ (blue) and Info: ‘risky’ (red) trials were overlaid with their

predicted choices (solid lines) based on the Hybrid model. For each participant, P(safe) is

binned and averaged based on the expected value difference between the safe and risky gam-

bles. (d-f) Estimates of normalizing weights between decision computations are shown for

each group. While there existed individual variation across groups, a majority of those with

dACC or insula lesions showed greater ωfollow weights than OCU weights (ωutility). Estimates

shown are from the Hybrid model (see Materials and Methods for parameter estimation

details).

(PDF)

S4 Fig. Model recovery analysis. To evaluate whether our models are dissociable from one

another [70], we performed model recovery analyses. Specifically, we simulated choice data

from each model (Simulated model; Hybrid, Solo risk preference, OCU-based, OCU-free) and

tested which model best fit the simulated data (Fit model). (a) At the group level, the best fit

for each simulated model was the true model used to generate the data. (b) At the individual

level, we examined the best fitting model for each simulated participant. As expected, the

model used to generate the data had the highest proportion of simulated participants as its best

fit. (c) We also calculated the inversion matrix (i.e., the proportion of the time that the best
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fitting model was generated by the simulated model). For all four models, the best fitting

model matches the simulated data the largest proportion of the time. However, note that these

models are not well-dissociable (i.e., the confusion and inversion matrices differ from the iden-

tity matrix). This could be due to several reasons, including the nested nature of the models, a

relatively small contribution of the OCU parameter to behavior (as compared to the heuristic

weights or risk preference), and/or the presence of multiple overlapping processes during

socially-situated decision making about risky options, among other factors. While our main

results are based on robust parameter estimates of the Hybrid model (and not model fit), it is

important to keep in mind that the Hybrid model alone is unlikely to fully and uniquely cap-

ture the range of social influences on risky decision-making.

(PDF)

S5 Fig. Formal model comparison and result consistency across models and replicability

across subject groups. (a) The model fit of the Hybrid model was compared with other nested

models. The Hybrid model (see Materials and Methods for model structure) explained partici-

pants’ behavioral choices the best (smaller integrated Bayesian information criteria (iBIC)

indicates better fit). Note that we performed a parameter recovery analysis (S2) and showed

that we could separately identify each parameter. (b) In an independent sample of healthy con-

trols (N = 57, [8]), we show the same relationship (as in Fig 2d) between non-social model fit

(–LL) and individuals’ social conformity heuristic (Pearson’s r = 0.51, P = 5.78e–05, robust

correlation) as was found in the subjects in the current study. Weight parameters for social

conformity heuristic were estimated using the Hybrid model, while model fit was calculated

from the Solo risk preference model only using Solo trials. Models for healthy controls were

estimated in a similar fashion as the original study participants, with the exception that inverse

temperature was constrained between 0 and 50, and risk preference was constrained between

0 and 2. Each point represents an individual participant, and lines are the regressions between

the indicated parameters; Error bars represent s.e.m.

(PDF)

S6 Fig. Others’ choices from previous trials do not influence subsequent Solo trial choices.

To examine whether the effects of social influence from the past trials persist, we compared

Solo trial choices with and without Info trials either on one or two trials back. Specifically, we

estimated two mixed-effects logistic regression models (using subject as the random effect)

separately for NCs and the lesion group to predict safe choices on Solo trials with a regressor

corresponding to previous social influence (Info: ‘safe’ trials were coded as 1, Info: ‘risky’ trials

were coded as −1). These analyses showed that there was no effect of previous social influence

(neither one- nor two- back) on the choices made on subsequent Solo trials in either NCs or

the lesion group (all Ps > 0.05). The fixed effect beta coefficients and their standard errors are

depicted for the one- and two- back conditions, and for each group separately.

(PDF)

S7 Fig. Main results remain consistent across different exclusion criteria. In the main text,

we use two main exclusion criteria: 1) participants who chose the option with the greater high

payoff value less frequently as the probability of winning increased, suggesting a misunder-

standing or lack of attention to the task, and 2) participants who always chose either the safe or

the risky option in the Solo trials, and thus for whom bi-directional influence is not possible.

To check the robustness of our main findings with respect to exclusions, we conducted the

main analyses without exclusions; these analyses indicate that our main results remain largely

consistent even when individuals excluded from our analyses in the main text are reinserted.

(a-c) When all participants were included (control N = 46, insula N = 11, and dACC N = 11),
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we observed a trending result of the worse model fit (P = 0.12) and the increased follow weight

(P = 0.11) for lesion participants. In addition, the correlation between worse model fit and the

follow weight was significant (r = 0.45, P = 1.2e−04). (d-f) When participants who did not

show reasonable choices in trivial cases remained excluded, but the ones who always chose

either the safe or risky option were reincluded (control N = 25, insula N = 10, and dACC

N = 8), we observed a trending result of the worse model fit (P = 0.092) and the increased fol-

low weight (P = 0.027) for lesion participants. Furthermore, the correlation between worse

model fit and the follow weight was significant (r = 0.46, P = 4.9e−04). Overall, although some

of the results are statistically marginal, these data show that the main results remain consistent

even when we are more lenient with our exclusion criteria.

(PDF)

S8 Fig. (Reproduced from Chung et al., [8] with permission) Computer-generated other

options have no influence on participants’ choices. As a control analysis for the 2015 study

introducing this task [8], we performed a ‘computer control’ on 30 healthy participants. Specif-

ically, to assess whether the observed influence of others was a social or more general informa-

tion effect (e.g., priming with visual information), we implemented a separate behavioral

experiment instructing participants that ‘Info’ trials were computer-generated choices. The

visual aspects and trial structure of the original game were maintained, and as in the original

task, participants chose between two gambles. Participants were instructed that on some trials

(previously the ‘Info’ trials), prior to the participant’s decision, two computers would ran-

domly pick among the options, and these two options would be presented (‘Computer Info’

trials). As in the original experiment, ‘Solo’ trials were interspersed with the Computer Info tri-

als. No influence of computer-selected options on participants’ choices was observed (repeated

measures ANOVA, F(3, 87) = 0.71, P = 0.55; paired t-tests: Safe vs Solo, t(29) = 0.61, P = 0.55;

Mix vs Solo, t(29) = 0.90, P = 0.37; Risky vs Solo, t(29) = -0.52, P = 0.37). Error bars show s.e.

m.

(PDF)

S1 Text. Informal comparison with alternate risky decision-making and social influence

models.

(DOCX)
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