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Background: Characterized by its high mortality and easy recurrence, hepatocellular carcinoma (HCC) 
poses significant clinical challenges. The association between copper metabolism and development of 
cancer has been identified. However, the underlying mechanisms of copper metabolism-related long non-
coding RNAs (CMRLs) in HCC remain elusive. To address the gap, our study analyzed the prognostic and 
immuno-therapeutic value of CMRLs in HCC.
Methods: This research utilized The Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-
LIHC) data (n=424) for analysis, applying the “limma” package in R software for differential gene analysis 
and construction of a prognostic signature. We validated the signature using training and validation groups 
stochastically divided at a ratio of 1:1 and assessed prognostic value via Kaplan-Meier, C-index, and receiver 
operating characteristic (ROC) curves. By multivariate Cox regression, independent prognostic indicators 
were identified, and a nomogram was formulated for survival forecasting. Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analyses elucidated biological pathways, and the immune 
landscape was examined through multiple algorithms. Finally, drug sensitivity was determined from 
Genomics of Drug Sensitivity in Cancer (GDSC), with mutation analysis conducted via maftools.
Results: In this study, a predictive model based on four pivotal CMRLs (PRRT3-AS1, AC108752.1, 
AC092115.3, AL031985.3) significantly associated with HCC progression and prognosis was constructed 
and validated with the overall survival (OS) prediction area under the curve (AUC) values for 1, 3, and  
5 years of 0.718, 0.688, and 0.669, respectively. The calibration curves and C-index values showed a solid 
prognostic ability of the nomogram. The high-risk group was notably higher than the low-risk group both in 
OS and tumor mutational burdens (TMBs). Moreover, functional annotation enrichment analysis of CMRLs 
revealed that the signature was mainly associated with mitotic function, chromosome, kinetochore, cell cycle, 
and oocyte meiosis. Furthermore, therapeutic drugs, including fluorouracil, afatinib, alpelisib, cedranib, 
crizotinib, erlotinib, gefitinib, and ipatasertib, were found to induce higher sensitivity in high-risk group.
Conclusions: The prognostic signature consisting of four CMRLs displays an outstanding predictive 
performance and improves the precision of immuno-oncology.
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Introduction

Currently, hepatocellular carcinoma (HCC) poses a 
significant global health burden, primarily due to its grave 
prognosis and a low overall survival (OS) rate, ranking it as 
the third leading cause of cancer mortality (1-5). Recently, 
the combination of vascular endothelial growth factor 
(VEGF) inhibitors and immune checkpoint inhibitors (ICIs) 
has represented the first-line immune therapy, which has 
been shown to extend patient life (6). However, there are 
still many gaps in immunotherapy for liver cancer; new 
biological markers are urgently needed to close this gap and 
predict prognosis for HCC.

Copper, a critical nutrient, vital for mitochondrial 
function, cell death pathways, and antioxidant defense, has 
recently absorbed more attention for its substantial impact 

in the development and progression of cancer (7-9). When 
specific proteins misfold, gathering, or failure occur, copper 
can accumulate excessively or be transported improperly, 
leading to the dysfunction of copper homeostasis. This 
imbalance can result in oxidative stress and cellular toxicity, 
which have been linked to the development of HCC (10-13). 
The regulation of cell homeostasis by copper highlights its 
metabolic fragility, making it a promising target for anti-
cancer therapy (14), increasing interest in the relationship 
between copper and cancer (8,15,16). Copper ion-mediated 
cell death mechanisms in liver-related tumors and their 
associated genes are currently a major focus in research, 
particularly as novel biological signals for exploring 
immunotherapy and prognosis prediction (17-19). Despite 
this, the study of copper metabolism in HCC remains 
scarce.

As an independent unit,  long non-coding RNA 
(lncRNA) genes have been confirmed for their involvement 
in tumor progression and immune regulation through 
cell metabolism, promoting proliferation and invasion  
(20-22), indicating their potential as biomarkers for 
diagnosis and treatment. Yet, research on the mechanisms 
of copper metabolism-related lncRNAs (CMRLs) in 
the occurrence and development of HCC, their clinical 
applications, and the exploration of related biological 
signals is almost entirely lacking, severely limiting their 
clinical applicability in predicting the prognosis and 
immunotherapeutic guidance of HCC.

In this investigation, we focused on advancing the 
understanding of the prognostic impact and potential 
immune-related pathways of CMRLs in HCC. We 
aimed to develop and validate a novel prognostic tool to 
refine prognosis estimation of HCC and assist in guiding 
treatment choices. We present this article in accordance 
with the TRIPOD reporting checklist (available at https://
tcr.amegroups.com/article/view/10.21037/tcr-24-611/rc).

Methods

Materials collection

The foundation of our research involved the expression 
profiles and clinical data for 424 HCC patients from The 
Cancer Genome Atlas (TCGA) dataset (https://portal.
gdc.nih.gov; accessed on 7 September 2023); patients 
with missing clinical information were excluded. We 
validated the signature using training and validation 
groups divided at a ratio of 1:1. For the identification of 
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copper metabolism-related genes (CMRGs), we utilized 
the gene dataset from the study of Chang et al. (published 
on 29 November 2022) (23). The study was conducted in 
accordance with the Declaration of Helsinki (as revised  
in 2013).

The differential expressed analysis and construction of the 
prediction signature of CMRLs

Using the “limma” package in R (The R Foundation 
for Statistical Computing, Vienna, Austria), we isolated 
differentially expressed genes related to copper metabolism, 
by a threshold of |log fold change (logFC)| >1 and P<0.05, 
and pinpointed the associated CMRLs with a P value of 
less than 0.001 in correlation analyses. To develop a risk 
signature of CMRLs, we conducted least absolute shrinkage 
and selection operator (LASSO) and univariate Cox 
regression analyses using the “glmnet” package. Overfitting 
was eliminated by tenfold cross-validation. Multivariate Cox 
regression analysis was used to identify key genes and obtain 
their correlation coefficients. The risk score was calculated 
by a formula (risk score = expressionlncRNA1 × coeflncRNA1 + 
expressionlncRNA2 × coeflncRNA2 + expressionlncRNA3 × coeflncRNA3) 
from the weighted expressions of CMRLs.

Assessment and validation of the prognostic efficacy of the 
CMRLs signature

The HCC patients were randomized into equal-sized 
training and validation groups. Employing the R package 
’survminer’, the median value of the risk score enabled 
the classification of the TCGA cohort into totally distinct 
low- and high-risk categories. Survival comparison in both 
training and validation groups between low- and high-risk 
categories was conducted via Kaplan-Meier curves and log-
rank tests (P<0.05) via the ’survival’ R package. To show the 
specificity and accuracy of the signature, time-dependent 
receiver operating characteristic (ROC) curves, assessing 1-, 
3-, and 5-year survival rates in both training and validation 
groups, were further evaluated.

Independent prognostic evaluation and innovative 
nomogram design

Both univariate and multivariate Cox regression analyses 
were employed to determine whether the risk score and 
clinical features (including age, gender, grade, stage) were 

independent prognostic factors in HCC. A nomogram, 
developed using the ‘rms’ package in R, incorporated these 
independent prognostic factors to estimate the OS of HCC 
patients. Finally, the nomogram’s prognostic precision was 
assessed through calibration curves and C-index values by R 
package “pec”.

Comprehensive Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analyses

To perform thorough analysis in the underlying biological 
mechanisms of the selected signals, we conducted GO 
and KEGG pathway enrichment analyses utilizing the 
‘clusterProfiler’ package in R, which enabled an in-depth 
exploration of the gene functions and pathway involvements.

Assessment of immune landscape in the risk signature

Immune infiltration scores were measured by XCELL, 
T I M E R ,  Q U A N T I S E Q ,  M C P C O U N T,  E P I C , 
CIBERSORT, and CIBERSORT-ABS.  Spearman 
correlation analysis was employed to investigate the 
association between immune cells and risk. According 
to immune cell features of CIBERSORT, HCC cases 
were divided into two groups. A total of 20 therapeutic 
suppressive immune checkpoints summarized through 
browsing data from previous articles was used to compare 
their expression differences in high- and low-risk groups. 
The genes positively linked to anti-programmed cell death 
ligand 1 (PD-L1) drug response obtained from Xu et al.’s 
cancer and immunity website (http://biocc.hrbmu.edu.cn/
TIP/) (24) and Mariathasan et al.’s research features (25) 
were enriched with biological signal features favorable for 
cancer immunotherapy in low- and high-risk categories 
according to gene set variation analysis (GSVA). Besides, 
the ‘ggcor’ R package was employed to illustrate the 
association between risk scores and features of biological 
signal transmission.

Drug sensitivity of the signature

The data of drug sensitivity were obtained from the 
Genomics of Drug Sensitivity in Cancer (GDSC). Through 
its treatment response, HCC patient groups were delineated 
into high- and low-risk categories, according to the half-
maximum inhibitory concentration (IC50) gained from the 
GDSC database using the “oncoPredict” in R.

http://biocc.hrbmu.edu.cn/TIP/
http://biocc.hrbmu.edu.cn/TIP/
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Analysis in somatic mutations

TCGA-Liver Hepatocellular Carcinoma (TCGA-LIHC) 
mutation database (https://portal.gdc.cancer.gov/) was the 
primary resource. We used mutation annotation format 
to record the mutation information of TCGA samples, 
and the maftools program to evaluate the information. To 
better understand the risk of HCC, a comparison was made 
between patients with and without a tumor mutational 
burden (TMB) score calculated by taking the ratio of 
mutations to covered bases and multiplying it by 106.

Statistical analysis

In this study, R software v4.3.1 and v4.1.3 were used for the 
statistical analysis of the experimental data. For comparison 
between the two samples, data with normal distribution and 
uniform variance were analyzed using Student’s t-test; data 

with uneven variances were analyzed using the Wilcoxon 
test. Statistical significance was set at P<0.05.

Results

Identification of candidate CMRLs

Totals of 53 differentially expressed CMRGs and 870 CMRLs 
were identified (Figure 1A,1B). Prognosis-associated CMRLs 
were identified and overfitting was eliminated by regression 
analysis. A total of four CMRLs were retained, containing 
PRRT3-AS1, AC108752.1, AC092115.3, and AL031985.3 
(Figure 1C,1D). The four CMRLs were systematically 
weighted by applying a formula derived from their individual 
correlation coefficients: risk score = (0.264931734475329 × 
expression value of PRRT3-AS1) + (0.491168261485836 × 
expression value of AC108752.1) + (0.768284627469391 × 
expression value of AC092115.3) + (0.695952669533969 × 

Figure 1 Candidate CMRL identification. (A) The volcano plot of DEGs between LIHC tissues and normal tissues (|logFC| >1.5, P<0.05). 
(B) Alluvial plot of 870 lncRNA-associated genes involved in copper metabolism. (C) Cross-validation plot for LASSO regression model. 
(D) LASSO coefficient curves. (E) Forest plot of univariate Cox regression analysis for CMRLs. (F) Association between the four CMRLs 
and genes related to copper metabolism. (G) Correlation between the four selected CMRLs. (H) The Wilcoxon rank-sum test analyzed the 
differential expression of four CMRLs between LIHC and normal tissues. *, P<0.05; **, P<0.01; ***, P<0.001. Red dots represent upregulated 
genes, green dots represent downregulated genes, and black dots represent non-DEGs. FDR, false discovery rate; FC, fold change; lncRNA, 
long non-coding RNA; CI, confidence interval; TPM, transcript per million; CMRL, copper metabolism-related long non-coding RNA; 
DEGs, differentially expressed genes; LIHC, liver hepatocellular carcinoma; LASSO, least absolute shrinkage and selection operator.
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expression value of AL031985.3). A significant association 
was identified between the four CMRLs and increased 
risk of HCC (Figure 1E). The relationship between the 
four CMRLs and the differentially expressed CMRGs was 
analyzed (Figure 1F,1G). The differential expression analysis 
revealed a notable upregulation in the expression of the 4 
identified CMRLs within HCC tissue samples (P<0.05) 
(Figure 1H).

Assessment and validation of the prognostic implications of 
the signatures in HCC

Using the calculated median risk score derived from our 
previous formula as a basis, patients were stratified into 
high- and low-risk groups. Notably, the expression levels 
of the four genes, including PRRT3-AS1, AC108752.1, 
AC092115.3, and AL031985.3, were significantly elevated 
in the high-risk group (Figure 2A). A higher risk score was 

associated with shorter survival time, which was highlighted 
by the Kaplan-Meier survival curves (Figure 2B,2C). 
Meanwhile, The Kaplan-Meier survival curves also showed 
that OS of higher risk score was significantly reduced in all 
sample sets (P<0.001, Figure 2D-2F). Additionally, the time-
dependent ROC curves demonstrated that all the area under 
the curve (AUC) values were above 0.65 (Figure 2G-2I), 
revealing a satisfactory predictive efficacy in HCC of our 
predictive signature.

Comprehensive principal component analysis (PCA) of 
genes and lncRNAs in copper metabolism and the CMRL 
model for HCC

As shown in Figure 3A-3C, the PCA of CMRGs and 
lncRNAs, particularly those in the CMRL model, possessed 
the highest discriminative power in differentiating patients 
into high- and low-risk groups, highlighting the robust 

Figure 2 Evaluation of the accuracy of CMRLs model. (A) Differential expression of four selected CMRLs in high-risk and low-risk groups. 
(B,C) Scatter plots show the relationship between survival time and risk score. Kaplan-Meier plot of patients in a low- or high-risk group for 
the TCGA all (D), training (E) and test (F) cohorts. ROC curve analysis of the prognostic model for 1, 3, and 5 years for the TCGA all (G), 
training (H), and test (I) cohorts. TCGA, The Cancer Genome Atlas; AUC, area under the curve; CMRL, copper metabolism-related long 
non-coding RNA; ROC, receiver operating characteristic.
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discriminative capabilities of our CMRL model in HCC.

Evaluating the relationship between CMRLs and 
clinicopathological features

A heatmap was created displaying the various clinical 
pathological features of all TCGA liver cancer patients (Figure 
4A), including gender, grading, stage, T stage, N stage, M 
stage, and the risk score. We also found the frequency of 
the clinical pathological features were different between the 
high- and low-risk groups (Figure 4B-4E), which could be the 
result of the influence of the four CMRLs.

Subgroup analysis of risk models in clinical cohorts of HCC

To further investigate whether our model’s predictive 
efficacy extends to various clinical subgroups in HCC, all 
TCGA liver cancer samples were classified by age (>65 vs. 
≤65 years old), gender (male vs. female), grade (G1–2 vs. 
G3–4), and T stage (T1–2 vs. T3–4) to evaluate the survival 
rate. The OS rate of high-risk patients in all categories 
was significantly lower than that of low-risk patients  
(Figure 5A-5H). These results underscore the efficacy of our 
CMRLs risk model in precisely forecasting the prognostic 
outcomes across various clinical subgroups within HCC.

Construction of a nomogram and its prognostic ability

Both univariate regression and multivariate analyses 
indicated that stage (P<0.001) and risk score (P<0.001) 

were markedly associated with OS, which were shown in 
the forest plots (Figure 6A,6B), confirming a significant 
association between dismal prognosis and advanced disease 
stages. To enhance the prognostic accuracy of our risk 
model and broaden its applicability in clinical practice, 
we established a nomogram based on gender, age, stage, 
grade, and risk score to predict 1-, 3-, and 5-year prognostic 
survival of HCC patients (Figure 6C). The risk model 
basis of four CMRLs played a key determining role in 
forecasting OS and had the best predictive performance 
for the prognosis of liver cancer patients (Figure 6D). The 
predictive power of individual clinical pathological features 
was lower than that of the CMRLs risk scoring model (AUC 
=0.718) (Figure 6D,6E), indicating that our CMRLs risk 
model had marked advantages in predicting the prognosis of 
HCC. The calibration curve (Figure 6F) showed that the 1-, 
3-, and 5-year observed survival results were closely aligned 
with those of the predicted survival results in our training set.

GO and KEGG analyses of HCC patients based on 
prognostic marker signatures

Functional analysis was conducted of the previously 
confirmed differential expressed CMRGs. GO analysis 
predominantly linked these factors to essential biological 
processes including “mitotic sister chromatid segregation”, 
“negative regulation of mitotic nuclear division”, “mitotic 
spindle assembly checkpoint signaling”, “spindle assembly 
checkpoint signaling”, and “mitotic spindle checkpoint 
signaling” (Figure 7A-7C), and the cellular component 

Figure 3 The CMRL model have a significant discriminatory effect on high- and low-risk patients. (A) PCA of genes linked to copper 
metabolism. (B) PCA visualization of lncRNAs related to copper metabolism. (C) PCA plots of lncRNAs derived from the CMRLs 
signature. PC, principal component; lncRNA, long non-coding RNA; CMRL, copper metabolism-related long non-coding RNA; PCA, 
principal component analysis.
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including “chromosomal region”, “chromosome, centromeric 
region”, “condensed chromosome, centromeric region”, 
“kinetochore”, and “outer kinetochore” (Figure 7A-7C). 
Meanwhile, the enrichment pathways of KEGG analysis 
were mostly associated with “cell cycle” and “oocyte 
meiosis” (Figure 7D-7F).

Predictive analysis of tumor microenvironment (TME) 
and immune cell infiltration

To start with, we examined the risk score and explore the 
relationship between risk scores and the immune cells 
(Figure 8A). It was found that the expression of monocytes 
and macrophages M0 were notably different between the 
high- and low-risk groups after comparing the immune 
infiltration in the two groups by using CIBERSORT  
(Figure 8B). CMRLs may affect the response of HCC 
patients to immunotherapy by regulating the expression 
and function of macrophages. However, further biological 

experiments are needed to support this assumption. 
Additionally, more noteworthy in immune checkpoint 
expression was that all of the 29 immune checkpoint genes 
were significantly unregulated in the high-risk group, 
including LGALS9, TNFSF4, IDO1, BTNL2, TIGIT, 
TNFRSF18, PDCD1, HAVCR2, TNFSF18, CD86, CD70, 
TNFRSF14, TNFRSF4, CD200R1, CD44, NRP1, VTCN1, 
HHLA2, ICOS, TNFRSF25, TNFRSF9, TNFRSF8, CD80, 
CTLA4, LAIR1, TNFSF15, CD276, CD28, and TNFSF9 
(Figure 8C). Further research of the immune function 
showed that only APC_co_stimulation and MHC_class_
I were significantly down-regulated in the low-risk group, 
whereas type_II_IFN_response and cytolytic_activity were 
significantly up-regulated (Figure 8D,8E). Besides, the 
tumor immune dysfunction and exclusion (TIDE) algorithm 
was used to calculate the risk scores of immunotherapy 
for high- and low-risk groups. It revealed that the TIDE 
scores of the low-risk group were significantly higher than 
those of the high-risk group (P<0.05) (Figure 8F), indicating 

Figure 4 Association of CMRLs with clinical and pathological characteristics. (A) The heat map illustrating the relationship between the risk 
score and clinical-pathological characteristics. Differences were observed in the distribution of patients with various clinical characteristics, 
including age (B), gender (C), grade (D), and stage (E), across high- and low-risk groups. *, P<0.05; **, P<0.01. ICI, immune checkpoint 
inhibitor; CMRL, copper metabolism-related long non-coding RNA.
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Figure 5 Prognostic value of the model based on CMRLs risk for OS across various LIHC subgroups: (A) age ≤65 years old; (B) age  
>65 years old; (C) female; (D) male; (E) G1–2; (F) G3–4; (G) stage I–II; (H) stage III–IV. CMRL, copper metabolism-related long non-
coding RNA; LIHC, liver hepatocellular carcinoma; OS, overall survival.
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Figure 6 Independent prognostic assessment of CMRL risk scores and clinical features. (A) Univariate Cox regression analysis of CMRL 
risk scores and various clinical features. (B) Multivariate Cox regression analysis incorporating CMRL risk scores and various clinical 
features. (C) A nomogram constructed to predict 1-, 3-, and 5-year OS in LIHC patients. (D) C-index curves for risk scores and clinical 
features. (E) ROC analysis for multiple factors performed on the test cohort. (F) The calibration lots showed the comparison between 
predicted and actual OS for 1-, 3-, and 5-year survival probabilities. ***, P<0.001. CI, confidence interval; AUC, area under the curve; OS, 
overall survival; CMRL, copper metabolism-related long non-coding RNA; LIHC, liver hepatocellular carcinoma; ROC, receiver operating 
characteristic.

that ICI drug therapy is not helpful for low-risk patients 
because immune evasion increases. Finally, we found 
that the StromalScore was higher in low-risk patients by 
testing the tumor immune microenvironment, showing the 
higher immune levels and immunogenicity of the TME  
(Figure 8G).

Assessment of CMRLs’ drug sensitivity in HCC

The GDSC database was applied for the analysis of 
drug sensitivity. Lower IC50 values indicated higher drug 
sensitivity. Our analysis revealed that the low-risk group 
exhibited higher IC50 values for eight chemotherapy 
drugs:  f luorouraci l ,  a fat inib,  a lpel is ib,  cedranib, 
crizotinib, erlotinib, gefitinib, and ipatasertib (P<0.05,  
Figure 9A-9H), suggesting that patients in the high-risk 
category could potentially obtain therapeutic advantages 
from these drugs.

Relationship between TMN and CMRLs in HCC

The HCC patients were separated into high- and low-
risk groups to facilitate further examination of the somatic 
mutation data. A waterfall chart showed that the most 
commonly mutated genes were TP53, CTNNB1, TTN, 
MUC16, PCLO, ALB, RYR2, APOB, LRP1B, CSMD3, 
XIRP2, ABCA13, OBSCN, FLG, HMCN1. In the high-
risk groups, TP53 (39%) and CTNNB1 (30%) had higher 
mutational rates (Figure 10A), whereas TTN (23%) was 
more highly mutated in the low-risk groups (Figure 10B). 
According to somatic mutation data, we determined the 
TMB and found that the TMB of the low-risk group 
was significantly lower than that of the high-risk group 
(P=0.047) (Figure 10C). In the correlation analysis, there 
was a significant positive correlation between risk ratings 
and the TMB (R=0.18, P=0.00055) (Figure 10D). Finally, 
in the association assessment between TMB and the 
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Figure 7 GO and KEGG pathway enrichment analysis. (A) Circular diagram illustrating the key GO signaling pathways associated with 
biological processes, cellular structures, and molecular activities. (B) Bubble charts representing the top 5 GO-enriched terms. (C) Bar chart 
highlighting the leading five GO-enriched terms. (D) Circular diagram depicting the key KEGG signaling pathways. (E) Bubble charts 
showing the top KEGG-enriched terms. (F) Bar chart illustrating the leading KEGG-enriched terms. GO, Gene Ontology; KEGG, Kyoto 
Encyclopedia of Genes and Genomes; BP, biological process; CC, cell composition; MF, molecular function.
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Figure 9 Differences in IC50 of immunotherapy drugs by risk score: (A) fluorouracil, (B) afatinib, (C) alpelisib, (D) cedranib, (E) crizotinib, (F) 
erlotinib, (G) gefitinib, (H) ipatasertib. IC50, half-maximum inhibitory concentration.

combined risk score of CMRLs on OS, high TMB was 
consistently associated with poor prognosis, indicating a 
significant synergistic effect between TMB and CMRLs  
(Figure 10E,10F).

Discussion

Copper is a vital element that plays a crucial role in 
numerous biological processes within the human body, 
including the regulation of conditions such as anemia, 
metabolic disorders, and cancer (26). Substantial evidence 
has demonstrated that CMRGs are reliable predictors 
of survival outcomes in cancer patients. Additionally, 
treatment strategies targeting copper or proteins involved 
in copper metabolism have already been established  
(23,27-29). However, there is little information about its 
role in liver cancer. Liver cancer is one of the primary 
malignancies worldwide (30). Despite the continuous 
exploration and great progress made in medicine and 
treatment methods, HCC still remains a major concern 
for global health due to its persistently high incidence 
and mortality rates (30,31). In our study, we constructed 
a prognostic model after univariate Cox regression and 
LASSO analyses, to clarify the possible connection between 
copper metabolism and the prognosis of liver cancer and 
broaden the immunotherapy prospects of liver cancer.

In order to further illuminate the role of CMRLs in 

the prognosis and immune landscape of liver cancer, 
we ultimately chose to construct a prognostic risk score 
for liver cancer patients based on the expression levels 
of four independent prognostic CMRLs (PRRT3-AS1, 
AC108752.1, AC092115.3, and AL031985.3). According to 
the risk score, liver cancer patient samples were divided into 
different independent prognostic groups. Existing evidence 
suggests that PRRT3-AS1 and AL031985.3 can serve as the 
prognostic markers for liver cancer. Through autophagy-
related, ferroptosis-related, or immune-related pathways, 
PRRT3-AS1 has been shown to be a predictive factor for 
the prognosis of HCC patients (32-34). In addition, it has 
been confirmed that AL031985.3 not only can participate in 
the progression of liver cancer through CD4+ conventional 
T cells-related and ferroptosis-related pathways, but serve 
as a prognostic marker (35,36). However, the potential 
mechanisms of AC108752.1 and AC092115.3 in the 
progression of liver cancer have not been reported yet. The 
accuracy of the prognostic risk score model constructed for 
liver cancer patients was demonstrated by the ROC curve 
and calibration curve. Ultimately, we created a nomogram 
integrating clinical information and the prognostic risk 
score model and uncovered the relationships between four 
CMRLs and immune infiltration, drug response, and tumor 
mutation, further expanding the predictive ability and 
clinical application of the prognostic risk score model and 
enabling personalized immunotherapy and precise targeted 
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Figure 10 Predictive value of CMRLs risk scores for the TMB and response to immunotherapy. Mutation profile landscape in LIHC 
samples. (A,B) Pivotal mutation markers in the two groups. (C) TMB comparison between high- and low-risk patients. (D) Association 
between TMB and risk scores. (E) Kaplan-Meier survival analysis based on TMB levels and clinical outcomes. (F) Impact of TMB on 
survival probability across different risk levels. TMB, tumor mutation burden; ICI, immune checkpoint inhibitor; H, high; L, low; CMRL, 
copper metabolism-related long non-coding RNA; LIHC, liver hepatocellular carcinoma.

Altered in 173 (88.72%) of 195 samples Altered in 119 (71.69%) of 166 samples

Risk score Low

0.047

Gene cluster

A
B

P=0.03 P<0.001

High

10

5

0

10

5

0

Tu
m

or
 m

ut
at

io
na

l b
ur

de
n

Tu
m

or
 m

ut
at

io
na

l b
ur

de
n

1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.50

0.25

0.00

H-TMB 

L-TMB

H-TMB + high risk 

H-TMB + low risk 

L-TMB + high risk 

L-TMB + low risk

S
ur

vi
va

l p
ro

ba
bi

lit
y

S
ur

vi
va

l p
ro

ba
bi

lit
y

0 1 2 3 4 5 6 7 8 9

0 5 10 15 20 25

0 1 2 3 4 5 6 7 8 910 10
Time, years Time, years

ICl score

A

F

B

C D

E



Translational Cancer Research, Vol 13, No 11 November 2024 5797

© AME Publishing Company.   Transl Cancer Res 2024;13(11):5784-5800 | https://dx.doi.org/10.21037/tcr-24-611

therapy for liver cancer patients.
The TME contains tumor stem cells and molecules 

that promote the occurrence and progression of tumors. 
Therefore, regulating certain specific molecules and 
cells in the TME can help control malignant tumors 
and achieve positive tumor outcomes (37). The immune 
microenvironment, composed of various immune cells, 
is not only an important component of the TME, 
but its predictive value as a biomarker for tumors and 
immune efficacy has been affirmed (38). It was found that 
monocytes and macrophages M0 were different between 
the high- and low-risk groups after comparing the immune 
infiltration in the two groups. Research has found that 
PKM2 can upregulate transcription factors by inducing 
metabolic reprogramming and STAT3 phosphorylation 
in monocytes, leading to monocyte differentiation into 
macrophages and affecting the TME of liver cancer (39). 
Meanwhile, macrophages M0 have also been evaluated 
to be an independent prognostic risk factor for liver  
cancer (40). Macrophages are vital for homeostasis and 
immunity (41). However, tumor-associated macrophages 
(TAMs) hijack proinflammatory pathways for immune 
depression, building an environment that supports cancer 
growth and metastasis at primary and secondary sites (42). 
Increasing of macrophage M0 in liver cancer patients in 
the high-risk HCC patients corroborates the confirmed 
conclusion above. At the same time, we further improved 
our research on immune checkpoint genes. The increased 
expression of the immune checkpoint genes mentioned may 
be closely related to the recurrence and poor prognosis of 
liver cancer. We hypothesize that using the immune risk 
score mentioned above allows physicians to better evaluate 
the prognosis of patients based on their immune checkpoint 
gene expression and adjust their immune treatment plans in 
real-time.

Somatic mutations are one of the common mechanisms 
of HCC pathway dysfunction and can serve as a biomarker 
to predict the response of liver cancer patients to specific 
treatments (43). In the high-risk group, the somatic 
mutation rate of TP53 and CTNNB1 were significantly 
higher than that of the low-risk group (TP53: 39% vs. 
11%, CTNNB1: 30% vs. 20%). TP53 mutation is one 
of the most common mutations in malignant tumors. 
Wang et al. summarized previous research and confirmed 
that tumor suppressor gene TP53 mutations exist in 
approximately 50% of human cancers (44). The protein 
encoded by mutated TP53 is dysfunctional and continuously 
accumulates in the nucleus, which is considered a highly 

specific marker of malignant tumors (45). This could be 
one of the reasons for the poor prognosis of liver cancer, 
but more studies are still required to confirm the potential 
mechanism between the TP53 and HCC. CTNNB1 
mutation within TME is primarily associated with a lower 
proportion of activated immune cells, a higher proportion 
of depleted immune cells, reduced expression of immune-
stimulating and checkpoint molecules, decreased activation 
of immune-related pathways, and enhanced activation 
of pathways linked to tumor growth or drug resistance,  
leading to immunotherapy for liver cancer becoming 
ineffective (46). Thus, the higher frequency of TP53 and 
CTNNB1 mutations in high-risk populations for HCC may 
be related to imbalanced copper metabolism.

Recent studies have highlighted that copper metabolism 
can modulate key signaling pathways involved in tumor 
progression, such as regulating copper homeostasis, 
impacting cancer cell proliferation, apoptosis, and 
metastasis (7-9). In our research, the differential expression 
of CMRLs in tumors compared to normal tissues in HCC 
has been predominantly associated with crucial biological 
processes such as “mitotic sister chromatid segregation”, 
“negative regulation of mitotic nuclear division”, and 
“mitotic spindle checkpoint signaling”. These processes are 
crucial for maintaining genomic stability and proper cell 
division (47,48). Moreover, cellular components associated 
with these processes include “chromosomal region”, 
“chromosome, centromeric region”, and “kinetochore” 
KEGG pathway enrichment analysis highlighted pathways 
such as “cell cycle” and “oocyte meiosis”. These findings 
underscore that CMRLs play a vital role in chromosomal 
segregation and cell cycle regulation. Additionally, their 
involvement in the immune landscape presents new avenues 
for immunotherapy in HCC patients. Future research 
should focus on elucidating the precise mechanisms by 
which CMRLs influence tumor biology.

Although our study has clinical significance in evaluating 
the prognosis of HCC patients and guiding immunotherapy 
regimens, it also has some drawbacks. Firstly, the research 
was only evaluated on the TCGA dataset. We attempted to 
validate with data from other databases including the Gene 
Expression Omnibus and International Cancer Genome 
Consortium, but the limitations of existing technology and 
data biases prevented us from obtaining accurate lncRNA 
data. Secondly, due to limitations in research funding 
and laboratory conditions, we did not conduct further  
in vivo and in vitro studies on the discovered mechanisms 
through biological experiments. Finally, the model we have 
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established still requires extensive clinical trials to confirm 
its predictive efficacy.

Conclusions

In summary, we constructed a highly specific and sensitive 
prediction model based on four CMRLs to predict the OS 
of HCC patients. To expand the application of the model, 
a nomogram was constructed by combining patient clinical 
characteristics and risk scores. Besides, we further explored 
its TME, tumor mutations, and so on. More importantly, 
our research can also predict the efficacy of individualized 
immunotherapy, which is of not only great significance for 
guiding immunotherapy in clinical practice but also paving 
the way for the development of precise immunotherapy for 
liver cancer.
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