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Background: The response of gastric cancer (GC) patients to first-line programmed cell death 1 (PD-1) 
blockade and S-1 plus oxaliplatin (SOX) chemotherapy varies considerably, and the underlying mechanisms 
driving this variability remain elusive. Exosomal microRNAs (miRNAs or miRs) have emerged as potential 
biomarkers for efficacy prediction due to their roles in GC biology and stable expression in serum. In this study, 
we aimed to identify biomarkers to predict patients’ response to anti-PD-1 therapy and further elucidate the 
potential mechanisms by which these exosomal miRNAs modulate the immune response in GC.
Methods: Serum exosomes were extracted from 11 GC patients (f﻿ive in the primary cohort and six in the 
validation cohort) treated with SOX and camrelizumab (a PD-1 inhibitor). High-throughput sequencing 
was performed to identify miRNA expression profiles, after which hierarchical clustering and a differential 
expression analysis were conducted. Functional enrichment analyses of the target genes for the significantly 
upregulated miRNAs were performed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) databases. The validation of the candidate miRNAs was carried out by quantitative 
polymerase chain reaction (qPCR) in an independent cohort.
Results: MiRNA sequencing identified 3,083 miRNAs, of which 74 (42 upregulated and 32 downregulated) 
were differentially expressed between the responders and non-responders. The GO and KEGG pathway 
analyses of the top 20 upregulated miRNAs indicated that the target genes were significantly involved in 
transcription regulation, cytoplasmic processes, and protein binding, and that key pathways included the 
PI3K-AKT, MAPK, RAP1, and RAS signaling pathways. Consistent with the sequencing findings, the qPCR 
validation results showed significant differences in the expression levels of miRNA451a and miRNA142-5p 
between the responders and non-responders.
Conclusions: This study identified specific plasma exosomal miRNAs in GC patients that differ between 
responders and non-responders to PD-1 monoclonal antibody therapy combined with chemotherapy. These 
miRNAs could serve as predictive biomarkers, paving the way for precision medicine and personalized 
therapy in the treatment of GC.
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Introduction

With the fifth highest incidence and mortality rates, gastric 
cancer (GC) is among the most prevalent gastrointestinal 
malignancies worldwide (1). Despite advances in treatment 
modalities, challenges persist in effectively predicting 
therapeutic the response, particularly in the context of 
programmed cell death 1 (PD-1) monoclonal antibody 
therapy. Early stage GC often presents asymptomatically, 
leading to delayed diagnoses and missed opportunities for 
optimal surgical intervention (2). Thus, there is an urgent 
need to identify more effective predictive markers to guide 
treatment decisions and improve patient outcomes.

PD-1 monoclonal antibodies, which target the PD-1 
receptor on T cells, have emerged as promising agents in 
GC therapy. Clinical investigations have shown the efficacy 
of these antibodies in combination with chemotherapy 
in treating GC, which have been shown to result in 
improvements in objective response rates and prolonged 
progression-free survival and overall survival (3-5). In 
current clinical practice, PD-1 inhibitors combined with S-1 
plus oxaliplatin (SOX) chemotherapy has become a standard 

first-line treatment option for patients with advanced gastric 
cancer, particularly for those without other actionable targets 
such as Human epidermal growth factor receptor 2 (HER-2) 
or high programmed cell death ligand 1 (PD-L1) expression. 
In cases lacking targetable mutations or biomarkers, the use of 
PD-1 inhibitors in combination with chemotherapy is preferred 
as the initial therapeutic approach. While PD-L1 positive 
cancers are more likely to respond to immunotherapy plus 
chemotherapy combinations, most patients with PD-L1 positive 
cancers derive only modest benefit. As such, there remains an 
urgent need to identify the factors influencing PD-1 monoclonal 
antibody efficacy and elucidate the underlying mechanisms that 
govern their therapeutic effectiveness.

Exosomal microRNAs (miRNAs or miRs) have garnered 
increasing attention in GC biology, as they appear to play 
pivotal roles in proliferation, metastasis, and drug resistance. 
These miRNAs facilitate intercellular communication 
and modulate key cellular processes, such as autophagy, 
apoptosis, and inflammation, making them promising 
candidates for predicting the treatment response (6,7). 
Extensive mechanism research has shown the significant role 
of exosome-derived RNAs in cancer cell proliferation and 
invasion (8). Previous studies have suggested the potential 
utility of exosomal miRNAs in predicting the therapeutic 
response among GC patients undergoing PD-1 monoclonal 
antibody treatment (9,10). Given their stable expression and 
the ease with which they can be detected, serum exosome 
miRNAs hold promise as biomarkers for predicting the 
treatment response, and could also pave the way for precision 
medicine and personalized therapy. Recently, a necroptosis-
associated miRNA signature was identified that effectively 
predicts patient prognosis and the immune landscape in 
stomach adenocarcinoma, enhancing our understanding 
of the pathogenesis of GC and offering potential clinical 
applications for personalized immunotherapy (11).

In this study, we used bioinformatics methodologies to 
analyze high-throughput sequencing data of plasma exosomal 
miRNAs from patients undergoing PD-1 monoclonal 
antibody therapy combined with chemotherapy. Our 
objective was to delineate specific miRNA expression profiles 
for responders and non-responders and elucidate their 
mechanistic effects on treatment outcomes. By identifying 
plasma exosomal miRNAs predictive of the treatment 
response, we sought to contribute to the development of 
precision medicine approaches in GC therapy. We present 
this article in accordance with the MDAR reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-24-2151/rc).

Highlight box

Key findings
•	 This study identified specific plasma exosomal microRNAs 

(miRNAs or miRs) that differ between responders and non-
responders to programmed cell death 1 (PD-1) blockade combined 
with chemotherapy in gastric cancer (GC) patients. The miRNAs 
miR-451a and miR-142-5p were confirmed to be significantly 
associated with the treatment response.

What is known, and what is new?
•	 Exosomal miRNAs are stable in circulation and implicated in 

various aspects of cancer biology, including GC. Previous research 
has established a role for miRNAs in cancer progression and 
response to treatment. 

•	 This study identifies miR-451a and miR-142-5p as predictive 
biomarkers for the efficacy of immunotherapy in gastric cancer. 
Importantly, these miRNAs may offer a non-invasive method for 
predicting treatment outcomes, potentially enabling personalized 
treatment strategies.

What is the implication, and what should change now?
•	 Our findings suggest the exosomal miRNA profiles could be used 

to establish personalized treatment strategies for GC patients. 
Future clinical approaches should incorporate miRNA testing to 
better stratify the patients likely to benefit from PD-1 blockade 
therapy, thus optimizing therapeutic decision making and 
improving patient outcomes.

https://tcr.amegroups.com/article/view/10.21037/tcr-24-2151/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-24-2151/rc
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Methods

Patient and sampling details

The study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013). The study was approved 
by the Ethics Committee of the Baotou Cancer Hospital 
(No. 2023001) and informed consent was taken from all the 
patients. Blood samples were collected from five advanced 
GC patients at Baotou Cancer Hospital, Inner Mongolia 
from June 2018 to June 2023 for next-generation sequencing. 
To be eligible for inclusion in this study, the patients had to 
meet the following inclusion criteria: (I) be aged ≥18 years; (II) 
have an Eastern Cooperative Oncology Group performance 
status score ≤2; (III) have histologically and/or cytologically 
confirmed gastric adenocarcinoma; and (IV) have undergone 
treatment for de novo advanced GC, including unresectable 
locally advanced (stage III) or metastatic (stage IV) GC. 
All the patients in this study, including six other patients 
who underwent quantitative polymerase chain reaction 
(qPCR) validation, received a first-line treatment regimen of 
camrelizumab (200 mg intravenously on day 1 every 3 weeks) 
combined with SOX (oxaliplatin, 130 mg/m2 intravenously 
on day 1 every 3 weeks; S-1, 40 mg/m2 orally twice daily for 
14 days followed by 7 days off), and without any concurrent 
treatments administered. To analyze the dynamic changes 
induced by the therapeutic intervention, plasma samples were 
prepared post-treatment. Treatment response was evaluated 
after completing two cycles of treatment (each cycle lasting 
21 days). According to the Response Evaluation Criteria in 
Solid Tumors (RECIST 1.1), the patients who achieved a 
partial response or complete response, defined as the best 
response observed following treatment were categorized 
as the responder (R) group (N=3), while the patients with 
progressive disease or stable disease were included as the 
non-responder (NR) group (N=2).

Exosome isolation

The plasma samples were centrifuged at 1,000 rmp for 5 min. 
The exosomes were precipitated from the supernatant using 
Minute™ high-efficiency exosome precipitation reagent  
EI-027 (Invent Biotechnologies, CA, USA) in accordance 
with the manufacturer’s instructions.

Exosome characterization

The purified exosomes underwent verification by electron 
microscopy. Specifically, 5 μL of purified samples was 

dropped on copper-coated grids. After staining with 2% 
uranyl acetate for 1 min, any excessive dye was removed, 
and the grids were dried at room temperature for several 
minutes. The samples were then visualized at 100 kv on a 
transmission electron microscope (TEM).

MiRNA sequencing and data analysis

Trizol reagent (Thermo Fisher Technology Co., Ltd., CA, 
USA) was used to extract the total RNA from samples in 
accordance with the manufacturer’s protocol. The purity 
and fragment integrity of the extracted total RNA from 
the samples were determined using NanoDrop ND-1000 
(Wilmington, DE, USA) and the 2100 Bioanalyzer (Agilent 
Technologies, Santa Clara, CA, USA). Total RNA was 
subjected to miRNA sequencing via single-end sequencing 
on the Illumina Hiseq 2500 platform (Hangzhou Lianchun 
Biotechnology Co., Ltd., Hangzhou, China). Briefly, the 
ligation of 3' and 5' adapters to the total RNA was followed 
by the reverse transcription and amplification of the RNA 
using polymerase chain reaction (PCR), which resulted in 
the enrichment and barcoding of the complementary DNA 
(cDNA). The PCR products from the library preparation 
underwent gel electrophoresis before sequencing.

Raw miRNA sequencing reads were processed using 
ACGT101-miR (version 4.2) to remove unwanted sequences 
and mapped to miRBase 22.1 to identify known and novel 
miRNAs. Subsequently, basic local alignment search tool 
(BLAST) searches and an RNA-fold analysis were conducted 
for further characterization and genomic localization. A 
differential expression analysis was performed using the 
Student’s t-test, and a |log2 (fold change)| ≥1 and a P value 
<0.05 were considered significant. The targets of exosomal 
miRNAs were identified by two online databases: Targetscan 
(http://www.targetscan.org/) and miRanda (http://www.
microrna.gr). A Gene Ontology (GO) analysis and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
analysis were performed using the OmicStudio (https://www.
omicstudio.cn/tool) with an adjusted P value <0.05.

Validation of MiRNA by qPCR

Based on the results of the high-throughput sequencing, 
miR-451a and miR-142-5p were chosen as the indicators 
for further verification in the six other GC patients (N=3 
in both the R and NR groups). The total RNAs in the 
exosomes were collected by applying Trizol reagent. The 
cDNA was then synthesized using the Mir-X miRNA First-

http://www.targetscan.org/
http://www.microrna.gr
http://www.microrna.gr
https://www.omicstudio.cn/tool
https://www.omicstudio.cn/tool
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Strand Synthesis Kit (Baori Medical Technology, Beijing, 
China). The following primer sequences were used: miR-
451a: 5'AAA CCG TTA CCA TTA CTG AGT T 3'; and 
miR-142-5p: 5'CAT AAA GTA GAA AGC ACT ACT 3'. 
U6 small nuclear RNA was used as the internal control. 
The relative levels of the miRNAs were normalized to U6 
and calculated as 2−ΔCt, where ΔCt was calculated as follows: 
ΔCt = (Ct value of candidate miRNA) − (Ct value of U6).

Western blot

Total exosomal protein was extracted by radioimmunoprecipitation 
assay buffer (Biyuntian Biotechnology Co., Ltd., Shanghai, 

China). Sodium dodecyl-sulfate polyacrylamide gel 
electrophoresis was used for the electrophoresis. The 
protein was transferred to polyvinylidene difluoride (PVDF) 
membranes. The PVDF membranes were then blocked and 
incubated with primary antibodies at 4 ℃ overnight. The 
following primary antibodies were used: CD63 (1:1,000, sc-
5275), HSP70 (1:1,000, sc-32239), and TSG101 (1:1,000, 
sc-7964). After incubating with secondary antibodies for 
1 h at room temperature, the PVDF membranes were 
then added to Enhanced Chemiluminescence substrate to 
visualize the protein bands on the gel imaging system Tanon 
4600 (Biotanon, Shanghai, China).

Statistical analysis 

SPSS software (version 20.0; SPSS, Inc., Chicago, IL, USA) 
was used for the data analysis. The data were presented 
as the mean ± standard deviation for the miRNAs. Values 
were obtained from three independent experiments, using 
three biological replicates per condition. The Student’s 
t-test was used for the further two-group analysis of all the 
normally distributed measurement data. A P value <0.05 
was considered statistically significant.

Results

Identification and characterization of plasma exosomes

The plasma exosomes were isolated from samples obtained 
from five advanced GC patients (Table 1). Among these 
patients, three presented with locally advanced disease (stage 
III), characterized by abdominal lymph node metastasis 
and tumor invasion into surrounding tissues, while two 
had stage IV disease with distant metastases (one with 
thoracic metastasis and one with liver metastasis). Of 
these five patients, three were male and two were female, 
with a median age of 74 years (range, 70–75 years). These 
patients were treated with camrelizumab and the SOX 
regimen. To assess the quality and purity of the extracted 
exosomes, these particles were first visualized by TEM, 
which revealed membrane-bound spherical structures of 
approximately 40–150 nm in both the R and NR groups 
(Figure 1A,1B), consistent with the typical characteristics 
of exosomes. The Western blot analysis confirmed that the 
known exosomal markers (CD63, HSP70, and TSG101) 
were highly expressed in our extracted particles (Figure 1C). 
Thus, the populations of the exosomes were highly purified, 
as indicated by the clear detection of the exosomal markers, 

Table 1 Demographic and clinical characteristics of discovery 
cohort patients (n=5)

Characteristics
Responder  

(n=3)
Non-responder 

(n=2)

Age, median [range] 74 [70–75] 74 [73–75]

Gender, n (%)

Female 1 (33.33) 1 (50.00)

Male 2 (66.67) 1 (50.00)

PD-L1 (CPS), n (%)

>10 1 (33.33) 1 (50.00)

1–10 2 (66.67) 0

<1 0 1 (50.00)

Tumor location, n (%)

Esophagogastric junction & 
Fundus of stomach

1 (33.33) 1 (50.00)

Body of stomach 1 (33.33) 0

Antrum 1 (33.33) 0

Lesser curvature of stomach 0 1 (50.00)

MMR/MSI, n (%)

MSS 3 (100.00) 2 (100.00)

Histology, n (%)

Signet-ring cell 0 1 (50.00)

Poorly differentiated 
adenocarcinoma

2 (66.67) 0

Moderately differentiated 
adenocarcinoma

1 (33.33) 1 (50.00)

PD-L1, programmed death-ligand 1; CPS, combined positive 
score; MMR, mismatch repair; MSI, microsatellite instability; 
MSS, microsatellite stability.
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and the characteristic morphology observed by TEM.

Exosomal MiRNA expression profiles

High-throughput  sequenc ing  was  per formed to 
comprehensively screen the candidate miRNAs. The 
exosomal miRNA differential expression analysis included 
samples from three patients in the R group and two patients 
in the NR group, providing a preliminary comparative 
analysis between the treatment responses. In total, 3,083 
miRNAs were identified in the pooled plasma exosome 
samples of both groups. Hierarchical clustering enabled 
differentiation between the R and NR groups based on 
the miRNA expression profiles as shown in a heat map 
(Figure 2A and https://cdn.amegroups.cn/static/public/tcr-
24-2151-1-1.xlsx). Using a threshold of a fold change ≥2 
and a P value <0.05, 74 differentially expressed miRNAs 
were identified as significantly altered, of which 42 were 
upregulated and 32 were downregulated (Figure 2B, https://
cdn.amegroups.cn/static/public/tcr-24-2151-1-2.xlsx). The 
results of a further correlation analysis of the differentially 
expressed miRNAs between the R and NR groups are 
presented in Figure 2C. The top 20 miRNAs with the 
highest |log2 (fold change)| values in each group were also 
identified (Figure 2D and https://cdn.amegroups.cn/static/
public/tcr-24-2151-1-3.xlsx).

Functional enrichment analysis

To examine the potential mechanisms underlying the 
isolated miRNAs, target gene prediction was conducted of 
the top 20 significantly upregulated miRNAs. Subsequently, 

an enrichment analysis of the identified target genes was 
carried out using the GO (http://www.geneontology.org) 
and KEGG (http://www.genome.jp/kegg/) databases.

In the GO analysis, the target microRNAs were divided 
into the following three categories: biological processes 
(BPs), cellular components (CCs), and molecular functions 
(MFs). In this study, a Q value of <0.001 indicated 
significant enrichment, and a higher rich factor indicated 
a greater degree of enrichment. As Figure 3A-3C show, 
the regulation of transcription by RNA polymerase II 
(GO:0006357, rich factor: 0.81), cytoplasm (GO:0005737, 
rich factor: 0.81), and protein binding (GO:0005515, rich 
factor: 0.77) were the most highly enriched terms of the 
BPs, CCs, and MFs, respectively (https://cdn.amegroups.
cn/static/public/tcr-24-2151-1-4.xlsx), which suggests 
that these target genes mostly played a significant role in 
cytoplasmic process, transcription, etc. (Figure 3D).

In the KEGG pathway analysis, a large proportion 
of the target genes were enriched in various pathways, 
such as signal transduction and metabolism (Figure 3E). 
Additionally, pathways such as the PI3K-AKT, MAPK, 
RAP1, and RAS signaling pathways may provide critical 
insights into the mechanisms underlying the patient 
response to PD-1 monoclonal antibody therapy combined 
with chemotherapy (https://cdn.amegroups.cn/static/
public/tcr-24-2151-1-5.xlsx).

Validation of the candidate MiRNAs by qPCR

Based on the high-throughput sequencing results, 
miRNA451a and miRNA142-5p were selected from the 
upregulated miRNAs for further validation by qPCR. The 

Figure 1 Characterization of exosomes based on morphology and antigen expression. (A,B) Exosome morphological detection in the 
responder (A) and non-responder (B) group by TEM. Scale bar: 500 nm. (C) Detection of exosomal markers by Western blot (R, responder 
group; NR, non-responder group). TEM, transmission electron microscope. 
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Figure 3 GO enrichment and KEGG pathway analyses of the differentially expressed top 20 miRNAs between the two groups. (A-C) The 
bar plot illustrates the enriched GO terms for the BP (A), CC (B), and MF categories (C). The x-axis represents −log10 (P value), while 
the y-axis represents individual GO terms. (D,E) Bubble plot illustrating the enriched GO terms (D) or KEGG pathways (E); the size of 
the bubbles represents the number of genes involved, and the color represents the significance level. GO, Gene Ontology; KEGG, Kyoto 
Encyclopedia of Genes and Genomes; BP, biological process; CC, cellular component; MF, molecular function. 
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independent validation cohort comprised six GC patients 
treated with camrelizumab and chemotherapy, including 
three responders (R group) and three non-responders (NR 
group) (Table 2). In this cohort, four patients had locally 
advanced disease (stage III) with abdominal lymph node 
metastasis and invasion into surrounding tissues, while two 
patients had stage IV disease with distant metastases (one 
with liver metastasis and one with lung metastasis). The 
results revealed a significant difference in the expression 
levels of both candidate miRNAs between the two groups 

(Figure 4A,4B, P<0.05). These qPCR validation results were 
consistent with the high-throughput sequencing findings.

Discussion

In this study, we identified the jointly differentially 
expressed miRNAs in the serum exosomes of advanced 
GC patients with distinct therapeutic responses to PD-1 
monoclonal antibody therapy combined with chemotherapy, 
underscoring the utility of miRNAs as potential biomarkers 
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for therapeutic efficacy prediction. Specifically, we found 
that the increased expression of miR-451a and miR-142-5p  
may serve as indicators for identifying patients likely to 
benefit from this treatment regimen.

Immunotherapy holds promise as an effective treatment 
for advanced GC; however, only a minority of patients 
derive significant benefits, while others experience limited 
or adverse responses. Current stratification methods 
based on tumor tissue PD-L1 expression lack accuracy, 
necessitating the exploration of more precise biomarkers. 
MiRNAs, small non-coding RNA molecules, play crucial 
roles in various cellular processes, including transcription, 
cell fate determination, and metabolism. Emerging evidence 
suggests their diagnostic, therapeutic, and predictive 
potential in diverse diseases, including digestive tract 
tumors. Notably, functional plasma exosomal miRNAs 
hold promise as biomarkers for GC, and their differential 
expression has been found to be correlated with therapeutic 
efficacy and prognosis (12,13). One study of the peripheral 
blood miRNA profiles of non-small cell lung cancer 
patients identified potential peripheral blood biomarkers 
for predicting immunotherapy response (14). Researchers 
introduced a five-miRNA risk-score model as a potential 
blood-based adjunctive diagnostic tool, which surpassed 
tissue-based PD-L1 staining in terms of diagnostic accuracy 
and predictive efficacy for patient response to therapy. A 
further enrichment analysis revealed significant interactions 
between PD-L1 pathway genes and miRNA target genes, 
indicating potential regulatory mechanisms. For example, 
MAPK signaling pathways were found to be highly enriched 
in multiple miRNA target genes, which is consistent with 

Table 2 Demographic and clinical characteristics of validation 
cohort patients (n=6)

Characteristics
Responder  

(n=3)
Non-responder 

(n=3)

Age, median [range] 63 [63–78] 67 [66–69]

Gender, n (%)

Female 3 (100.00) 1 (33.33)

Male 0 2 (66.67)

PD-L1 (CPS), n (%)

>10 0 0

1–10 2 (66.67) 1 (33.33)

<1 1 (33.33) 2 (66.67)

Tumor location, n (%)

Fundus of stomach 0 1 (33.33)

Antrum 1 (33.33) 1 (33.33)

Lesser curvature of stomach 1 (33.33) 1 (33.33)

Greater curvature 1 (33.33) 0

MMR/MSI, n (%)

MSS 3 (100.00) 3 (100.00)

Histology differentiation, n (%)

Well 1 (33.33) 1 (33.33)

Moderately 0 2 (66.67)

Poorly 2 (66.67) 0

PD-L1, programmed death-ligand 1; CPS, combined positive 
score; MMR, mismatch repair; MSI, microsatellite instability; 
MSS, microsatellite stability. 
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our findings for GC. This alignment suggests a potential 
functional link between the PD-L1/PD-1 pathway and 
upstream MAPK signaling.

MiRNAs also play a crucial role in regulating the 
immune microenvironment, thereby affecting the efficacy 
of PD-1 monoclonal antibody therapy. Specifically, in 
cancer patients, following the persistent exposure of T cells 
to antigens, specific cluster of differentiation 8+ (CD8+) 
T cells may undergo depletion, resulting in reduced anti-
tumor activity (15). A study has shown that the activation of 
CD8+ T cells stimulates the expression of miR-31 via T-cell 
receptor signaling, leading to the activation of downstream 
nuclear factors in T cells, which subsequently reduces the 
anti-tumor activity of these cells. However, the knockout 
of miR-31 in CD8+ T cells resulted in the increased 
expression of genes related to T cell function and activation, 
which suggests that targeting miR-31 could enhance 
immunotherapy efficacy (16). Moreover, the identification 
of the different miRNAs associated with clinical efficacy not 
only aids in predicting the immunotherapy response, but 
could also lead to the development of combination therapy 
models. For example, one study observed an increase in 
miR-21-3p levels in tumors, which could enhance the 
efficacy of anti-PD-1 immunotherapy by regulating iron-
mediated tumor cell death. The upregulation of miR-21-3p 
promotes interferon-γ-mediated iron death by enhancing 
lipid peroxidation. In preclinical mouse models, gold 
nanoparticles loaded with miR-21-3p improved the efficacy 
of anti-PD-1 antibodies, revealing the therapeutic potential 
of miRNA-based treatments (17). These findings emphasize 
the intricate interplay between miRNAs, immune 
checkpoint pathways, and tumor microenvironment 
dynamics in modulating the immunotherapy response, and 
highlight the potential of miRNA-based therapeutics and 
combination strategies in enhancing anti-tumor immune 
responses and improving the clinical outcomes of cancer 
patients.

In our study, we identified two significantly elevated 
miRNAs (i.e., miR-451a and miR-142-5p), which have 
been previously reported to be associated with GC. This 
observation aligns with previous research indicating that 
miR-451a influences GC cells through the PI3K-AKT-
mTOR pathway. The downregulation of miR-451a in 
primary GC tissues and cell lines resulted in decreased 
cell viability, colony formation, migration, and invasion. 
Notably, the exogenous expression of miR-451a led to the 
reduced expression of its target genes, including mTOR, 
PI3K, and TSC1, indicating its potential tumor-inhibitory 

role in GC (18,19). Similarly, the upregulation of miR-
142-5p was found to inhibit the development of GC by 
targeting lipoprotein receptor associated protein 8 (20). 
The reduced expression of miR-142 in GC tissues and cells 
was inversely correlated with lymph node metastasis and 
a poor prognosis in patients. The stable overexpression of 
miR-142 in vitro inhibited cell proliferation, migration, 
and invasion, underscoring its potential as a therapeutic 
target in GC (21,22). In this study, we found that levels 
of miR-451a and miR-142 were significantly elevated in 
patients who exhibited effective therapeutic responses to 
carrilizumab combined with chemotherapy for advanced 
GC. These findings suggest that these mRNAs could serve 
as prognostic biomarkers for predicting the clinical efficacy 
and outcomes of the PD-1 monoclonal immunotherapy 
treatment strategy in GC.

Further, GO and KEGG enrichment analyses were 
performed to investigate the potential regulatory functions 
and specific molecular mechanisms of these miRNA target 
genes. The KEGG pathway analysis revealed enrichment in 
signal transduction pathways, such as metabolic pathways, 
axonal guidance, and calcium signaling pathways (RAP1, 
RAS, and PI3K-AKT), indicating the multifaceted 
involvement of upregulated miRNAs in various BPs. 
Importantly, we uncovered the regulatory roles of various 
miRNAs in the PI3K-AKT-MTOR pathway, with the 
PTEN protein emerging as a central factor influencing this 
pathway. A recent clinical study has shown the significance 
of PTEN in the solid tumor invasion of T cells and immune 
checkpoint therapy response. The successful restoration 
of PTEN function significantly induced immunogenic 
cell death and reversed the tumor immunosuppressive 
microenvironment, ultimately enhancing anti-tumor 
immunotherapy efficacy (23). Thus, elucidating how 
different miRNAs modulate this pathway and its key 
proteins represents a critical focus for future research.

This study had some limitations. Notably, the inclusion 
of only a single hospital with a small patient cohort 
necessarily makes these findings hypothesis-generating 
only. While our results suggest that miR-451a and miR-
142-5p hold potential as predictive biomarkers for 
immunochemotherapy response in gastric cancer, further 
studies with larger and more diverse patient cohorts are 
needed to validate these preliminary findings. Additionally, 
although bioinformatics analysis indicated that these 
miRNAs may regulate transcription factors and cell cycle-
related proteins, their roles in intercellular signaling and 
immune response modulation require further in vivo and 
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in vitro investigation to better establish their mechanistic 
relevance in gastric cancer. Future research expanding upon 
these exploratory results will be essential to confirm the 
clinical utility of miR-451a and miR-142-5p. Importantly, 
the clinical implications of these findings warrant careful 
consideration. The identification of specific miRNAs as 
potential biomarkers for predicting PD-1 therapy efficacy 
highlights their role in advancing personalized therapy for 
gastric cancer. These miRNAs could serve as predictive 
tools in clinical settings, ultimately improving treatment 
decision-making and outcomes for GC patients.

Conclusions 

In summary, our findings indicate that advanced GC patients 
who may respond to PD-1 monoclonal immunotherapy 
have distinct circulating exosome-derived RNA profiles 
compared to non-responders. Specifically, we identified 
and validated the predictive potential of miR-451a and 
miR-142-5p in GC. A miRNA-based liquid biopsy model 
with promising sensitivity and specificity for predicting 
responders should be developed. Our results suggest a 
potential application of these miRNAs in clinical practice 
to guide treatment strategies, paving the way for precision 
medicine in gastric cancer. Further exploration into these 
biomarkers may lead to robust, non-invasive methods for 
personalizing therapeutic approaches, ultimately improving 
the standard of care in GC.
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