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Background: Structural magnetic resonance imaging (sMRI) can reflect structural abnormalities of 
the brain. Due to its high tissue contrast and spatial resolution, it is considered as an MRI sequence in 
diagnostic tasks related to Alzheimer’s disease (AD). Thus far, most studies based on sMRI have only 
focused on pathological changes in disease-related brain regions in Euclidean space, ignoring the association 
and interaction between brain regions represented in non-Euclidean space. This non-Euclidean spatial 
information can provide valuable information for brain disease research. However, few studies have 
combined Euclidean spatial information in images and graph spatial information in brain networks for 
the early diagnosis of AD. The purpose of this study is to explore how to effectively combine multispatial 
information for enhancing AD diagnostic performance.
Methods: A multispatial information representation model (MSRNet) was constructed for the diagnosis 
of AD using sMRI. Specifically, the MSRNet included a Euclidean representation channel integrating a 
multiscale module and a feature enhancement module, in addition to a graph (non-Euclidean) representation 
channel integrating a node feature aggregation mechanism. This was accomplished through the adoption 
of a multilayer graph convolutional neural network and a node connectivity aggregation mechanism 
with fully connected layers. Each participants’ gray-matter volume map and preconstructed radiomics-
based morphology brain network (radMBN) were used as MSRNet inputs for the learning of multispatial 
information. Other than the multispatial information representation in MSRNet, an interactive mechanism 
was proposed to connect the Euclidean and graph representation channels by five disease-related brain 
regions which were identified based on a classifier operated on with two feature strategies of voxel intensities 
and radiomics features. MSRNet focused on disease-related brain regions while integrating multispatial 
information to effectively enhance disease discrimination.
Results: The MSRNet was validated on four publicly available datasets, achieving accuracies 92.8% and 
90.6% for AD in intra-database and inter-database cross-validation, respectively. The accuracy of MSRNet 
in distinguishing between late mild cognitive impairment (MCI) and early MCI, and between progressive 
MCI and stable MCI, reached 79.8% and 73.4%, respectively. The experiments demonstrated that the 
model’s decision scores exhibited good detection capability for MCI progression. Furthermore, the potential 
of decision scores for improving diagnostic performance was exhibited by combining decision scores with 
other clinical indicators for AD identification.
Conclusions: The MSRNet model could conduct an effective multispatial information representation 
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Introduction

Alzheimer’s disease (AD) is the most common form of 
dementia, affecting millions of people worldwide (1). As 
a neurodegenerative brain disease, its effects begin with 
memory defects and eventually progress to loss of mental 
function as the disease develops (2). However, there is no 
effective treatment to cure AD, and the symptoms can only 
be relieved by drugs or other interventions in the early 
stage (3,4). Therefore, the early diagnosis of AD is crucial 
for the timely improvement of patient care (5,6). Mild 
cognitive impairment (MCI) is a transitional state between 
normal aging and AD. According to the criteria from fifth 
edition of the Diagnostic and Statistical Manual of Mental 
Disorders (DSM-5) (7), patients with MCI who progress 
to AD within the next 3 years can be divided into those 
with progressive MCI (pMCI) or those with stable MCI 
(sMCI). Distinguishing between pMCI and sMCI plays 
an important role in the early diagnosis of AD. However, 
due to the more subtle differences in cognition and brain 
structure in patients with MCI (8), the classification of 
pMCI and sMCI is challenging. Further investigation into 
distinguishing between these types is highly significant for 
the study of disease progression and early intervention.

Genetic testing and neuroimaging examination, among 
other approaches (9), are the common methods for AD 
diagnosis. Among these, structural magnetic resonance 
imaging (sMRI), as a noninvasive brain morphometrics 
method, can capture changes in the brain’s anatomical 
structure and morphological atrophy due to its high 
contrast and high spatial resolution of soft tissues (10,11). 
T1-weighted imaging (T1WI), as the most common 
sequence in sMRI, is relatively easy and cost-effective for 
acquiring compared to other advanced sequences, such as 
functional MRI (fMRI) and diffusion tensor imaging (DTI). 
Therefore, exploring brain disease mechanisms based solely 
on sMRI may be particularly productive.

In recent years, convolutional neural networks (CNNs) 
have become a powerful tool in extracting sMRI features for 

disease diagnosis. One study (12) developed a novel patch-
based deep learning network for AD diagnosis which could 
identify discriminative pathological locations effectively 
from sMRI. Hu et al. (13) proposed a visual geometry group 
transformer (VGG-Transformer) model that could capture 
brain atrophy progression features from longitudinal sMRI 
images which could improve its diagnostic efficacy for 
MCI. Zhu et al. (14) extracted discriminative features from 
sMRI image blocks and diagnosed AD based on combined 
feature representation for the whole brain structure, 
thereby improving diagnostic performance by identifying 
discriminative pathological locations in sMRI scans. 
However, these studies mainly extracted atrophic structural 
features from images in the Euclidean space, ignoring non-
Euclidean spatial features in brain networks.

Morphological brain networks (MBNs) characterize the 
similarity of morphological features derived from sMRI 
between brain regions, and the robustness and biological 
basis of a radiomics-based morphology brain network have 
been demonstrated. One study (15) employed a regional 
radiomics similarity network (R2SN) to identify the 
subtypes of MCI, and the associated stratification provided 
new insights into risk assessment for patients with MCI. Yu 
et al. (16) captured morphological connectivity changes in 
patients with AD, patients with MCI, and normal control 
(NC) using individual regional mean connectivity strength 
(RMCS) from a regional radiomics similarity network. 
Given that radiomics morphology brain networks can 
provide novel insights into the mechanisms of brain disease, 
we speculated that combining Euclidean features of brain 
atrophy with images with non-Euclidean spatial features in 
the brain network could achieve superior performance in 
diagnosing early AD.

The study aimed to verify whether multispatial 
representational information extracted from gray-matter 
volume (GMV) in the Euclidean space and radiomics-based 
morphology brain network (radMBN) in the non-Euclidean 
space could provide improved performance in distinguishing 
patients with AD from NC. For this purpose, we developed 

in the sMRI-based diagnosis of AD. The proposed interaction mechanism in the MSRNet could help the 
model focus on AD-related brain regions, thus further improving the diagnostic ability.
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a multispatial information representation model (MSRNet) 
integrating a Euclidian representation channel and a non-
Euclidian representation channel, and validated it on 3,383 
participants from four publicly available databases. We then 
further investigated whether the decision score generated 
from the MSRNet model could reflect disease progression 
and contribute to diagnostic performance when combined 
with clinical indicators.

Methods

Participants 

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013) and included 
3,383 participants from four databases: the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI; n=1,655) 
database (http://adni.loni.usc.edu), the Australian Imaging 
Biomarkers and Lifestyle (AIBL; n=557) database (http://
aibl.csiro.au), the European DTI Study on Dementia 
(EDSD; n=388) database (http://neugrid4you.eu), and the 
Open Access Series of Imaging Studies (OASIS; n=783) 
database (http://oasis-brains.org). In the ADNI cohort, 
there were significant differences in Mini-Mental State 

Examination (MMSE) scores between the NC, MCI, and 
AD groups [P<0.001, analysis of variance (ANOVA) test]. 
Similarly, a significant difference in the MMSE score was 
also observed between the NC and AD groups in the AIBL, 
EDSD, and OASIS databases (P<0.001, t test). The detailed 
clinical information is shown in Table 1.

Data preprocessing and radMBN construction

Previous studies have shown that gray matter is relevant to 
the diagnosis of AD. Based on the T1WI images of each 
participants, we used the CAT12 toolkit (http://dbm.neuro.
uni-jena.de/cat/) to segment whole-brain GMV maps (17). 
The specific segmentation process is described in Appendix 1.  
All gray-matter images (181×217×181 voxels) were resliced 
to a size of (91×109×91 voxels) with 2 mm3 isotropic voxels. 
In this study, the radMBN (18) was constructed on the 
GMV as follows: (I) we first computed a set of well-defined 
radiomics features (Nradiomics=25) for each region of interest 
(ROI) (Nbrainregion=90) defined by automatic anatomical 
labeling (AAL), including intensity features and texture 
features (19). (II) A minimum–maximum (min-max) 
normalization method was then used to normalize all the 
radiomics features for each brain region to obtain a 90×25 

Table 1 Demographic information of the participants from the ADNI, AIBL, EDSD, and OASIS databases

Cohort Group Age (years) Sex (M/F) MMSE

ADNI (N=1,655) NC (n=603) 73.46±6.16 277/326 29.08±1.10

MCI (n=770) 72.98±7.68 447/323 27.56±1.81

AD (n=282) 74.91±7.69 151/131 23.18±2.13

P value <0.001 <0.001 <0.001

AIBL (N=557) NC (n=478) 73.10±6.10 203/275 28.70±1.24

AD (n=79) 74.16±7.84 33/46 20.41±5.49

P value 0.172 0.908 <0.001

EDSD (N=388) NC (n=230) 68.76±6.14 108/122 28.58±2.97

AD (n=158) 75.54±8.10 66/92 20.89±5.12

P value <0.001 0.072 <0.001

OASIS (N=783) NC (n=594) 67.07±8.70 240/354 29.06±1.54

AD (n=189) 75.04±7.70 95/94 24.47±4.14

P value <0.001 <0.05 <0.001

Significant difference at P<0.001. MMSE and age are expressed as the mean ± standard deviation. ADNI, The Alzheimer’s Disease 
Neuroimaging Initiative; AIBL, Australian Imaging Biomarkers and Lifestyle; EDSD, The European DTI Study on Dementia database; 
OASIS, The Open Access Series of Imaging Studies; AD, Alzheimer’s disease; MCI, mild cognitive impairment; NC, normal control; MMSE, 
Mini-Mental State Examination; DTI, diffusion tensor imaging; M/F, male/female.

http://adni.loni.usc.edu
http://aibl.csiro.au
http://aibl.csiro.au
http://neugrid4you.eu
http://oasis-brains.org
http://dbm.neuro.uni-jena.de/cat/
http://dbm.neuro.uni-jena.de/cat/
https://cdn.amegroups.cn/static/public/QIMS-24-584-Supplementary.pdf
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matrix of nodal features. (III) The brain network matrix 
was constructed by calculating the Pearson correlation 
coefficient (PCC) between the radiomics features between 
each pair of brain regions. The 2,1 norml −  regularization 
was used to remove redundant connections and unify the 
network topology during the construction of the brain 
network matrix, and a 90×90 brain network radMBN was 
finally obtained for each participant. The details of the 
radiomics features and radMBN construction are provided 
in Appendix 2 and Appendix 3. 

The proposed multispatial information representation model

In this section, a multispatial information representation 

model  (MSRNet)  for AD diagnosis  with sMRI is 
described. The MSRNet was constructed with a Euclidean 
representation channel (Figure 1A) integrating a multiscale 
module and a feature enhancement module and with a graph 
(non-Euclidean) representation channel (Figure 1B,1C)  
integrating a node (brain region) feature aggregation 
mechanism. This was accomplished via the adoption of a 
multilayer graph convolutional neural network (multi-GCN) 
(Figure 1B) and a node connectivity aggregation mechanism 
through the use of fully connected layers (Figure 1C). In 
addition to the multispatial information representation 
in MSRNet, an interactive mechanism was developed to 
connect the Euclidean and graph representation channels 
through five disease-related brain regions which were 

Figure 1 Architecture and explanation of the proposed MSRNet. (A) The Euclidean representation channel based on the gray-matter 
volume map. (B) The multi-GCN branch of the graph representation channel based on the radMBN. (C) The fully connected layer 
branch of the graph representation channel. The interactive mechanism connects the Euclidean and graph representation channels in five 
disease-related brain regions, as identified in Figure 2. The blue arrows represent the inputs to the model. DFAR, discriminative features 
by focusing on atrophic regions; MSA, multiscale convolution self-attention module; MSFG, multiscale module that extracts fine-grained 
information from images; Conv, convolution layer; SCCA, A feature representation enhancement module that integrated spatial attention, 
channel attention, and coordinate attention; FC, fully connected layers; radMBN, radiomics-based morphology brain network; ROI, region 
of interest; LN, layer normalization; ReLU, rectified linear unit; Res block, residual block; GCN, graph convolutional neural network; 
MSRNet, multispatial information representation model; multi-GCN, multilayer graph convolutional neural network. 
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identified based on a classifier which operated on voxel 
intensities and radiomics features (Figures 2,3).

The Euclidean representation channel in MSRNet
In the Euclidean representation channel, a deep feature 
encoder was developed for the learning of salient features 
related to cognitive impairment from the GMV maps. As 
shown in Figure 1A, the image feature encoder is mainly 
composed of three parts: a feature extraction module for 
learning discriminative features by focusing on atrophic 
regions (DFAR), a multiscale module that extracts fine-
grained information from images (MSFG), and a feature 

representation enhancement module that integrates spatial 
attention, channel attention, and coordinate attention 
(SCCA) (20) to enhance the feature representation. The 
input of the Euclidean representation channel was the 
GMV map.
The DFAR module for learning discriminative features
The proposed DFAR module in the study is composed 
of four residual blocks and one attention module. Three 
DFAR modules are concatenated to better learn disease-
related discriminative features from the patches. In contrast 
to other operations that divide images into patches in 
advance, we first put the images into patch embedding 

Figure 2 Two brain region identification strategies. Strategy 1: the classifier is fed with voxel intensities of the gray-matter volume map. 
Strategy 2: the classifier is fed with radiomics features. AAL, automatic anatomical labeling. AD, Alzheimer’s disease; NC, normal control.

Figure 3 The classification accuracy visualization of the 90 brain regions between the two strategies of (A) voxel intensities and (B) radiomic 
features. In both strategies, the same five brain regions (blue dots) including the left hippocampus [37], right hippocampus [38], left 
parahippocampal gyrus [39], right parahippocampal gyrus [40], and left amygdala [41] exhibited superior performance compared to the other 
methods regardless the classification accuracy threshold. ROI, region of interest; ACC, accuracy.
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with patch size p , embedding dimension d  via a simple 
convolution with c  input channels and d  output channels, 
kernel size p , and stride p  (21); this process is represented 
as follows:

( ) ( )( )( )0 patch size, ,X F X BN Conv X stride p kernel pσ= = = =
 
[1]

The number of output channels of the residual block 
in the DFAR module is 128, 128, 256, and 256. The 
attention module is presented in the Figure 4. Specifically, 
the attention map obtained by the attention module can 
be formulated by Eq. [2]. With the input of the 1×1×1 
convolutional layer being set as C D W HA R × × ×∈ , the calculated 
attention map ' C D W HA R × × ×∈  can be expressed as follows:

( )( )( )( )'
1 2, ,A Sigmoid f f Aσ ω ω=

 
[2]

where C D W HA R × × ×∈  is the input of the attention module, 
' C D W HA R × × ×∈  is the calculated attention feature map, 

( )Sigmoid •  is the sigmoid function, ( )f •  is the convolution 
function, ( )σ •  is the activation function, and 1ω  and 2ω  are 
the parameters of the two-layer convolution. The output 

C D W HM R × × ×∈  of the attention module can be obtained by 
applying attention to the feature map A  via 'M A A= ⊗ , 
where ⊗  is the element-wise product.
The MSFG module for extracting fine-grained information
To integrate multiscale features, an MSFG module was 
developed, which aggregates a multibranch dilation 
convolution and a multiscale convolution self-attention 
module (MSA). The structure of the MSA is shown in 
Figure 5. Due to the fixed size of convolutional kernels 
and the limited receptive field, traditional convolution 
fails to capture multiscale feature information. Therefore, 
we replaced traditional spatial convolutions with dilated 
convolutions. By setting different dilation rates to expand 
the convolution kernel’s receptive field, the MSA module 
can integrate multiscale contextual information into the 
feature map. Subsequently, the multiscale feature maps 
produced by the MSA module across multiple branches are 
consolidated and merged, followed by feature aggregation 
through the spatial convolution layer, and the maps are then 
inputted to the subsequent feature enhancement module. 
This process is represented by Eqs. [3-5]:

( )( ), 3 , ,i i iQ K Flatten Conv d x s r=  [3]

( )( )3 ,V Flatten Conv d x s=  [4]

( )
T

1
, , n i i

i i i

Q K
Attention Q K V softmax V

d=

 
=  

 
∑

 
[5]

where x  is the input feature map of MSA; ( )3Conv d •  is 
the 3D convolution operator; ( )softmax •  is the softmax 
function; the step size s  of the convolution is set to 1; ir  
is the dilated rate, which is set to be 1, 2, or 3, respectively; 
n  is the number of query tokens or key tokens obtained 
at different scales and is set to 3; and d  is the sequence 
dimension of the input feature map after flattening, which 
is used to scale the dot product to prevent the size of the 
dot product from having a large impact on the attention 
distribution at higher dimensions.
The SCCA module for feature representation enhancement
Directly integrating multiscale features can introduce 
irrelevant background information, thereby reducing 
feature representation capability and affecting the accuracy 
of classification results. Therefore, it is crucial to enhance or 
suppress the output multiscale feature map regionally. Thus, 
a feature enhancement module SCCA integrating channel 
attention, spatial attention, and coordinate attention was 

ReLU

Conv 1×1×1 Conv 1×1×1

Sigmoid

Element-wise product

A’∈RC×D×W×H

A∈RC×D×W×H

M∈RC×D×W×H

Figure 4 Attention module composition. Conv, convolution layer; 
ReLU, rectified linear unit.

Figure 5 The detailed composition of the multiscale convolution 
self-attention module (MSA). Conv, convolution layer; ReLU, 
rectified linear unit; LN, layer normalization. 
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included to improve the expression ability of features and 
suppress unnecessary information. The SCCA module is 
displayed in Figure 6.

Channel attention is adopted via the learning of weights 
between channel feature maps, with adjustments adaptively 
being made for the importance among different channels. 
As shown in Figure 6, C D W HX R × × ×∈  is the input feature map 
of the channel attention in the module, and its output is CX .  
This process is represented by Equation:

( )( ) ( )( )( )CX Sigmoid MLP AMP X MLP AAP X X= + ⊗    [6]

where ( )AMP •  and ( )AAP •  are the AdaptiveMaxPool3d 
and AdaptiveAvgPool3d layers, respectively. 

The spatial attention mechanism effectively captures 
important information from different locations in the image. 
In Figure 6, CX  is the channel attention output serving as 
the input to the spatial attention, and the output of the 
spatial attention is SX . This process can be represented by 
Equation [7]: 

( ) ( )( )( )( )S C C,X Sigmoid Conv Concat AP X MP X X= ⊗     [7]

where, ( )AP •  and ( )MP •  are the average pooling and 
maximum (max) pooling, respectively; ( )Concat •  is 
the concatenation function; and ( )Conv •  is the 7×7×7 
convolutional layer.

Coordinate attention can enhance or suppress feature 
representations at specific positions based on pixels. 
The application of adaptive average pooling along three 
directions to the output CX  of channel attention and the 

passing of the result through convolution and normalization 
operations can be represented as follows:

( )( )( )( )h w d
1 , ,f ReLU BN F concat z z z=  [8]

where, ( )1F •  is the convolution function, ( )BN •  is 

the batch normalization layer, ( )1 1 D W H
C

rf R × × × + +∈  is the 

intermediate feature map encoding the spatial information, 
and r  is the reduction ratio for controlling the size of the 
channel dimension. Along the spatial dimension, f  is then 
split into three independent tensors, df , wf , and hf , and 
transformed into tensors of the same channel as CX  with 
three independent 1 × 1 × 1 convolutions, DF , WF , HF , 
yielding the following:

( )( ) ( )( ) ( )( )d w h
D W H D W H, , , ,Att Att Att F f F f F fσ σ σ=    [9]

where ( )σ •  is the sigmoid activation function, and the 
outputs DAtt , WAtt , and HAtt  are the attention weight maps 
as follow:

out D W Hf X Att Att Att= × × ×  [10]

where outf  is the output with coordinate attention applied 
to X , and the output outX  of SCCA is obtained by 
concatenating outf  and SX . The image feature encoder 
ultimately maps the learned Euclidean space features into a 

one-dimensional feature vector EuclideanV .

The graph (non-Euclidean) representation channel in 
MSRNet
The graph representation channel was implemented by 

Figure 6 The detailed composition of the SCCA. SCCA, A feature representation enhancement module that integrated spatial attention, 
channel attention, and coordinate attention; MLP, multilayer perceptron; BN, batch normalization; ReLU, rectified linear unit.
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integrating a node feature aggregation mechanism by 
adopting a multi-GCN and a node connectivity aggregation 
mechanism that uses fully connected layers. The input 
of the graph representation channel is the brain network 
radMBN and includes a radiomics feature matrix for all 
brain regions and a connectivity matrix between brain 
regions. Each node represents a brain region with radiomics 
feature dimension n=25. The connectivity indicates the 
edges in the brain connectivity map but weights with a 
strength value between brain regions that play a crucial role 
in interregional communication within the brain.

Regarding the node feature aggregation, the multi-
GCN was implemented with three different GCN settings. 
The first channel employs one GCN layer, mapping the 
node feature dimension from 25 to 64. The second channel 
employs two GCN layers, mapping the node feature 
dimension from 25 through 50 to 64. The third channel 
also employs two GCN layers but maps the node feature 
dimension from 25 through 12 to 64. Each GCN layer is 
followed by a layer normalization layer and a leaky rectified 
linear unit (Leaky_ReLU) layer. 

Regarding the node connectivity aggregation, a pooling 
layer is first applied to filter out nodes with relatively small 
degrees and the associated connections, and then the upper 
triangular elements of the pooled adjacency matrix are 
flattened into a one-dimensional vector and sent to a fully 
connected layer. The fully connected layer maps the vector 
into a relatively low-dimensional representation. 

The interactive mechanism between Euclidean and 
graph representations in MSRNet
In addition to the multispatial information representation 
in MSRNet, an interactive mechanism was also developed 
to further enhance the feature representation via the 
connection of the Euclidean and graph representation 
branches. The interactive mechanism was established based 
on five disease-related brain regions which were identified 
based on a classifier that operates on two feature strategies: 
voxel intensities and radiomic features (Figures 2,3). In 
the following section, the method for identifying the five 
disease-related brain regions is described, which is followed 
by and explanation of the mechanism of interaction between 
the Euclidean and graph representations.
The identification of the five disease-related brain regions
In this  study, the brain region identif ication was 
implemented based on an AD vs. NC classifier which 
was fed with each brain region for classification accuracy 
comparisons. Specifically, a total of 90 brain regions were 

fed into the AD vs. NC classifier based on the AAL atlas, 
and two different feature strategies were adopted for each 
brain region in the study. The first strategy is based on the 
voxel intensities of the GMV map patch, with each patch 
corresponding to a specific brain region, while the second 
strategy involves calculating the radiomics features for each 
brain region. 

In strategy 1, to reduce the influence of spatial location 
and redundant background knowledge, we translated the 
segmented brain regions to the middle of the image and 
cutoff the surrounding redundant voxels. Given the input 
image, 1 D W HX R × × ×∈ , strategy 1 could be formulated as 
follows,

( )( ) , 1, 2, , Ni iR Crop Translate X Mask i= = ⊙  [11]

( ) , 1, 2, , Ni im Classify R i= = 
 [12]

where ⊙  i s  the Hadamard product ,  iMsak  i s  the 
binarization mask of the thi  brain region obtained from 
the AAL atlas, 1 P P P

iR R × × ×∈  has P=64, N  is the number 
of brain regions. As shown in Figure 2, ( )Classify •  is a 
simple classifier consisting of five depth-wise separable 
convolutional layers, one AdaptiveAvgPool3d layer, and 
one fully connected layer. im  were considered to be the 
classification accuracy value for each brain region.

In strategy 2, the radiomic features of each brain region 
were fed into the classifier which was established by a linear 
layer.

It should be noted that each feature strategy generated 
90 classification accuracy values. The classification accuracy 
values were then ranked to identify the most relevant brain 
regions. Figure 3 displays the classification accuracy of the 
90 brain regions for the two strategies of voxel intensities 
and radiomic features. In both strategies, the same five 
brain regions (number 37, 38, 39, 40, and 41, indicated 
with blue dots in Figure 3) of the left hippocampus, 
right hippocampus, left parahippocampal gyrus, right 
parahippocampal gyrus, and left amygdala exhibited 
outstanding performance compared to other regions 
regardless of the classification accuracy threshold.
The interactive mechanism between the Euclidean and 
graph representations
In our study, the Euclidean representation channel and the 
graph representation channel were not separate but interactive. 
The Euclidean representation channel (Figure 1A) was fed 
with the GMV map of the T1WI image and generated a 
feature vector EuclideanV  (Figure 1A). The graph representation 
channel was fed with the brain network radMBN and 
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generated a feature vector graphV  (Figure 1B). The brain 
network could be represented by a radiomic feature matrix 

radiomicsM  for all nodes and a connectivity matrix between  
all nodes.

The interactive mechanism was based on the five brain 
regions identified above. Specifically, the feature vector 

EuclideanV  (Figure 1A) from the image encoder branch was 
used to enhance the node features of the brain network 
radMBN that fed into the GCN branch. Given each node 
represents a brain region, the feature vector EuclideanV  was 
only used to enhance the features of the five identified 
brain regions by the following additional operation 

( ) ( )radiomics radiomics Euclidean_ _M node i M node i V= + , where _node i  is from 
the five brain regions.

In addition to the interactive mechanism described 
above, the feature vector graphV  (Figure 1B), which was the 
output of the GCN branch after graph convolution, was 
constructed based solely on the node features from the five 
identified brain regions, not from all the brain regions.

Experimental settings

Comparison of diagnostic performance of MSRNet 
with that of other methods
We validated the superiority of the proposed MSRNet 
through a series of intra- and inter-database experiments on 
AD vs. NC classification, late MCI (LMCI) vs. early MCI 
(EMCI) classification, and pMCI vs. sMCI classification. 
The methods under comparison included attention-based 
graph neural network (AGNN) (22), graph attention 
network (GAT) (23), GraphSAGE (24), hypergraph neural 
network (HGNN) (25), and Graph U-Net (26) with 
radMBN as input and ConvMixer (21), 3D visual geometry 
group 16 (3D VGG-16) (27), and 3D attention network 
(3DAN) (28) with GMV map as input. In the comparison 
experiments, 10-fold cross-validation was adopted.

Analysis of progress trajectories of decision scores and 
clinical indicators
To validate the sensitivity of the proposed MSRNet to MCI 
progression, a longitudinal trajectory analyses of MMSE, 
Alzheimer’s Disease Assessment Scale 13 (ADAS13), and the 
decision score which was generated by the MSRNet were 
performed on individuals with sMCI or pMCI from the 
ADNI cohort. For participants with sMCI, visiting status 
remained stable over the time points, so the baseline was set 
as the origin of time to progression. Specifically, the sMCI 
and pMCI data were fed separately into the AD and NC 

classifiers trained in the ADNI cohort, and a decision score 
was generated for each participant. The decision scores, 
MMSE, and ADAS13 were normalized using the max-
min normalization method. The “regplot” function of the 
Seaborn library (29) was used to visualize the progression 
trajectory. A linear regression model was used to fit the data. 
The reliability of the results was ensured by adding a 95% 
confidence interval (CI, an explanation of the confidence 
intervals is available in Appendix 4).

Contribution of the decision score to clinical indicators 
in diagnostic performance
To validate the contribution of decision scores to clinical 
indicators in the diagnosis of AD, four clinical indicators 
were considered in this experiment including age, 
apolipoprotein E4 (APOE4), ADAS13, and MMSE. Due to 
the limited availability of clinical indicators, 269 individuals 
with AD and 411 NC were selected in the ADNI cohort. 
To minimize performance bias due to imbalanced category 
data, instances were synthesized using the synthetic 
minority oversampling technique (SMOTE) (30) algorithm, 
which balanced the amount of data across categories in a 1:1 
ratio. 

For the AD vs. NC classification, we enumerated all the 
clinical indicator combinations and added the decision score 
separately as input. The area under the curve (AUC) values 
were obtained to evaluate the classification performance 
based on six machine learning methods including Bayesian 
network, support vector machine, logistic regression, 
k-nearest neighbor, decision tree, and random forest. A  
10-fold cross-validation was adopted in experiments.

Ablation study
An ablation study was also implemented to validate the 
superiority of the multispatial information representation 
over single-Euclidean or single-graph representation and 
to validate the effectiveness of the interaction mechanism 
between the Euclidean and graph representation channels 
in improving the AD vs. NC classification.

Experimental hyperparameter settings
All experiments were performed with Python 3.9 (Python 
Software Foundation, Wilmington, DE, USA) and Pytorch 
1.7.1. The specific parameters were as follows: the dropout 
rate was 0.3, the batch size was set to 2 to fit the graphics 
processing unit (GPU) memory, the initial learning rate 
was set to 5×10-6, and the number of epochs was set to 300. 
To prevent overfitting during training, we employed early 

https://cdn.amegroups.cn/static/public/QIMS-24-584-Supplementary.pdf
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stopping with a patience value of 10, which terminated 
training if the validation performance did not improve for 
10 consecutive epochs.

Evaluation metrics
In order to validate the performance of the proposed 

MSRNet, multiple evaluation metrics, based on a 10-fold 
cross-validation strategy, were adopted for evaluation, 
including accuracy (ACC), sensitivity (SEN), specificity 
(SPE), and AUC. 

TP TNAccuracy
TP TN FP FN

+
=

+ + +  [13]
TPSensitivity

TP FN
=

+  [14]
TNSpecificity

TN FP
=

+  [15]

where TP, TN, FP, and FN are true positive, true negative, 
false positive, and false negative, respectively.

Results

Comparison of diagnostic performance 

Classification of AD vs. NC
We compared the classification performance of the 
proposed  MSRNet  wi th  other  ex i s t ing  methods 
for AD  vs. NC within the ADNI database [Table 2  
and Figure 7A; receiver operating characteristic (ROC) 
curve plots of all methods under comparison are provided 
in Appendix 5 and Figure S1A]. When comparing single 
spatial information methods, we exclusively used either 
radMBN or GMV as the input. Table 2 summarizes the 
experimental results for the classification of AD vs. NC. 
The results of the image-based methods (21,27,28) were 
better than those of the brain network-based methods 

Table 2 Comparison of AD and NC classification performance 
between the proposed MSRNet and other methods in the ADNI 
cohort

Method ACC (%) SEN (%) SPE (%) AUC (%)

AGNN 88.1 75.0 94.1 91.5

GAT 86.5 71.1 93.7 92.4

GraphSAGE 88.9 78.3 93.8 94.1

HGNN 74.9 34.2 94.0 79.3

Graph U-Net 73.8 38.5 90.3 77.2

ConvMixer 86.5 76.6 91.1 92.3

3D VGG-16 90.6 81.8 94.7 95.1

3DAN 88.9 79.1 93.1 94.4

Proposed MSRNet 92.8 88.2 95.0 95.6

AD, Alzheimer’s disease; NC, normal control; ACC, accuracy; 
SEN, sensitivity; SPE, specificity; AUC, area under the curve; 
MSRNet, multispatial information representation model; ADNI, 
Alzheimer’s Disease Neuroimaging Initiative database; AGNN, 
attention-based graph neural network; GAT, graph attention 
network; HGNN, hypergraph neural network; 3D VGG-16, 3D 
visual geometry group 16; 3DAN, 3D attention network.

Figure 7 AUC histograms based on the comparison methods for the three classification tasks. (A) Classification performance of different 
methods for AD and NC in the ADNI cohort. (B) Classification performance of different methods for LMCI and EMCI in the ADNI 
cohort. (C) In the ADNI cohort, pMCI and sMCI were classified based on the AD vs. NC classifier. AUC, area under the curve; AGNN, 
attention-based graph neural network; GAT, graph attention network; AD, Alzheimer’s disease; NC, normal control; pMCI, progressive 
mild cognitive impairment; sMCI, stable mild cognitive impairment; LMCI, late mild cognitive impairment; EMCI, early mild cognitive 
impairment; ADNI, Alzheimer’s Disease Neuroimaging Initiative.
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Table 3 Performance comparison of the proposed MSRNet with 
other models in AD and NC classification based on inter-database 
cross-validation with the ADNI, AIBL, EDSD, and OASIS databases

Method ACC (%) SEN (%) SPE (%) AUC (%)

AGNN 85.2 65.6 92.8 89.7

GAT 84.0 61.9 92.6 88.5

GraphSAGE 87.3 72.9 92.9 91.7

HGNN 77.5 35.8 93.9 72.7

Graph U-Net 77.7 29.5 96.5 71.1

ConvMixer 86.2 78.1 88.8 91.1

3D VGG-16 88.8 79.2 91.4 94.6

3DAN 88.3 73.1 94.2 91.7

Proposed MSRNet 90.6 82.0 93.6 93.9

AD, Alzheimer’s disease; NC, normal control; ACC, accuracy; 
SEN, sensitivity; SPE, specificity; AUC, area under the curve; 
MSRNet, multispatial information representation model; ADNI, 
Alzheimer’s Disease Neuroimaging Initiative database; AIBL, 
Australian Imaging Biomarkers and Lifestyle; EDSD, European 
DTI Study on Dementia database; OASIS, Open Access Series 
of Imaging Studies; DTI, diffusion tensor imaging; AGNN, 
attention-based graph neural network; GAT, graph attention 
network; HGNN, hypergraph neural network; 3D VGG-16, 3D 
visual geometry group 16; 3DAN, 3D attention network.

Table 4  Comparison of LMCI and EMCI classif ication 
performance in the ADNI cohort between the proposed MSRNet 
and other methods

Method ACC (%) SEN (%) SPE (%) AUC (%)

AGNN 67.2 84.5 42.1 75.2

GAT 71.0 81.6 55.1 76.7

GraphSAGE 68.9 75.1 59.8 73.1

HGNN 65.9 85.7 36.9 73.0

Graph U-Net 58.7 57.3 60.4 70.3

ConvMixer 70.7 81.2 55.4 79.9

3D VGG-16 77.2 82.6 69.2 85.7

3DAN 77.3 75.9 79.4 86.0

Proposed MSRNet 79.8 80.4 78.8 87.1

LMCI, late mild cognitive impairment; EMCI, early mild cognitive 
impairment; ACC, accuracy; SEN, sensitivity; SPE, specificity; 
AUC, area under the curve; MSRNet, multispatial information 
representation model; ADNI, Alzheimer’s Disease Neuroimaging 
Initiative database; AGNN, attention-based graph neural 
network; GAT, graph attention network; HGNN, hypergraph 
neural network; 3D VGG-16, 3D visual geometry group 16; 
3DAN, 3D attention network.

(22-26) due to the detectable atrophy in the lesion area. 
Our method integrated morphological variation features 
extracted from images with non-Euclidean spatial features 
from brain networks, thereby enhancing the performance 
(ACC =92.8%, SEN =88.2%, SPE =95.0%, and AUC 
=0.956).

We further verified the superiority of our method in the 
ADNI, AIBL, EDSD, and OASIS databases (Table 3). Table 3  
lists the inter-database cross-validation results for the AD 
diagnosis task of our method compared with those of other 
methods. The average performance of our method on the 
four databases was as follows: ACC =90.6%, SEN =82.0%, 
SPE =93.6%, and AUC =0.939. 

Classification of LMCI vs. EMCI
As a prodromal symptom of AD, MCI involves a less-
apparent lesion, making the differentiation between LMCI 
and EMCI challenging. We selected 356 patients with LMCI 
and 240 patients with EMCI from the ADNI cohort for 
experiments. As shown in Table 4, the proposed MSRNet 
achieved and ACC of 79.8% and AUC of 0.871, which were 
better than those of the other methods (Table 4 and Figure 
7B; the ROC plots of all methods are provided in Appendix 
5 and Figure S1B). Specifically, the ACC of the proposed 
MSRNet was 8.8% higher than that of the methods using 
only radMBN as the input (22-26) and 2.5% higher than that 
of the methods of using only GMV as the input (21,27,28).

Classification of pMCI vs. sMCI 
According to the DSM-5 criteria (7), patients with MCI 
can be classified as progressive MCI if they progress 
to AD within three years and as stable MCI if they do 
not. Discriminating between pMCI and sMCI is also 
challenging due to the short time span that distinguishes 
them. We selected 226 patients with pMCI and 538 patients 
with sMCI from the ADNI cohort. By using the AD vs. NC 
classifier (not trained with MCI participants) in the ADNI 
cohort to distinguish between pMCI and sMCI, we found 
that the combined representation of Euclidean and non-
Euclidean spatial information achieved an ACC of 73.4% 
(SEN =63.7%, SPE =77.5%, AUC =0.786), which was 
superior to that of other methods (Table 5, Figure 7C; the 
ROC plots of the methods under comparison are provided 
in Appendix 5 and Figure S1C). As shown in Table 5, 
although our method could outperform the other methods, 
the improvement was relatively modest when compared with 
that for the AD vs. NC classification (Tables 2,3) and that for 
the LMCI vs. EMCI classification (Table 4). The reason for 
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Table 5 Comparison of pMCI and sMCI classification performance in 
the ADNI cohort between the proposed MSRNet and other methods

Method ACC (%) SEN (%) SPE (%) AUC (%)

AGNN 72.0 45.7 83.1 74.5

GAT 70.2 46.1 80.3 73.8

GraphSAGE 72.8 57.5 79.3 76.3

HGNN 70.4 22.2 90.6 66.0

Graph U-Net 70.5 23.0 90.2 65.3

ConvMixer 69.3 50.7 77.1 73.7

3D VGG-16 72.1 63.1 75.8 78.4

3DAN 72.5 62.4 76.7 77.6

Proposed MSRNet 73.4 63.7 77.5 78.6

pMCI, progressive mild cognitive impairment; sMCI, stable mild 
cognitive impairment; ACC, accuracy; SEN, sensitivity; SPE, 
specificity; AUC, area under the curve; MSRNet, multispatial 
information representation model; ADNI, Alzheimer’s Disease 
Neuroimaging Initiative database; AGNN, attention-based 
graph neural network; GAT, graph attention network; HGNN, 
hypergraph neural network; 3D VGG-16, 3D visual geometry 
group 16; 3DAN, 3D attention network.

Figure 8 Longitudinal trajectory analysis of MCI progression in the ADNI cohort. (A-C) pMCI progression trajectories of the decision score, 
MMSE, and ADAS13. (D-F) sMCI progression trajectories of the decision scores, MMSE, and ADAS13. (A-C) In the pMCI group, the decreased 
confidence of the decision score and MMSE or the increased confidence ADAS13 in pMCI was equivalent to the increase in confidence of AD 
prediction. (D-F) In the sMCI group, the decision scores, MMSE, and ADAS13 remained relatively stable. The “0” in (A-C) represents the time 
point of AD onset, “−1”, “−2”, “−3”, “1”, “2”, and “3” represent data from participants 12, 24, and 36 months before and after onset. The “0”, 
“1”, “2”, “3”, and “4” in (D-F) represent sMCI baseline data and participant data at 12, 24, 36, and 48 months after diagnosis of sMCI. ADAS13, 
Alzheimer’s Disease Assessment Scale 13; MMSE, Mini-Mental State Examination; MCI, mild cognitive impairment; AD, Alzheimer’s disease; 
ADNI, Alzheimer’s Disease Neuroimaging Initiative; pMCI, progressive mild cognitive impairment; sMCI, stable mild cognitive impairment.
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this is that pMCI and sMCI involve more subtle changes 
in brain structure, rendering it difficult to capture their  
differences.

Progression trajectories of the groups in relation to decision 
score, MMSE, and ADAS13

The decision score is the probability and subsequent category 
that the model assigns to input samples in a classification 
task. A sigmoid function is used in the model to convert these 
scores into a probability distribution (31) and ultimately 
select the category with the highest score as the prediction. 
Decision scores have been used to demonstrate the clinical 
biology underlying deep learning models (15,28).

In Figure 8A, the data of patients pMCI who had 
recently progressed to AD are presented as the baseline 
data (represented as “0” in Figure 8A), and the data from 
participants at 12, 24, and 36 months before and after 
conversion are also provided. Meanwhile, the corresponding 
indices of MMSE and ADAS13 are shown in Figure 8B,8C. 
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The baseline data of sMCI (represented as “0” in  
Figure 8D) and the data of participants at 12, 24, 36, and  
48 months after the diagnosis of sMCI are presented in 
Figure 8D. The corresponding indices of MMSE and 
ADAS13 are provided in Figure 8E,8F.

Clinically, as AD progresses, the patient’s cognitive ability 
(as indicated by measures such as MMSE score) tends to 
decline (32) while the ADAS13 score tends to increase (33). 
Based on the data from participants at 12, 24, and 36 months 
before and after conversion, the trend of declining decision 
scores aligns with the progression of patients from pMCI 
to AD. This indicates that changes in decision scores can 
reflect changes in the patients’ condition while being highly 
consistent with the trajectory of progression of the MMSE 
and ADAS13. As shown in Figure 8A, since the progression 
trajectory of the decision scores generated by the MSRNet 
for the pMCI group decreased gradually over time (which 
was highly consistent with the progression trajectory of the 
MMSE), the decreased confidence of model prediction in 
pMCI was equivalent to the increased confidence of model 
prediction for AD. 

Overall, in the pMCI group, the decreased confidence in 
the decision score and MMSE or the increased confidence 
in ADAS13 for pMCI was equivalent to the increase in 
confidence for AD prediction (Figure 8A-8C). For the sMCI 
group, the decision scores, MMSE, and ADAS13 remained 
relatively stable (Figure 8D-8F).

Contribution of decision scores to clinical biomarkers

To further verify whether the decision score obtained by 
the proposed MSRNet can be used as a general metric to 
enhance the potential performance in AD diagnosis, we 
combined four clinical measures, AGE, APOE4, ADAS13, 
and MMSE, with the decision score and evaluated 
their combined ability diagnose AD. The experiments 
were implemented using six machine learning methods 
including Bayesian network, support vector machine, 
logistic regression, k-nearest neighbor, decision tree, and 
random forest. The histogram plots in Figure 9 indicate 
that the decision score could provide additional value to the 
clinical measures of AGE, APOE4, ADAS13, and MMSE 
in diagnosing AD. The improvement in performance was 
more pronounced when combining fewer clinical measures. 
Studies have shown that APOE4 is not only an important 
mediator of AD susceptibility but may also confer specific 
phenotypic heterogeneity in AD manifestations (34), 
making it a promising therapeutic target for AD (35). Based 

on the results in Figure 9, we observed similar performance 
when the other features remain unchanged but AOPE4 is 
replaced by the decision score. These results suggest that 
the decision score can enhance the diagnosis of AD and may 
be an easily accessible and universal indicator.

Ablation study

We conducted ablation studies on the AD  vs.  NC 
classification task to evaluate the effectiveness of the 
proposed multispatial representation strategy. As shown in 
Table 6, the feature extractor designed to extract Euclidean 
spatial information from GMV in the MSRNet model 
achieved promising results on the AD classification 
task (ACC =91.8%, SEN =87.5%, SPE =93.8%, and 
AUC =0.955). Compared with other methods that only 
used GMV as input (Tables 2,6), the proposed feature 
extractor was highly competitive, thereby confirmed the 
efficacy of the proposed module. The non-Euclidean 
spatial information extracted from radMBN using multi-
GCN achieved an ACC of 89.1%, an SEN of 76.5%, an 
SPE of 95.0%, and an AUC of 0.949 in the AD vs. NC 
classification task, outperforming other GCN methods 
(Tables 2,6). In addition, the classification performance 
was improved when further connectivity information 
between brain regions was added. This suggests that 
alterations in the strength of connectivity between brain 
regions are nonnegligible pathological information 
for disease diagnosis. Subsequently, we introduced the 
interaction mechanism into the MSRNet model, resulting 
in performance improvements of 0.6%, 1.7%, and 0.003 
for ACC, SEN, and AUC, respectively, as compared to 
the radMBN + GMV + topology strategy without the 
interaction mechanism (Table 6). This suggests that the 
interaction mechanism could help the MSRNet integrate 
multispatial information while focusing on important brain 
regions, thus improving model performance.

We evaluated the impact of the number of DFAR 
modules in the Euclidean representation channel and the 
graph pooling rate in the fully connected channel on model 
performance. The number of DFAR usage modules was 
determined by performing the AD vs. NC classification 
task and using only the GMV map as input. The best 
performance was achieved when the number of DFAR 
modules was 3, as shown in Figure 10A. Moreover, for the 
AD vs. NC classification task, the best results were achieved 
with a pooling rate of 0.4, with the pooling rate being 
adjusted from 0.1 to 0.7 (Figure 10B).
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Figure 9 Histogram of the impact of decision scores on the diagnostic performance of clinical indicators. The feature vectors consisting of 
AGE, ADAS13, MMSE, and APOE4 are based on the performance histogram of six machine learning models for AD diagnosis. Orange 
represents the decision score not considered, and the blue represents the decision score considered. AUC, area under the curve; SVM, support 
vector machine; SVM, support vector machine; AD, Alzheimer’s disease; ADAS13, Alzheimer’s Disease Assessment Scale 13; MMSE, Mini-
Mental State Examination; APOE4, apolipoprotein E4.
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Discussion

In this study, we developed a deep learning model MSRNet 
that integrates multispatial information by combining 
Euclidean spatial information from T1WI with non-
Euclidean spatial information from the brain network of 
radMBN. This study was carried out based on T1WI, 
which is a simple and easily accessible imaging modality. 

The MSRNet was validated on four databases including 
ADNI, AIBL, EDSD, and OASIS. As shown in Table 2, in 
the intra-database experiments on the ADNI database, the 
performance for AD diagnosis was as follows: ACC =92.8%, 
SEN =88.2%, SPE =95.0%, and AUC =0.956. As shown 
in Table 3, in the inter-database experiments on the ADNI, 
AIBL, EDSD, and OASIS databases, the performance for 
AD diagnosis was as follows: ACC =90.6%, SEN =82.0%, 
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Figure 10 Effect of number of DFAR modules and graph pooling rate on performance. (A) The model achieved optimal performance when 
the number of DFAR modules was set to 3. (B) The model achieved optimal performance when the graph pooling rate was set to 0.4. ACC, 
accuracy; AUC, area under the curve; DFAR, discriminative features by focusing on atrophic regions.

Table 6 Ablation of single-spatial information and multispatial information based on AD vs. NC classification task in the ADNI cohort

Model input Interactive mechanism ACC (%) SEN (%) SPE (%) AUC (%)

radMBN 89.1 76.5 95.0 94.9

GMV 91.8 87.5 93.8 95.5

radMBN + GMV × 92.1 86.1 95.0 95.2

radMBN + GMV + topology × 92.2 86.5 94.8 95.3

radMBN + GMV + topology (proposed MSRNet) √ 92.8 88.2 95.0 95.6

The column titled “Interactive mechanism” indicates whether the image information is integrated into important brain regions, with “√” 
denoting yes and “×” denoting no. AD, Alzheimer’s disease; NC, normal control; ADNI, Alzheimer’s Disease Neuroimaging Initiative 
database; ACC, accuracy; SEN, sensitivity; SPE, specificity; AUC, area under the curve; radMBN, radiomics-based morphology brain 
network; GMV, gray-matter volume.
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SPE =93.6%, and AUC =0.939. The experimental results 
in Table 2 and Table 3 indicate that integrating multispatial 
information from Euclidean and non-Euclidean spaces for 
AD diagnosis is more beneficial than is adopting spatial 
information alone. The MSRNet also achieved satisfactory 
performance in the AD prodromal stage diagnostic tasks, 
including for LMCI vs. EMCI (Table 4) and pMCI vs. sMCI 
classification (Table 5).

In the proposed MSRNet, an interactive mechanism was 
established based on five disease-related brain regions which 
were identified based on a classifier based on two feature 
strategies: voxel intensities and radiomic features. The 
five disease-associated brain regions identified by the two 
strategies included the left hippocampus, right hippocampus, 
left parahippocampal gyrus, right parahippocampal gyrus, 
and left amygdala, which is consistent with the findings 
of previous studies (36-38). As demonstrated in Table 6, 
the interactive mechanism could enhance the feature 
representation by connecting the Euclidean and graph 

representation branches in the MSRNet model. 
Table 7 is a summary of several studies (39-44) related to 

early diagnosis of AD. Notably, single-modality methods  
(39-41) achieved relatively superior performance on the AD 
vs. NC diagnostic task. Specifically, Zhao et al. (39) optimized 
the Transformer structure and proposed an inheritable 
3D deformable self-attention module which could locate 
important regions in sMRI. Zhang et al. (40) proposed an 
interpretable 3D residual attention deep neural network 
that could help locate and visualize important regions in 
sMRI. Wang et al. (41) proposed a multitask-trained dynamic 
multi-task graph isomorphism network (DMT-GIN) based 
on fMRI, which could capture spatial information and 
topological structure in fMRI images. Other studies on 
multimodal approaches (42-44) reported equally competitive 
results in the diagnosis of early AD. Kong et al. (42)  
obtained richer multimodal feature information for the 
early diagnosis of AD by fusing sMRI images and positron 
emission tomography (PET) images. Zhang et al. (43)  
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proposed a multimodal cross-attention AD diagnosis 
(MCAD) framework that integrated multimodal data, 
including sMRI, fluorodeoxyglucose PET (FDG-PET), 
and cerebrospinal fluid (CSF) biomarkers, to learn the 
interactions among these modalities and enhance their 
complementary roles in the diagnosis of AD. Tian et al. (44)  
extracted image features from multimodal MRI data and 
constructed a GCN based on brain ROIs to extract structural 
and functional connectivity features between different brain 
ROIs. In the above studies, those approaches based on single 
modality extracted only Euclidean spatial information from 
images or only non-Euclidean spatial information from 
brain networks for AD diagnosis. In contrast, based on 
the Euclidean representation channels and non-Euclidean 
representation channels present in our MSRNet model, 
multispatial information could be effectively integrated to 
enhance the performance in diagnosing AD. As shown in 
Table 7, integrating multimodal feature information could 
improve the diagnostic performance for AD. Notably, PET 
scans are long, invasive, and expensive, which makes data 
acquisition more difficult and less unaffordable for patients. 
Notably, the MSRNet model is based only on sMRI, which 
has the advantage of being noninvasive and low cost and can 
ensure diagnostic efficacy. 

Several few limitations of this study that need to addressed in 
future work should be noted. First, the key brain regions were 
identified solely based on AD vs. NC classification task. However, 
MCI has more subtle differences in cognition and brain structure, 
and the brain regions identified by the AD vs. NC classification 
may not fully cover the brain regions that could distinguish 
MCI. As a result, the MCI classification task has more room for 
improvement as compared to the AD classification task. In future 
work, we will test various brain region screening methods to make 

the model more sensitive to the subtle brain structural changes 
that are characteristic to MCI.

Conclusions

We developed a multispatial information representation 
model, MSRNet, for learning multidimensional features 
from GMV in Euclidean space and radMBN in non-
Euclidean space. The experimental results based on four 
AD databases showed that MSRNet achieved superior 
performance compared to approaches using single-modality 
spatial information. In addition, the proposed interaction 
mechanism was confirmed to be a capable of enhancing the 
feature representation by connecting the Euclidean and graph 
representation branches. The longitudinal trajectory study of 
MCI progression and the combined application with clinical 
indicators demonstrated that the decision score generated by 
the MSRNet contributes to the diagnostic capability.

Acknowledgments

Funding: This work was supported by the Yantai City 
Science and Technology Innovation Development Plan 
(No. 2023XDRH006), the Natural Science Foundation 
of Shandong Province (No. ZR2020QH048), the Open 
Project of Key Laboratory of Medical Imaging and Artificial 
Intelligence of Hunan Province, Xiangnan University (No. 
YXZN2022002), and the Natural Science Foundation of 
Shandong Province (No. ZR2024MH072).

Footnote

Conflicts of Interest: All authors have completed the ICMJE 

Table 7 Comparison of state-of-the-art methods in AD and NC classification

Study Modality Participants (AD/NC) ACC (%) SEN (%) SPE (%) AUC (%)

Zhao et al. (39) sMRI 419/832 92.7 91.9 94.6 97.2

Zhang et al. (40) sMRI 353/650 91.3 91.0 91.9 98.4

Wang et al. (41) fMRI 118/185 90.4 95.9 83.2 89.1

Kong et al. (42) sMRI + PET 111/130 93.2 91.4 95.4 –

Zhang et al. (43) sMRI + PET 129/110 91.1 91.0 91.0 94.1

Tian et al. (44) sMRI + DTI + fMRI 191/167 88.7 86.8 90.9 88.8

Proposed MSRNet sMRI 282/603 92.8 88.2 95.0 95.6

–, the cited paper does not provide data. AD, Alzheimer’s disease; NC, normal control; ACC, accuracy; SEN, sensitivity; SPE, specificity; 
AUC, area under the curve; sMRI, structural magnetic resonance imaging; PET, positron emission tomography; DTI, diffusion tensor 
imaging; fMRI, functional magnetic resonance imaging. 



Nan et al. Multispatial model emphasizing key brain regions for AD8584

© AME Publishing Company.   Quant Imaging Med Surg 2024;14(12):8568-8585 | https://dx.doi.org/10.21037/qims-24-584

uniform disclosure form (available at https://qims.
amegroups.com/article/view/10.21037/qims-24-584/coif). 
The authors have no conflicts of interest to declare.

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. This study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1. Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M. 
Alzheimer's disease: pathogenesis, diagnostics, and 
therapeutics. Int J Nanomedicine 2019;14:5541-54.

2. Jagust W. Vulnerable neural systems and the borderland 
of brain aging and neurodegeneration. Neuron 
2013;77:219-34.

3. Alzheimer's Association. 2019 Alzheimer’s disease facts and 
figures. Alzheimer's & Dementia 2019;15:321-87.

4. Cummings J, Lee G, Ritter A, Sabbagh M, Zhong K. 
Alzheimer's disease drug development pipeline: 2019. 
Alzheimers Dement (N Y) 2019;5:272-293.

5. Ben Ahmed O, Mizotin M, Benois-Pineau J, Allard 
M, Catheline G, Ben Amar C; Alzheimer's Disease 
Neuroimaging Initiative. Alzheimer's disease diagnosis on 
structural MR images using circular harmonic functions 
descriptors on hippocampus and posterior cingulate cortex. 
Comput Med Imaging Graph 2015;44:13-25.

6. Atri A. Current and Future Treatments in Alzheimer's 
Disease. Semin Neurol. 2019;39:227-40.

7. American Psychiatric Association, DSM-5 Task Force. 
Diagnostic and statistical manual of mental disorders: 
DSM-5™ (5th ed.). American Psychiatric Publishing, 
Inc. 2013.

8. Ebrahimighahnavieh MA, Luo S, Chiong R. Deep 
learning to detect Alzheimer’s disease from neuroimaging: 
A systematic literature review. Computer Methods and 

Programs in Biomedicine 2020;187:105242.
9. Zhang F, Li Z, Zhang B, Du H, Wang B, Zhang X. Multi-

modal deep learning model for auxiliary diagnosis of 
Alzheimer’s disease. Neurocomputing 2019;361:185-95.

10. Cherubini A, Caligiuri ME, Peran P, Sabatini U, 
Cosentino C, Amato F. Importance of Multimodal MRI in 
Characterizing Brain Tissue and Its Potential Application 
for Individual Age Prediction. IEEE J Biomed Health 
Inform 2016;20:1232-9.

11. Frisoni GB, Fox NC, Jack CR Jr, Scheltens P, Thompson 
PM. The clinical use of structural MRI in Alzheimer 
disease. Nat Rev Neurol 2010;6:67-77.

12. Zhang X, Han L, Han L, Chen H, Dancey D, Zhang D. 
sMRI-PatchNet: A novel efficient explainable patch-based 
deep learning network for Alzheimer’s disease diagnosis 
with Structural MRI. IEEE Access 2023;11:108603-16.

13. Hu Z, Wang Z, Jin Y, Hou W. VGG-TSwinformer: 
Transformer-based deep learning model for early 
Alzheimer’s disease prediction. Computer Methods 
Programs in Biomedicine 2023;229:107291.

14. Zhu W, Sun L, Huang J, Han L, Zhang D. Dual attention 
multi-instance deep learning for Alzheimer’s disease 
diagnosis with structural MRI. IEEE Transactions on 
Medical Imaging 2021;40:2354-66.

15. Zhao K, Zheng Q, Dyrba M, Rittman T, Li A, Che T, 
Chen P, Sun Y, Kang X, Li Q, Liu B, Liu Y, Li S; for the 
Alzheimer's Disease Neuroimaging Initiative. Regional 
Radiomics Similarity Networks Reveal Distinct Subtypes 
and Abnormality Patterns in Mild Cognitive Impairment. 
Adv Sci (Weinh) 2022;9:e2104538.

16. Yu H, Ding Y, Wei Y, Dyrba M, Wang D, Kang X, Xu 
W, Zhao K, Liu Y; Alzheimer's Disease Neuroimaging 
Initiative. Morphological connectivity differences in 
Alzheimer's disease correlate with gene transcription and 
cell-type. Hum Brain Mapp 2023;44:6364-74.

17. Gaser C, Dahnke R, Thompson PM, Kurth F, Luders 
E, The Alzheimer's Disease Neuroimaging Initiative. 
CAT: a computational anatomy toolbox for the analysis of 
structural MRI data. Gigascience 2024;13:giae049.

18. Zhu C, Song Z, Wang Y, Jiang M, Song L, Zheng 
Q, editors. Group Sparse Radiomics Representation 
Network for Diagnosis of Alzheimer’s Disease Using 
Triple Graph Convolutional Neural Network. 2023 
6th International Conference on Software Engineering 
and Computer Science (CSECS); 2023. doi: 10.1109/
CSECS60003.2023.10428290; Chengdu, China: IEEE.

19. Zhao K, Zheng Q, Che T, Dyrba M, Li Q, Ding Y, Zheng 
Y, Liu Y, Li S. Regional radiomics similarity networks 
(R2SNs) in the human brain: Reproducibility, small-
world properties and a biological basis. Netw Neurosci 

https://qims.amegroups.com/article/view/10.21037/qims-24-584/coif
https://qims.amegroups.com/article/view/10.21037/qims-24-584/coif
https://creativecommons.org/licenses/by-nc-nd/4.0/


Quantitative Imaging in Medicine and Surgery, Vol 14, No 12 December 2024 8585

© AME Publishing Company.   Quant Imaging Med Surg 2024;14(12):8568-8585 | https://dx.doi.org/10.21037/qims-24-584

2021;5:783-97.
20. Hou Q, Zhou D, Feng J, editors. Coordinate attention 

for efficient mobile network design. 2021 IEEE/CVF 
Conference on Computer Vision and Pattern Recognition 
(CVPR) 2921:13708-17.

21. Trockman A, Kolter JZ. Patches are all you need? 
arXiv:2201.09792.

22. Thekumparampil KK, Wang C, Oh S, Li LJ. Attention-
based graph neural network for semi-supervised learning. 
arXiv:1803.03735.

23. Velickovic P, Cucurull G, Casanova A, Romero A, Lio P, 
Bengio Y. Graph attention networks. arXiv:1710.10903.

24. Hamilton WL, Ying R, Leskovec J. Inductive 
representation learning on large graphs. Advances in 
Neural Information Processing Systems 2017;30.

25. Jiang J, Wei Y, Feng Y, Cao J, Gao Y, editors. Dynamic 
Hypergraph Neural Networks. IJCAI 2019:2635-2641.

26. Gao H, Ji S. Graph U-Nets. IEEE Trans Pattern Anal 
Mach Intell 2022;44:4948-60.

27. Simonyan K, Zisserman A. Very deep convolutional 
networks for large-scale image recognition. arXiv preprint 
arXiv: 2014 Available online: https://doi.org/10.48550/
arXiv.1409.1556.

28. Jin D, Zhou B, Han Y, Ren J, Han T, Liu B, Lu J, Song 
C, Wang P, Wang D. Generalizable, reproducible, and 
neuroscientifically interpretable imaging biomarkers for 
Alzheimer’s disease. Advanced Science 2020;7:2000675.

29. Waskom ML. Seaborn: statistical data visualization. 
Journal of Open Source Software 2021;6:3021.

30. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. 
SMOTE: synthetic minority over-sampling technique. 
Journal of Artificial Intelligence Research 2002;16:321-57.

31. Zhang Y, Li H, Zheng Q. A comprehensive 
characterization of hippocampal feature ensemble serves 
as individualized brain signature for Alzheimer's disease: 
deep learning analysis in 3238 participants worldwide. Eur 
Radiol 2023;33:5385-97.

32. Stanley K, Whitfield T, Kuchenbaecker K, Sanders 
O, Stevens T, Walker Z. Rate of Cognitive Decline in 
Alzheimer's Disease Stratified by Age. J Alzheimers Dis 
2019;69:1153-60.

33. Ge XY, Cui K, Liu L, Qin Y, Cui J, Han HJ, Luo YH, Yu 
HM. Screening and predicting progression from high-risk 
mild cognitive impairment to Alzheimer's disease. Sci Rep 
2021;11:17558.

34. Emrani S, Arain HA, DeMarshall C, Nuriel T. APOE4 is 
associated with cognitive and pathological heterogeneity 
in patients with Alzheimer’s disease: a systematic review. 
Alzheimer’s Research Therapy 2020;12:141.

35. Safieh M, Korczyn AD, Michaelson DM. ApoE4: an 
emerging therapeutic target for Alzheimer's disease. BMC 
Med 2019;17:64.

36. Park C, Jung W, Suk HI. Deep joint learning of 
pathological region localization and Alzheimer's disease 
diagnosis. Sci Rep 2023;13:11664.

37. Prestia A, Boccardi M, Galluzzi S, Cavedo E, Adorni A, 
Soricelli A, Bonetti M, Geroldi C, Giannakopoulos P, 
Thompson P, Frisoni G. Hippocampal and amygdalar 
volume changes in elderly patients with Alzheimer's 
disease and schizophrenia. Psychiatry Res 2011;192:77-83.

38. Kenny ER, Blamire AM, Firbank MJ, O'Brien JT. 
Functional connectivity in cortical regions in dementia 
with Lewy bodies and Alzheimer's disease. Brain 
2012;135:569-81.

39. Zhao Q, Huang G, Xu P, Chen Z, Li W, Yuan X, Zhong 
G, Pun C-M, Huang Z. IDA-Net: Inheritable Deformable 
Attention Network of structural MRI for Alzheimer’s 
Disease Diagnosis. Biomedical Signal Processing and 
Control 2023;84:104787.

40. Zhang X, Han L, Zhu W, Sun L, Zhang D. An explainable 
3D residual self-attention deep neural network for joint 
atrophy localization and Alzheimer’s disease diagnosis 
using structural MRI. IEEE Journal of Biomedical and 
Health Informatics 2022;26:5289-97.

41. Wang Z, Lin Z, Li S, Wang Y, Zhong W, Wang X, Xin 
J. Dynamic Multi-Task Graph Isomorphism Network for 
Classification of Alzheimer’s Disease. Applied Sciences 
2023;13:8433.

42. Kong Z, Zhang M, Zhu W, Yi Y, Wang T, Zhang B. Multi-
modal data Alzheimer’s disease detection based on 3D 
convolution. Biomedical Signal Processing and Control 
2022;75:103565.

43. Zhang J, He X, Liu Y, Cai Q, Chen H, Qing L. Multi-
modal cross-attention network for Alzheimer’s disease 
diagnosis with multi-modality data. Computers in Biology 
Medicine 2023;162:107050.

44. Tian X, Liu Y, Wang L, Zeng X, Huang Y, Wang Z. 
An extensible hierarchical graph convolutional network 
for early Alzheimer’s disease identification. Computer 
Methods Programs in Biomedicine 2023;238:107597.

Cite this article as: Nan P, Li L, Song Z, Wang Y, Zhu C, Hu F, 
Zheng Q. A multispatial information representation model 
emphasizing key brain regions for Alzheimer’s disease diagnosis 
with structural magnetic resonance imaging. Quant Imaging 
Med Surg 2024;14(12):8568-8585. doi: 10.21037/qims-24-584

https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.48550/arXiv.1409.1556

