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Background: The use of FMS-like tyrosine kinase 3 (FLT3) as a crucial target for kinase inhibitors is 
well established, but its association with immune infiltration remains unclear. This study aimed to explore 
the relationship between FLT3 mutations and immune checkpoint molecules (ICMs) in patients with acute 
myeloid leukemia (AML).
Methods: The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases 
were used to identify the ICMs associated with FLT3 mutations. A Gene Ontology (GO) analysis, Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analysis, and gene set enrichment analysis (GSEA) were 
conducted to analyze the signaling pathways related to the ICMs. The single-sample GSEA (ssGSEA), 
Cibersort, and estimate algorithms were used to assess immune cell infiltration in AML.
Results: Absent in melanoma 2 (AIM2) exhibits elevated expression levels in AML patients harboring 
FLT3 mutation, contributing significantly to the progress of AML and establishing of an immunosuppressive 
microenvironment. AIM2 expression significantly correlated with sensitivity of clinically relevant drugs in 
ex vivo assays of AML. Additionally, AIM2 demonstrates substantial prognostic value and holds promise as 
a prospective immunotherapeutic target for AML. Our findings indicate a significant correlation between 
AIM2 and immune infiltration in AML cases, potentially affecting the presence of neutrophils, macrophages, 
effector memory T cells (Tem), and monocytes. Furthermore, AIM2 is closely linked to various signaling 
pathways, such as immune cytokine release, immune antigen presentation, and inflammasome signaling, 
which could play a role in immune cell enrichment in AML.
Conclusions: Our study identified AMI2 as an ICM linked to FLT3 mutations. AMI2 may be involved in the 
activation of suppressive immune cell populations, such as macrophages, neutrophils, and monocytes. AIM2 
could serve as a promising immunotherapeutic target for combination therapy with FLT3 inhibitors in AML.
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Introduction

Acute myeloid leukemia (AML) is a hematological 
malignancy with an increasing incidence in childhood as 
well as adults, and is more frequent in those aged 60 years 
or more due to its association with the aging process (1,2). 
In AML, aberrantly differentiated, prolonged myeloid 
hematopoietic progenitor cells undergo oncogenic 
transformation and unregulated proliferation, leading to the 
expansion of immature cells and the subsequent replacement 
of normal blood constituents by malignant cells (2,3). 
Therapeutic approaches typically involve the administration 
of induction chemotherapy to achieve remission, followed 
by post-remission chemotherapy, with or without stem 
cell transplantation, to prevent disease relapse (4). 
Targeted therapies, such as inhibitors targeting isocitrate 
dehydrogenase (IDH)1, IDH2, FMS-like tyrosine kinase 3 
(FLT3), and B-cell lymphoma 2, are frequently used in the 
management of relapsed/refractory AML (R/RA) (5-7).  

However, the efficacy of current treatments for AML in 
improving long-term prognosis, overcoming relapse, and 
improving drug resistance remains limited. Recent studies 
have identified various immunotherapeutic approaches, 
such as antibody-drug conjugates, chimeric antigen receptor 
(CAR) T-cell therapy, immune checkpoint inhibitors, 
dendritic cell vaccines, and natural killer cell therapy, which 
offer promising treatment options for R/RA (8-12).

Various signaling pathways and immune cells play a 
role in the modification of the tumor microenvironment 
(TME) and the immune evasion mechanisms in patients 
with AML (13-15). For example, the upregulation of 
cluster of differentiation (CD)47 on AML cells hinders 
the phagocytic capacity of macrophages. Additionally, the 
inhibition of a receptor called T-cell immunoreceptor with 
Ig and ITIM domain (TIGIT) enhances the anti-CD47-
induced phagocytosis of AML cell lines and primary AML 
cells (16). Moreover, according to the European Leukemia 
Network guidelines, the presence of FLT3 mutation and 
heightened occurrences of TIGIT+ M2 leukemia-associated 
macrophages (LAMs) are correlated with an intermediate 
or unfavorable risk (16). The in vitro inhibition of TIGIT 
results in a shift in the polarization of primary LAMs or 
M2 macrophages derived from peripheral blood toward 
the M1 phenotype, leading to an increase in the secretion 
of cytokines and chemokines associated with the M1 
phenotype (16). CD70 has the ability to stimulate regulatory 
T cells (Tregs) via CD27 and secrete immunosuppressive 
molecules, ultimately resulting in the immune escape in 
AML (17). Both in vitro and in vivo experiments have shown 
that anti-CD70 CAR T cells display strong cytotoxicity, 
cytokine production, proliferation, and significant anti-
leukemia activity, resulting in prolonged survival (18,19). 
These findings indicate that immune checkpoint molecules 
(ICMs) may serve as promising targets for the development 
of novel medications and combination treatment strategies 
for AML.

Absent in melanoma 2 (AIM2) has been characterized as 
a cytoplasmic DNA sensor or a regulatory protein of the 
inflammasome, and possesses a capable of detecting DNA 
damage signals resulting from cellular injury and infection 
by pathogenic microorganisms, thereby contributing 
significantly to the innate immune response (20,21). AIM2 
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facilitates the maturation and release of proinflammatory 
cytokines interleukin (IL)-1β and IL-18, leading to an 
inflammatory cascade triggering pyroptosis, and altering 
immune metabolism (20-22). The precise role of AIM2 in 
tumor progression remains ambiguous; however, research 
indicates that AIM2 expression is suppressed or hindered in 
colorectal cancer, which suggests that AIM2 could exert a 
potential anti-tumor effect and serve as a predictor of tumor 
immunotherapy efficacy (23-25). AIM2 has been recognized 
as an immunomodulator that plays a role in regulating the 
function of tumor-associated macrophages (TAMs) and 
facilitating tumor rejection in renal carcinoma by mediating 
M1 macrophage polarization (26). Conversely, in lung 
adenocarcinoma, AIM2 exhibits increased expression levels 
that are correlated with unfavorable clinical outcomes and 
immunosuppressive effects (27,28). Herein, currently, there 
is a lack of pertinent literature regarding the expression of 
AIM2, its prognostic implications, and its association with 
immune infiltration in AML.

As AML is characterized by high genetic heterogeneity, 
identifying an appropriate immunotherapy target for most 
of the patients represents challenges. Comprehensive 
analysis of distinct AML subgroups is essential to 
identifying suitable targets and facilitating personalized 
immunotherapy. Our study stratified AML patients into 
FLT3 mutant and FLT3 non-mutant (wild type) categories 
to evaluate the differences in AIM2 expression, prognostic 
significance, associated regulatory pathways, and the 
correlation between AIM2 and tumor immunity in patients 
with AML. We present this article in accordance with 
the REMARK reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-24-1403/rc).

Methods

Activated gene (AG) screening and bioinformatics

The Cancer Genome Atlas (TCGA) database (https://
portal.gdc.cancer.gov) was used to screen AGs based on 
a log2(fold change) >1 and a P-adjusted value <0.05. R 
software (version 4.2.1) with DESeq2 (version 1.36.0) and 
edgeR (version 3.38.2) were used to analyze the AGs in 
AML cases with (n=58) or without (n=135) FLT3 mutations 
as described previously (29,30). The Gene Ontology (GO) 
analysis, Kyoto Encyclopedia of Genes and Genomes 
(KEGG) analysis, and pathway gene set enrichment 
analysis (GSEA) were conducted using the DAVID online 
database with the ICMs (https://david.ncifcrf.gov/), and the 

results were visualized with ggplot2 (version 3.3.6). The 
GeneCards database (https://www.genecards.org/) provides 
comprehensive information about immune infiltration-
related genes. The expression of ICMs was analyzed with 
the stats (version 4.2.1) and car (version 3.1-0) software 
packages. The statistical method was chosen based on the 
data format characteristics, and the ggplot2 package (version 
3.3.6) was used for the data visualization. The RNA-
sequencing data from the STAR process of the TCGA-
AML project was downloaded from the TCGA database, 
sorted, and extracted in transcripts per million (TPM) 
format. A Spearman correlation analysis was performed to 
assess gene expression, and the results were visualized using 
ggplot2 (version 3.3.6). The Gene Expression Omnibus 
(GEO) database (https://www.ncbi.nlm.nih.gov/geo/; 
GSE2191) with GEOquery (version 2.64.2), limma (version 
3.52.2), ggplot2 (version 3.3.6), and ComplexHeatmap 
(version 2.13.1) were used to evaluate AIM2 expression. The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013).

Prognostic analysis

The correlation between the expression of six ICMs and 
overall survival (OS) in AML cases was evaluated using 
the TCGA database. The survival package (version 3.3.1) 
was used to test the proportional hazards hypothesis and 
conduct the survival regression analysis. The outcomes 
were then visualized using the survminer (version 0.4.9) and 
ggplot2 (version 3.3.6) packages.

Drug sensitivity prediction

The area under the curve (AUC) values from the 165 drugs 
tested in ex vivo assays by the BeatAML study (n=520) were 
used to investigate the correlation between drug response 
and AIM2 expression (31). The results were visualized using 
the GraphPad Prism 8.0 (GraphPad Software, San Diego, 
CA, USA).

The association between AIM2 and immune infiltration

The single-sample GSEA (ssGSEA), Cibersort, and 
estimate algorithms were used to investigate the association 
between AIM2 and immune infiltration in patients with 
AML. The ssGSEA algorithm provided by the R package 
gene set variation analysis (GSVA) (version 1.46.0) was 
used to calculate immune infiltration based on markers 
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for 24 immune cells as described previously (32,33). The 
ImmuneScore, ESTIMATEScore, and StromalScore were 
calculated using the R-estimate package (version 1.0.13). 
The core algorithm of CIBERSORT (CIBERSORT.R 
script analysis) was used to calculate immune cell infiltration 
based on markers of 22 types of immune cells provided by 
the CIBERSORTx website (https://cibersortx.stanford.
edu/). Please refer to the references for more details (34,35).

Statistical analysis

The data are presented as the mean ± standard deviation. 
The statistical analysis was conducted using R software 
(version 4.2.1) with the stats (version 4.2.1) and car (version 
3.1-0) software packages. The Wilcoxon rank-sum test 
was used to compare two groups, and the Spearman’s rank 
analysis was used to assess correlations. Mann-Whitney was 
also used for measurable factors and the chi-squared test 
or Fisher’s exact test were employed for categorical factors 
using GraphPad Prism 8 (GraphPad Software, Inc.). A 
P<0.05 indicated statistical significance.

Results

Relationship between FLT3 mutation and tumor immunity

To explore the correlation between FLT3 mutation and 
tumor immunity in patients with AML, AGs related to 
FLT3 mutations and the genes associated with tumor 
immunity were identified using TCGA and GeneCards 
databases, respectively. The analysis revealed 167 AGs in 
the FLT3 mutated AML cases compared to those without 
the mutation (Figure 1A). Additionally, 1,545 ICMs were 
identified through the GeneCards database. The Venn 
diagram analysis indicated that 11 ICMs were linked to the 
FLT3 mutation (Figure 1B). We conducted an additional co-
expression analysis to elucidate the relationship between the 
11 ICMs and FLT3 mutation (Figure 1C), and explored the 
correlations among the 11 ICMs (Figure 1D). A significant 
positive correlation was found among the 11 ICMs, except 
MRC1 exhibits a negative correlation with CCNA1. An 
analysis of the biological functions of the ICMs using the 
GO and KEGG databases demonstrated that cytokine-
related signaling pathways had a significant effect on AML 
patients with the FLT3 mutation (Figure 1E). Among these 
ICMs, six genes (AIM2, CCL1, CLU, NLRP2, TNFRSF18, 
and TNFRSF4) were identified as key regulators of 
cytokine-related signaling pathways (Figure 1F). Despite 

the known association between these six ICMs and FLT3 
mutations (Figure 2A), their relationship with other mutated 
genes remains unclear. Moreover, our study disclosed that 
these six ICMs were not strongly correlated with the known 
frequent mutations associated with AML occurrence, 
namely the IDH R132 mutation (Figure 2B), IDH R140 
mutation (Figure 2C), RAS mutation (Figure 2D), and 
NPM1 mutation (Figure 2E). Using TCGA and Genotype-
Tissue Expression (GTEx) databases (https://gtexportal.
org/home/), we confirmed the expression levels of these 
six ICMs in both normal populations and AML patients. 
Our findings indicated that other than NLRP2, which was 
significantly downregulated, the rest five ICMs (AIM2, 
CCL1, CLU, TNFRSF18, and TNFRSF4) were significantly 
upregulated in the patients with AML compared to the 
normal healthy controls (Figure 2F). Subsequent analyses 
using the GEO database (GSE2191) revealed that AIM2 
was significantly upregulated in the mononuclear cells 
obtained from the peripheral blood or bone marrow of 
pediatric AML cases (n=54) compared to the normal healthy 
pediatric controls (n=4) (Figure 2G).

The association between the six ICMs and prognosis of 
patients with AML

Five of the six assessed ICMs, including CCL1, CLU, 
TNFRSF18, NLRP2, and TNFRSF4, were found to have 
no significant association with the outcome of patients with 
AML. Interestingly, patients with low AIM2 expression 
exhibited a significantly longer OS than those with high 
AIM2 expression. Patients with high AIM2 expression had a 
median survival of 10.2 months, while those with low AIM2 
expression had a median survival of 28.5 months (Figure 3).  
In the TCGA AML cohort, high expression of AIM2 
was associated with a lower proportion of AML patients 
with good molecular risk and a higher prevalence in the 
intermediate and poor risk groups (Table 1, P=0.009).

The association between AIM2 and immune infiltration

Given the correlation between AIM2 and the FLT3 
mutation, as well as the association between AIM2 and an 
unfavorable prognosis in AML patients, our study sought 
to investigate the connection between AIM2 and immune 
infiltration. Using the ssGSEA algorithm (Figure 4A), we 
observed a significant positive correlation between AIM2 
expression and the presence of neutrophils, macrophages, 
and transverse electromagnetic (TEM) cells in the TME 
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Figure 3 The association between the six ICMs and the prognosis of AML patients. The correlation between the expression of six ICMs 
and the OS of AML patients was evaluated using TCGA database. HR, hazard ratio; CI, confidence interval; ICM, immune checkpoint 
molecule; AML, acute myeloid leukemia; OS, overall survival; TCGA, The Cancer Genome Atlas.
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of AML patients. However, our analysis utilizing the 
ssGSEA algorithm to determine immune cell enrichment 
scores revealed no significant correlation between OS 
and the enrichment scores of neutrophils (Figure S1A), 
macrophages (Figure S1B), effector memory T cells (Tem) 
(Figure S1C), or Th17 cells (Figure S1D) in AML patients. 
Additionally, the Cibersort algorithm results revealed a high 
abundance of monocyte infiltration in the TME (Figure 4B).  
The findings of the estimate algorithm indicated a 
significant positive correlation between AIM2 expression 
and each of the following: ImmuneScore (r=0.493, P<0.001), 
ESTIMATEScore (r=0.481, P<0.001), and StromalScore 
(r=0.397, P<0.001) (Figure 4C). The ImmuneScore evaluates 
the robustness of the immune response by analyzing 
the concentration and spatial distribution of immune 
cells within tumor tissue. A high ImmuneScore typically 
signifies increased immune cell infiltration in the vicinity 
of the tumor (32). Conversely, the ESTIMATEScore 
is a computational approach that estimates the relative 
proportions of tumor tissue components and immune cells 
based on gene expression data. The ESTIMATEScore 

facilitates the assessment of the overall composition of 
the TME, encompassing both stromal and immune cell 
populations, thereby aiding in the prediction of tumor 
progression and patient prognosis (32). The StromalScore 
is an evaluative metric that quantifies the composition of 
the tumor tissue’s stroma, typically comprising connective 
tissue cells and the extracellular matrix. An elevated 
StromalScore may suggest an increased presence of stromal 
components surrounding the tumor, potentially influencing 
tumor growth, invasion, and therapeutic response (32). A 
subsequent analysis using the Cibersort algorithm revealed 
that AML cases with elevated AIM2 expression had a higher 
abundance of monocytes in their TMEs compared to those 
with low AIM2 expression (Figure 4D).

AIM2 expression correlates with ex vivo drug sensitivity in 
AML

We investigated whether AIM2 messenger RNA (mRNA) 
levels could influence the response to antineoplastic agents 
in AML models. In the BeatAML study, we observed that 

https://cdn.amegroups.cn/static/public/TCR-24-1403-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-24-1403-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-24-1403-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-24-1403-Supplementary.pdf
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transcriptional levels of AIM2 showed significant positive 
correlations with eight drugs (BMS-754807, SNS-032, 
NVP-ADW742, AT7519, venetoclax, NVP-AEW541, 
Bay 11-7085, AZD1152-HQPA, and palbociclib; all 
P<0.05) and a significant negative correlation with 26 
(trametinib, selumetinib, elesclomol, CI-1040, motesanib, 
nilotinib, bortezomib, dasatinib, cediranib, PHT-427, 
KI20227, MGCD-265, JNJ-28312141, entrectinib, GW-
2580, rapamycin, GDC-0941, midostaurin, PP242, 
selinexor, linifanib, vismodegib, JAK inhibitor I, MK-2206, 
AZD1480, and RAF265, P<0.05) in assays using primary 
cells from AML patients (Figure 5). Among the correlations 
found, it is highlighted that AIM2 expression is associated 
with relevant drugs associated with leukemia therapy, such 
as sensitivity to several tyrosine kinase inhibitors in clinical 
use (i.e., nilotinib, dasatinib, midostaurin) and resistance to 
venetoclax.

AIM2 is correlated with the biomarkers of neutrophils, 
macrophages, and monocytes in AML

Our earlier data indicated the significant relationship 
between AIM2 and immune cell enrichment in AML. To 
further explore this association, the correlation between 
AIM2 and the markers of neutrophils, macrophages, and 
monocytes was assessed using data from TCGA database. 
Our results showed a significant correlation between AIM2 
expression and neutrophil biomarkers CXCR2 (r=0.425, 
P<0.001), S100A8 (r=0.437, P<0.001), ITGAM (r=0.568, 
P<0.001), FCGR3A (r=0.492, P<0.001), FCGR2A (r=0.535, 
P<0.001), and CD55 (r=0.275, P<0.001) (Figure 6A).  
Moreover, the expression of AIM2 was found to be 
substantially associated with macrophage biomarkers 
CCR2 (r=0.419, P<0.001), CD163 (r=0.492, P<0.001), 
and TLR7 (r=0.532, P<0.001) (Figure 6B). Additionally, 

Table 1 Association of AIM2 expression with clinical and molecular factors in TCGA AML cohort

Clinicopathological factors† N
AIM2

P value§

Low‡ High‡

Total 173 86 (49.7) 87 (50.3)

Age (years) 0.09

<60 91 51 (59.3) 40 (46.0)

≥60 82 35 (40.7) 47 (54.0)

Age (years) 58 [18–88] 55 [18–81] 61 [23–88] 0.06

Bone marrow blasts (%) 72 [30–100] 74 [35–100] 72 [30–100] 0.13

White blood cell count (×109/L) 17 [0.4–297.4] 15.3 [0.5–297] 19.6 [0.4–137] 0.83

Gender 0.46

Male 92 43 (50.0) 49 (56.3)

Female 81 43 (50.0) 38 (43.7)

Molecular risk¶ n=84 n=86 0.009

Good 33 23 (27.4) 10 (11.6)

Intermediate 95 38 (45.2) 57 (66.3)

Poor 42 23 (27.4) 19 (22.1)

Data are presented as n (%) or median [range]. †, the clinical and laboratorial data of TCGA AML cohort were obtained from cBioPortal for 
Cancer Genomics (http://www.cbioportal.org). ‡, gene expression values were dichotomized by median. §, for statistical analyzes, Mann-
Whitney test was used for measured factors, and Fisher’s exact test or Chi-squared test was used for categorical factors. ¶, molecular risk 
was stratified according TCGA study; 3 AML patients were not classified. AIM2, absent in melanoma 2; TCGA, The Cancer Genome Atlas; 
AML, acute myeloid leukemia.
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Figure 4 The association between AIM2 and immune infiltration. The ssGSEA (A), Cibersort (B), and estimate (C) algorithms were used 
to investigate the association between AIM2 and immune infiltration in AML patients. A subsequent analysis using the Cibersort algorithm 
revealed that the abundance of monocytes was higher in the AML patients with high AIM2 expression than those with low AIM2 expression 
(D). *, P<0.05; **, P<0.01; ***, P<0.001; ns, not significant. ssGSEA, single-sample gene set enrichment analysis; Tem, effector memory 
T cells; Th, T helper; iDC, immature dendritic cell; NK, natural killer; Tgd, gamma-delta T cells; DC, dendritic cell; TFH, T follicular 
helper; TReg, regulatory T cell; Tcm, central memory T cell; aDC, activated dendritic cell; pDC, plasmacytoid dendritic cell; AIM2, absent 
in melanoma 2; AML, acute myeloid leukemia.

AIM2 expression was found to be significantly correlated 
with monocyte biomarkers CD14 (r=0.429, P<0.001), 
CX3CR1 (r=0.559, P<0.001), and CCR5 (r=0.522, P<0.001) 
(Figure 6C). The markers commonly utilized to identify 
neutrophils, macrophages, and monocytes are referenced in 
previous studies (36,37).

Correlation between AIM2 and popular ICMs in AML

The relationship between AIM2 and 36 prevalent ICMs 
in AML is currently under investigation to validate the 
association between AIM2 and immune cell enrichment. As 
Figure 7 shows, a positive correlation was found between 
AIM2 and the majority of ICMs, notably including CD80 
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(r=0.351, P<0.001), CD86 (r=0.499, P<0.001), LGALS3 
(r=0.534, P<0.001), PDCD1LG2 (r=0.397, P<0.001), 
TNFRSF9 (r=0.474, P<0.001), and VSIR (r=0.446, P<0.001). 
These data show a clear correlation between the AIM2 and 
ICMs prevalent in AMLs. Prevalent ICMs were selected 
according to previous studies (38,39).

AIM2-related immune regulatory signaling pathway

To further investigate the molecular signaling pathways 
associated with AIM2-mediated immune infiltration in 
AML, we first conducted a screening of AIM2-related 
differentially expressed genes using the TCGA database, 
and then conducted a GSEA to investigate signal pathway 
enrichment. Figure 8 shows a compilation of the top 22 
molecular signaling pathways potentially linked to AIM2-
mediated immune infiltration in AML. These pathways 
predominantly included extrafollicular B-cell activation 
by severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2), immunoregulatory interactions between 
a lymphoid and a non-lymphoid cell, FCERI-mediated 
nuclear factor (NF)-kappa B activation, toll-like receptor 
cascades, neutrophil degranulation, cytokine-cytokine 
receptor interactions, signaling by B-cell receptors (BCRs), 

the chemokine signaling pathway, the IL-18 signaling 
pathway, signaling by ILs, IL-10 signaling, the IL-12 
pathway, CD22 mediated BCR regulation, T-helper 
(Th)17 cell differentiation, FCGR3A-mediated IL-10 
synthesis, interferon gamma signaling, the TNFR2 non-
canonical NF-kappa B pathway, T-cell receptor (TCR) 
signaling, natural killer cell-mediated cytotoxicity, major 
histocompatibility complex (MHC) class II antigen 
presentation, and the chemokine signaling pathway. These 
findings indicate that the immune infiltration mediated by 
AIM2 is primarily associated with the release of immune 
cytokines and the presentation of immune antigens.

AIM2-related canonical inflammasomes signaling 
pathway

AIM2 has the ability to identify both endogenous 
and exogenous double-stranded DNA, leading to the 
formation of an inflammasome protein polymer. This 
complex serves as a crucial component in the activation of 
inflammatory caspase 1 (CASP1) through the recognition 
of pathogen-associated molecular patterns and injury-
associated molecular patterns. The inflammasome facilitates 
cytokine maturation, secretion, and cell pyroptosis, and 
thus plays a significant role in innate immunity (22). We 
also explored the correlation between the AIM2-related 
canonical inflammasome signaling pathway and FLT3 
mutations in patients with AML. We found a significant 
positive correlation between AIM2 and key inflammasome 
components, including CASP1 (r=0.505, P<0.001), a 
N-terminal PYRIN-PAAD-DAPIN domain (PYD) and 
a C-terminal caspase-recruitment domain containing 
(PYCARD) (r=0.267, P<0.001), IL-10 (r=0.312, P<0.001), 
and NOD-, LRR-, and pyrin domain-containing protein 3 
(NLRP3) (r=0.302, P<0.001) (Figure 9A). While no direct 
association was found between any of CASP1, IL-1β,  
or NLRP3, and FLT3 mutation status (Figure 9B). Our 
data demonstrated that such components, including 
CASP1, PYCARD, IL-1β, IL-10, IL-18, and NLRP3, were 
significantly upregulated in patients with AML compared to 
healthy individuals (Figure 9C).

Discussion

Currently, AIM2 exhibits elevated expression levels in AML 
cases harboring FLT3 mutations, contributing significantly 
to the advancement of AML and the establishment of 
an immunosuppressive microenvironment. Additionally, 
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Figure 6 AIM2 was found to be correlated with the biomarkers of neutrophils (A), macrophages (B), and monocytes (C) in AML. TPM, 
transcripts per million; AIM2, absent in melanoma 2; AML, acute myeloid leukemia.
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Figure 7 Correlation between AIM2 and popular ICMs in AML. The relationship between AIM2 and 36 prevalent ICMs in AML is 
currently under investigation to validate the association between AIM2 and immune cell enrichment. AIM2, absent in melanoma 2; ICM, 
immune checkpoint molecule; AML, acute myeloid leukemia.

AIM2 has substantial prognostic value and holds promise 
as a prospective immunotherapeutic target for AML. Our 
findings revealed a significant correlation between AIM2 
and immune infiltration in AML cases, potentially affecting 
the number of neutrophils, macrophages, TEM cells, 
and monocytes in TME. Furthermore, AIM2 is closely 
linked to various signaling pathways, such as immune 
cytokine release, immune antigen presentation, and 
inflammasome signaling, which could play a role in immune 
cell enrichment in AML. These results suggest that AIM2 
could serve as a promising immunotherapeutic target for 
combination therapy in AML.

FLT3 is expressed in the hematopoietic stem cells 
and progenitor cells of myeloid and lymphoid lineages. 
Mutations in FLT3 lead to the activation of signaling 
pathways that upregulate anti-apoptotic proteins, 
promoting the survival of AML stem cells by evading 
apoptosis. Patients with FLT3 mutations exhibit a higher 
incidence of hyperleukemia, increased rates of relapse, 
resistance to treatment, and poorer prognosis than those 
with wild-type FLT3. The effective clinical management 
of these patients presents a significant challenge (40). 
Recent research has demonstrated that FLT3 is significantly 
implicated in the compromised immune response observed 
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Figure 8 AIM2-related immune regulatory signaling pathway. To enhance understandings of the molecular signaling pathways associated 
with AIM2-mediated immune infiltration in AML, we first screened AIM2-related differentially expressed genes using the TCGA database, 
and then conducted a GSEA to investigate signal pathway enrichment. SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; 
NF, nuclear factor; KEGG, Kyoto Encyclopedia of Genes and Genomes; BCR, B-cell receptor; IL, interleukin; NES, normalized effect 
size; PID, primary immunodeficiency; Th, T helper; MHC, major histocompatibility complex; AIM2, absent in melanoma 2; AML, acute 
myeloid leukemia; TCGA, The Cancer Genome Atlas; GSEA, gene set enrichment analysis.
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in patients with the FLT3 mutation being linked to 
aberrant T-cell phenotypes (41). In individuals with FLT3 
mutation-associated AML, the administration of multi-
kinase inhibitors has been shown to enhance immune 
surveillance of leukemia by increasing the presence of PD-1 
expressing CD8+ lymphocytes in the bone marrow (42). 
The present investigation revealed that AIM2 activation 
occurs in patients with the FLT3 mutated AML, resulting 
in the enrichment of neutrophils, macrophages, TEM 
cells, and monocytes, and the subsequent activation of 
various inflammatory signaling pathways, BCRs, and TCRs. 
These pathways may be implicated in immune evasion 
mechanisms.

Various types of immune cells play a crucial role in the 
TME and are associated with the prognosis, metastasis, and 
response to immunotherapy in cancer (43,44). For instance, 
TAMs promote the development and advancement of 
malignant tumors through the secretion of proinflammatory 
cytokines and the stimulation of cancer stem cell 
proliferation (45). In hematological malignancies, the use 
of bispecific antibodies targeting macrophages, specifically 
the anti-CD47/signal regulatory protein α axis (SIRPα) 
and anti-SIRPα/CLDN18.2, has been shown to effectively 

reprogram pro-tumor macrophages into anti-tumor 
macrophages (46). Additionally, toll-like receptor agonists, 
CAR macrophages, and PI3K inhibitors demonstrate 
anti-tumor activities by the activation of macrophage 
reprogramming and anticancer phenotypes (46). The results 
of our study indicate that increased AIM2 expression may 
enhance the recruitment of macrophages, with a significant 
positive association observed between AIM2 expression and 
the macrophage markers CCR2, CD163, and TLR7. These 
findings suggest that targeting AIM2 could potentially 
modulate macrophage function.

Neutrophils ,  as  the predominant immune cells 
in the bloodstream, exhibit  a dual  role in cancer 
immunotherapy. Their effect on tumor progression is 
contingent upon the molecular markers present on their 
surface, with certain neutrophil populations capable of 
either facilitating or impeding tumor growth. Enhanced 
efficacy of immunotherapy is associated with an increased 
presence of anti-tumor neutrophils in the TME (47). 
Conversely, CD300ld has been shown to be upregulated in 
pathologically activated neutrophils, leading to its role in 
suppressing T-cell activation through the STAT3-S100A8/
A9 axis (48). Knockout of CD300ld has been found to 
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Figure 9 AIM2-related canonical inflammasomes signaling pathway. A significant positive correlation was found between AIM2 and key 
inflammasome components, including CASP1, PYCARD, IL-18, IL-10, IL-1B, and NLRP3 (A). The association between key inflammasome 
components and FLT3 mutation status in AML (B). The expression of key inflammasome components was also investigated in TCGA and 
GTEx databases (C). *, P<0.05; **, P<0.01; ***, P<0.001. TPM, transcripts per million; AIM2, absent in melanoma 2; AML, acute myeloid 
leukemia; FLT3, FMS-like tyrosine kinase 3; TCGA, The Cancer Genome Atlas; GTEx, Genotype-Tissue Expression; CASP1, caspase 1; 
PYCARD, a N-terminal PYRIN-PAAD-DAPIN domain) and a C-terminal caspase-recruitment domain containing; IL-18, interleukin-18; 
IL-10, interleukin-10; IL-1B, interleukin-1β; NLRP3, NOD-, LRR-, and pyrin domain-containing protein 3.

10

8

6

4

Th
e 

ex
pr

es
si

on
 o

f C
A

S
P

1
lo

g 2
(T

P
M

 +
1)

8

7

6

5

4

Th
e 

ex
pr

es
si

on
 o

f P
Y

C
A

R
D

lo
g 2

(T
P

M
 +

1)

7

6

5

4

3

Th
e 

ex
pr

es
si

on
 o

f I
L1

8
lo

g 2
(T

P
M

 +
1)

8

6

4

Th
e 

ex
pr

es
si

on
 o

f N
LR

P
3

lo
g 2

(T
P

M
 +

1)

10.0

7.5

5.0

2.5Th
e 

ex
pr

es
si

on
 o

f I
L1

B
lo

g 2
(T

P
M

 +
1)

5

4

3

2

1

0

−1

Th
e 

ex
pr

es
si

on
 o

f I
L1

0
lo

g 2
(T

P
M

 +
1)

8

6

4

2

0

Th
e 

ex
pr

es
si

on
 le

ve
ls

lo
g 2

(T
P

M
 +

1)

10

8

6

4

2

0

Th
e 

ex
pr

es
si

on
 le

ve
ls

lo
g 2

(T
P

M
 +

1)

2 4 6
The expression of AIM2

log2(TPM +1)

2 4 6
The expression of AIM2

log2(TPM +1)

2 4 6
The expression of AIM2

log2(TPM +1)

2 4 6
The expression of AIM2

log2(TPM +1)

2 4 6
The expression of AIM2

log2(TPM +1)

2 4 6
The expression of AIM2

log2(TPM +1)

FLT3 mutation

CASP1

CASP1

PYCARD

PYCARD
IL1

8
IL1

8
IL1

0
IL1

0
IL1

B
IL1

B

NLR
P3

NLR
P3

TCGA + GTEx

***

***
***

***

***

***
***

**
*

Negative
Positive

Normal
Tumor

Spearman
R=0.312
P<0.001

Spearman
R=0.505
P<0.001

Spearman
R=0.267
P<0.001

Spearman
R=0.161
P=0.050

Spearman
R=0.001
P=0.987

Spearman
R=0.302
P<0.001

A

B C

reverse the immune-suppressive microenvironment in 
tumors (48). Recent studies have shown that neutrophil 
and neutrophil extracellular traps are also involved in 
the immunosuppression of AML (49,50). Our research 
also revealed that AIM2, serves as a crucial ICM, and 
facilitates the accumulation of neutrophils in individuals 
with AML. Our findings showed a noteworthy association 

between AIM2 expression and neutrophil-related marker 
expression such as CXCR2, S100A8, ITGAM, FCGR3A, 
FCGR2A, and CD55 in AML samples. The TME in 
AML frequently demonstrates immunosuppressive 
characteristics, including the accumulation of TAMs, Tregs, 
and myeloid-derived suppressor cells (MDSCs) (51-53). 
These elements can impede effector T cell function and 
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diminish the effectiveness of immune checkpoint inhibitors 
(10,52,53). Furthermore, AML cells may directly suppress 
T cell activity and attenuate the response to immune 
checkpoint inhibitors through the expression of PD-L1 
and other ICMs (10). Considering the intricate interactions 
between AML immune cells and various environmental 
components, it is plausible to hypothesize that the future of 
AML immunotherapy resides in the strategic integration 
of complementary immunotherapy approaches with 
chemotherapeutic agents or other inhibitors targeting 
carcinogenic pathways.

Adverse prognostic factors associated with AML 
include an age greater than 60 years, a prior history of 
myelodysplastic syndromes (MDS) or myeloproliferative 
neoplasms (MPN), treatment-related or secondary AML, 
hyperleukocytosis, central nervous system involvement, 
chromosomal abnormalities or molecular genetic markers 
indicative of poor prognosis, and the failure to achieve 
complete remission after two courses of induction 
chemotherapy (54-56). Our findings indicate that the ICM 
AIM2, which is related to FLT3 mutations, is associated 
with poor prognosis. Conversely, our analysis revealed that 
the enrichment scores of four major immune cell types do 
not correlate with the prognosis of AML. Nevertheless, 
immunoinvasive AML has been associated with poor 
prognosis (57), and various immune cell enrichment scoring 
algorithms may yield disparate prognostic outcomes. 
While our study did not identify a statistically significant 
correlation between macrophage enrichment and poor 
prognosis in AML, there was a tendency for lower 
macrophage enrichment to be linked with better prognostic 
outcomes. It is well-documented that macrophage 
enrichment is correlated with poor prognosis in various 
tumor types (58,59). Consequently, the relationship between 
immune cell enrichment and AML prognosis warrants 
further investigation with a larger sample size to achieve 
more definitive conclusions.

The current study had some limitations; while we showed 
that the high expression of AIM2 led to the induction 
of suppressive immune subsets, including macrophages, 
neutrophils, and monocytes, the specific relationship 
between AIM2 and M1/M2 macrophages and the potential 
involvement of AIM2 in macrophage reprogramming 
remain unclear. Second, our research utilized data from 
The TCGA database, which lacks specific classification of 
FLT3 mutations. Consequently, it is not feasible to analyze 
the correlation between AIM2 expression and distinct FLT3 
mutations.

Conclusions

Our results identify AMI2 as a crucial ICM linked to FLT3 
mutations, and demonstrates that the elevated expression of 
AMI2 is correlated with unfavorable outcomes in patients 
with AML. Our subsequent investigations suggest that 
AMI2 may be involved in the activation of suppressive 
immune cell populations, such as macrophages, neutrophils, 
and monocytes, leading to immune evasion in AML. 
Molecular mechanism analyses indicate AMI2-mediated 
modulation of immune infiltration in AML via the canonical 
inflammasome signaling pathway.
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