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Background: Radiofrequency catheter ablation (RFCA) represents an important treatment option for 
atrial fibrillation (AF); however, the recurrence rate following surgery is relatively high. This study aimed 
to predict the recurrence of AF after RFCA using interpretable machine learning models that combined 
the triglyceride-glucose (TyG) index and the quantification of left atrial epicardial and pericoronary adipose 
tissue. 
Methods: This retrospective study included 325 patients with AF who underwent their first successful 
RFCA, among whom 79 had confirmed recurrence. The preoperative clinical data of patients were collected, 
the TyG index was calculated, and computed tomography (CT) image features were quantitatively measured. 
Multivariate Cox regression analysis was used to identify the independent risk factors for RFCA recurrence, 
and adjustments being made for various confounding factors. Post-hoc subgroup analysis was conducted to 
evaluate the predictive value of the TyG index for recurrence in different patient subgroups. Prediction 
models based on six machine learning algorithms were constructed. The optimal model’s features were 
evaluated using Shapley additive explanations (SHAP). 
Results: After adjustment were made for various confounding factors such as comorbidities of AF, Cox 
regression showed that the volume of left atrial epicardial adipose tissue (LA-EAT), LA-EAT attenuation, 
left circumflex coronary artery fat attenuation index (LCX-FAI), and the TyG index were independent risk 
factors for recurrence after RFCA (P<0.001). The support vector machine (SVM) model based on these 
combined indicators had the best predictive performance, with an area under the curve of 0.793 [95% 
confidence interval (CI): 0.782–0.805] in the validation set, while its accuracy and positive predictive value 
were 0.804 and 0.710, respectively. The predictive efficiency of the TyG index appeared to be independent of 
type 2 diabetes mellitus (T2DM) status (Pinteraction=0.660).
Conclusions: The SVM model that integrated the TyG index and quantitative CT imaging variables 
demonstrated good predictive ability for post-RFCA recurrence in patients with AF. Furthermore, the TyG 
index appeared capable of predicting recurrence independently of T2DM status.
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Introduction

Atrial fibrillation (AF), the most common rapid arrhythmia 
encountered in clinical practice, can lead to severe 
complications such as ischemic stroke, thromboembolism, 
and heart failure (HF), and its prevalence has sharply 
increased over the past 30 years (1). Radiofrequency catheter 
ablation (RFCA) is currently the most effective method for 
controlling AF rhythm, but the recurrence rate within 1-year 
after surgery is high (2). Therefore, identifying predictive 
indicators for AF recurrence after RFCA has considerable 
value in clinical practice.

Inflammation plays a crucial role in the occurrence, 
development, and recurrence of AF (3,4). Insulin resistance 
(IR), a marker of metabolic disorders and systemic 
inflammation, is closely associated with cardiovascular 
disease (CVD) and has been identified as a prognostic 
predictor independent of type 2 diabetes mellitus (T2DM) 
status (5). Studies have shown that the triglyceride-glucose 
(TyG) index is an effective surrogate marker for IR (6,7). 
Previous research (8,9) has mainly focused on the TyG 
index and coronary artery disease (CAD), but no study has 
analyzed the predictive value of the TyG index for post-
RFCA recurrence in patients with AF with or without 
T2DM. 

Epicardial adipose tissue (EAT), is an important 
component of the endocrine system, but excess EAT is 
associated with an increased risk of hemodynamically 
significant CAD (10). EAT mediates inflammation-
induced myocardial fibrosis, contributing to the occurrence 
and development of AF. Studies have indicated that the 
increased inflammatory activity in left atrial EAT (LA-
EAT) is positively correlated with AF (11,12); however, the 
association between LA-EAT and AF recurrence remains 
controversial. One study reported that patients with higher 
attenuation of pericardial fat around the left atrium had 
significantly higher probability of AF recurrence (11), 
which contradicts the findings of Sang et al. (13). In recent 
years, an increasing number of studies have suggested that 
pericoronary adipose tissue (PCAT) is closely related to 
the development of coronary atherosclerosis and acute 
cardiovascular events (14,15). A new imaging biomarker, 
the fat attenuation index (FAI) (16), has been proposed to 

reflect the inflammatory state of the coronary artery wall. 
However, little research has been conducted regarding the 
relationship between PCAT and AF recurrence. 

Various clinical models for predicting postoperative 
AF recurrence have been developed (17-20); however, 
the performance of these models remains unsatisfactory, 
and a more precise and robust model is needed. Machine 
learning is being increasingly integrated into clinical 
practice and has become an effective method for integrating 
multiple quantitative variables and thereby improving the 
accuracy of medical prognosis prediction. In our study, 
we quantified LA-EAT and PCAT using features derived 
from preoperative coronary computed tomography 
angiography (CCTA) and combined them with the 
TyG index to construct multifactorial machine learning 
prediction models. The purpose of this research was to 
identify more reliable noninvasive predictive indicators for 
the clinical prevention and treatment of AF recurrence and 
thereby aid in developing precise individualized treatment 
plans for improved patient outcomes. We present this 
article in accordance with the TRIPOD+AI reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-24-1393/rc).

Methods

Participants and general data collection 

The data of patients with AF who underwent their first 
successful RFCA and preoperative CCTA examination 
at The Affiliated Hospital of Xuzhou Medical University 
from October 2018 to October 2022 were retrospectively 
collected. The inclusion criteria were as follows: (I) 
no history of CAD and (II) no medication or electrical 
cardioversion treatment within 3 months before surgery. 
Meanwhile, the exclusion criteria were as follows: (I) 
previous intracardiac electrophysiological examination or 
RFCA; (II) previous percutaneous coronary intervention 
(PCI) or cardiac surgery; (III) congenital heart disease, 
severe cardiomyopathy, heart valve disease, thyroid 
dysfunction, severe liver, or kidney dysfunction; and 
(IV) incomplete medical history or poor image quality  
(Figure 1). Patient data including age, gender, body mass 
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index (BMI), heart rate, and medical history were also 
collected. The diagnosis of hypertension was in accordance 
with the 2018 Chinese Guidelines for the Management of  
Hypertension (21). Patients who had smoked ≥100 
cigarettes in their lifetime without quitting were classified as 
smokers; otherwise, they were classified as nonsmokers (22). 
On the second day of hospitalization, fasting venous blood 
samples were collected, and clinical data including blood 
biochemistry were obtained. The TyG index was calculated 
using the following equation: TyG index = ln{[fasting 
triglyceride (TG) (mg/dL) × fasting glucose (mg/dL)]/2} 
(“ln” represents the natural logarithm function) (23). 

This study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013) and was 
approved by the Affiliated Hospital of Xuzhou Medical 
University Ethics Committee (No. XYFY2023-KL225-01). 
The requirement for individual consent was waived due to 
the retrospective nature of the analysis.

CCTA acquisition

CCTA scans were performed either on a third-generation 
dual-source CT device (Somatom FORCE; Siemens 
Healthineers, Erlangen, Germany) with a retrospective 
electrocardiogram-gating technique or on a 256-row CT 
device (Revolution CT; GE HealthCare, Chicago, IL, USA) 

with a prospective electrocardiogram-triggering technique. 
The scan range was from 1 cm below the tracheal carina to 
the cardiac diaphragm, and the bolus-tracking technique 
was used, with the region of interest (ROI) set in the aortic 
root at the level of the pulmonary artery trunk under a 
trigger threshold of 100 Hounsfield units (HU) and a delay 
time of 6 seconds. The iodinated contrast (iopromide,  
370 mg iodine/mL; Bayer Pharmaceuticals, Berlin, Germany) 
contrast agent was injected at a rate of 3–5 mL/s through the 
right antecubital vein using a single-cylinder high-pressure 
injector and followed by a 50-mL injection of 0.9% saline at 
the same rate.

LA-EAT and PCAT measurement

The original CCTA images at 75% of the cardiac diastolic 
phase were transferred to a Siemens workstation (Syngo.via.
VB40) with cardiac postprocessing software. The software 
automatically outlined the epicardial contours, with manual 
modifications made as necessary. The CT value range for fat 
density was defined as −190 to −30 HU. The left ventricular 
per-mitral annulus EAT, right atrial EAT more than 1 cm 
outside the right superior pulmonary vein, and EAT below 
the coronary sinus margin were manually excluded from the 
EAT. The remaining portion was defined as the LA-EAT, 
with the system directly calculating the volume and average 

•  

93 cases were excluded:
• History of coronary heart disease (n=48)

• Medication and electrical cardioversion 

therapy conducted within 3 months 

before RFCA (n=5)

• History of undergoing intracardiac 

electrophysiological examination or 

radiofrequency catheter ablation (n=11)

• History of PCI surgery or cardiac surgery 

(n=4)

• Thyroid dysfunction or severe hepatic 

and renal insufficiency (n=12)

• History of congenital heart disease, 

severe cardiomyopathy or valvular heart 

disease (n=9)

• Lost during follow-up or poor image 

quality (n=4)

Between October 2018 and October 2022
418 AF patients who successfully underwent RFCA and preablation CCTA
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Figure 1 The flowchart of the study process. AF, atrial fibrillation; RFCA, radiofrequency catheter ablation; CCTA, coronary computed 
tomography angiography; PCI, percutaneous coronary intervention; XGBoost, extreme gradient boosting.
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attenuation of the left atrial epicardial fat. Measurements 
were obtained from the proximal 40 mm of the three major 
coronary branches, within a distance equal to the average 
diameter of the target vessel, to determine the surrounding 
fat volume and FAI (16). To avoid the influence of the aortic 
wall, the proximal 10 mm of the right coronary artery (RCA) 
was excluded, and measurements were obtained from the 
proximal 10 to 50 mm. The left main stem was not analyzed 
due to the variability of its length, and measurements were 
obtained from the proximal 40 mm of the left anterior 
descending (LAD) artery and left circumflex coronary 
artery (LCX). During the measurement of the LA-EAT 
and PCAT, the CT value for fat tissue was consistently 
defined as –190 to –30 HU. All images were measured and 
evaluated by two senior cardiovascular radiologists using 
the same method, with any discrepancies resolved through 

consultation (Figure 2). 

RFCA, outcomes, and follow-up

RCFA was conducted on patients with AF using the 
CARTO-3 system (Biosense Webster Inc., Irvine, CA, 
USA) for circumferential pulmonary vein isolation (CPVI). 
Guided by a circular electrode, both pulmonary veins were 
isolated. Additional linear ablation was performed if needed. 
Electrical cardioversion was used if a sinus rhythm was not 
achieved. The procedure’s endpoint was confirmed by bi-
directional block between the left atrium and pulmonary 
veins.

All patients were followed up for 1 year after RFCA 
through outpatient visits, hospitalization, or telephone 
calls, with the recurrence of AF being the follow-up 

A

D E F

B C

Figure 2 Measurement of the volume and attenuation of epicardial adipose tissue in the left atrium (LA-EATV and LA-EAT attenuation, 
respectively) and the volume and attenuation of the perivascular adipose tissue around the left anterior descending artery (LAD-FAI and 
LAD-V, respectively). The green area represents the LA-EAT region in the (A) axial, (B) coronal, (C) and sagittal planes. The purple area 
represents the perivascular adipose tissue around the LAD in the (D) axial, (E) coronal, (F) and sagittal planes. HU, Hounsfield unit; SD, 
standard deviation; LA-EATV, volume of the left atrial epicardial adipose tissue; LA-EAT, left atrium epicardial adipose tissue; LAD-FAI, 
left anterior descending artery fat attenuation index; LAD-V, adipose volume surrounding the left anterior descending artery. 
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endpoint. Patients were examined at 1, 3, 6, and 12 months 
post-ablation, and after a 3-month “blanking period”, a  
12-lead electrocardiogram or 24-hour Holter monitoring 
was performed. Recurrence was diagnosed if atrial 
arrhythmias (AF, flutter, or tachycardia) lasting more than 
30 seconds were detected (2). For patients who did not 
undergo Holter monitoring at our hospital as scheduled, 
follow-up was conducted via telephone for inquiries 
concerning the Holter results from other hospitals. 

Machine learning model development and evaluation

Six machine learning methods: random forest, support 
vector machine (SVM), k-nearest neighbor (KNN), 
gradient boosting, decision tree, and extreme gradient 
boost (XGBoost), were used to develop prediction 
models. Patients were randomly assigned to the training 
and validation sets at a ratio of 8:2 ratio. Fivefold cross-
validation was employed to reduce prediction bias (Figure 1). 
Model discrimination and calibration were evaluated using 
receiver operating characteristic (ROC) curves, accuracy, 
sensitivity, F1 score, positive predictive value (PPV), and 
negative predictive value (NPV). 

Feature importance and model interpretability analysis

Except for logistic regression (LR), machine learning 
models are typically “black box” algorithms. To interpret 
these models, the best-performing machine learning model 
was selected based on evaluation results. Shapley additive 
explanations (SHAP) plots, which use game-theoretic 
Shapley values to calculate each feature’s contribution to 
the model output, were used to analyze and explain the 
results of the machine learning models. Feature importance 
analysis was conducted on the selected model to determine 
the impact of features on the prediction, and features were 
ranked according to their importance. A feature importance 
plot was used for visualization. 

Statistical analysis 

The statistically significant indicators identified in the 
univariate Cox regression were included in the multivariate 
Cox regression analysis (via forward stepwise selection). 
Confounding factor adjustments were subsequently made 
for the selected independent predictors: model 1 adjusted 
for gender, age, and BMI; model 2, in addition to the factors 
included in model 1, adjusted for AF type, hypertension, 

smoking, and TG; and, in addition to the factors included 
in model 2, model 3 further adjusted for T2DM status, 
previous stroke/transient ischemic attack (TIA), HF, and 
high-sensitivity cardiac troponin T (hs-cTnT) level. Based 
on previous research, we conducted a Spearman correlation 
analysis on variables that could affect recurrence to analyze 
their correlations (11,13). Post-hoc subgroup analysis was 
conducted to evaluate the predictive value of the TyG 
index for AF recurrence post-RFCA in different patient 
subgroups. The statistical power for the overall population 
and each stratified subgroup was calculated using PASS 15.0 
Software (NCSS LLC, Kaysville, UT, USA), and the final 
results were visualized in a forest plot. A P value <0.05 was 
considered statistically significant. 

Statistical analyses were performed using Python 3.11.7 
(Python Software Foundation, Wilmington, DE, USA), 
and R 4.4.0 (The R Foundation for Statistical Computing). 
Normally distributed continuous variables are expressed as 
the mean ± standard deviation and were compared using 
independent t-tests. Nonnormally distributed continuous 
variables are expressed as the median (with the 25th and 
75th percentile) and were compared using the Wilcoxon 
nonparametric test. Categorical data are expressed as 
frequencies or percentages (%) and were compared using 
the χ2 test. A P value <0.05 was considered statistically 
significant. The areas under curve (AUCs) of the six models 
were compared using independent t-tests.

Results

Comparison of characteristics

Out of the 418 patients who underwent RFCA for AF, 
325 were included in the study. Among them, there were 
192 patients with paroxysmal AF (PAF) and 133 patients 
with persistent AF (PersAF). They were followed up for 
12 months, with a median follow-up time of 11.5 months. 
In the end, 79 cases were confirmed to have recurred, and 
246 cases did not recur, resulting in a recurrence rate of 
24.3%. Compared with the nonrecurrent patients, patients 
with recurrent AF had significantly higher TG levels and 
TyG index but lower serum creatinine levels (all P values 
<0.05), with no statistical differences for the other clinical 
characteristics or laboratory indicators (P>0.05) (Table 1). 
The AF volume of the LA-EAT (LA-EATV), LA-EAT 
attenuation, and LCX-FAI of the recurrence group were 
significantly higher than those of the nonrecurrence group 
(P<0.001). There was no statistically significant difference 
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Table 1 Comparison of characteristics between the nonrecurrence and recurrence groups

Variables Nonrecurrence (n=246) Recurrence (n=79) P

Clinical characteristics

Age (years) 60.93±9.73 59.39±10.31 0.230

Male 156 (63.41) 42 (53.16) 0.104

BMI (kg/m2) 25.56±3.63 25.30±2.98 0.555

Heart rate (bpm) 77.18±19.23 81.94±20.85 0.062

Paroxysmal AF 146 (59.35) 46 (58.23) 0.860

HTN 105 (42.68) 36 (45.57) 0.652

Smoking 60 (24.39) 16 (20.25) 0.450

Previous stroke/TIA 43 (17.48) 19 (24.05) 0.196

HF 29 (11.79) 5 (6.33) 0.168

T2DM 27 (10.98) 9 (11.39) 0.918

CHA2DS2-VASc score 2 [1, 3] 1 [1, 3] 0.916

HAS-BLED score 1 [0, 2] 1 [0, 2] 0.300

Laboratory indicator

TC (mmol/L) 4.23±0.96 4.38±0.97 0.219

TG (mmol/L) 1.48±0.74 1.71±0.74 0.017

TyG index 8.61±0.53 8.96±0.49 <0.001

BUN (mmol/L) 5.80±2.02 5.52±1.34 0.242

Scr (mmol/L) 68 [59, 75] 63 [57, 73] 0.046

Uric acid (μmmol/L) 329.01±92.40 313.65±95.61 0.203

GGT (U/L) 34.11±27.95 35.46±34.12 0.725

HDL-C (mmol/L) 1.01 [0.89, 1.24] 1.07 [0.93, 1.24] 0.209

LDL-C (mmol/L) 2.49 [1.99, 3.03] 2.55 [2.15, 3.06] 0.609

hs-cTnT (ng/L) 9.16 [6.08, 13.37] 9.32 [5.86, 16.70] 0.577

Imaging characteristics

LA-EATV (cm3) 21.09 [16.42, 28.79] 29.08 [23.23, 36.24] <0.001

LA-EAT attenuation (HU) −81.57±7.35 −76.76±7.52 <0.001

LAD-V (cm3) 1.25±0.35 1.33±0.36 0.067

LAD-FAI (HU) −78.59 [−84.99, −74.43] −79.00 [−89.11, −74.95] 0.376

LCX-V (cm3) 1.41±0.37 1.33±0.43 0.141

LCX-FAI (HU) −84.10±10.52 −76.80±8.84 <0.001

RCA-V (cm3) 1.51±0.38 1.56±0.44 0.326

RCA-FAI (HU) −83.45±10.69 −84.73±11.54 0.366

Continuous variables are presented as mean ± standard deviation or as median [interquartile range]; categorical variables are presented 
as number (%). BMI, body mass index; AF, atrial fibrillation; HTN, hypertension; TIA, transient ischemic attack; HF, heart failure; T2DM, 
type 2 diabetes mellitus; HAS-BLED, hypertension, abnormal renal/liver function, stroke, bleeding history or predisposition, labile INR, 
elderly, drugs/alcohol concomitantly; INR, international normalized ratio; CHA2DS2-VASc, congestive heart failure, hypertension, age ≥75 
years (doubled), diabetes mellitus, prior stroke or transient ischemic attack (doubled), vascular disease, age 65–74 years, female; TC, 
total cholesterol; TG, triglyceride; TyG, triglyceride-glucose; BUN, blood urea nitrogen; Scr, serum creatinine; GGT, γ-glutamyltransferase; 
HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; hs-cTnT, high-sensitivity cardiac troponin T; LA-
EATV, volume of the left atrial epicardial adipose tissue; LA-EAT, left atrium epicardial adipose tissue; HU, Hounsfield unit; LAD, left anterior 
descending artery; LAD-V, adipose volume surrounding the LAD; LAD-FAI, left anterior descending artery fat attenuation index; LCX, left 
circumflex coronary artery; LCX-V, adipose volume surrounding the LCX; LCX-FAI, left circumflex coronary artery fat attenuation index; 
RCA, right coronary artery; RCA-V, adipose volume surrounding the RCA; RCA-FAI, right coronary artery fat attenuation index. 
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in the PCT volume, LAD-FAI, or RCA-FAI between the 
recurrence group and the nonrecurrence group (P>0.05) 
(Table 1). 

AF recurrence feature selection

In the univariate Cox analysis, the TG and hs-cTnT level 
were identified as the influencing factors for postoperative 
AF recurrence. However, in the multivariate Cox 
regression, these two indicators were excluded (P>0.05), 
indicating that they were not independent predictors  
(Table 2). The multivariate Cox regression analyses on 
clinical and imaging parameters identified LA-EATV, 
LA-EAT attenuation, LCX-FAI, and the TyG index as 
independent risk factors for AF recurrence after RFCA 
(Table 2). Further adjustments for various confounding 
factors confirmed the significance of these four indicators 
(Table 3). The correlation heatmap of the factors is 
shown in Figure 3. The correlation coefficients between 
variables were all lower than 0.8, indicating that no serious 
collinearity existed. Based on net benefit and threshold 
probability, the decision curve analysis (Figure 4A) indicated 
that the combined indicators had good clinical utility for 
prediction. The calibration curve (Figure 4B) showed that 
the combined prediction of the four indicators aligned well 
with the observed actual risk. 

Post-hoc subgroup analysis of the TyG index in predicting 
endpoint events

Post-hoc subgroup analysis was conducted to evaluate the 
clinical indicators related to the TyG index for predicting 
AF recurrence, including age (<65 vs. ≥65 years), type of AF 
(PersAF vs. PAF), gender (male vs. female), hypertension 
(yes vs. no), T2DM (yes vs. no), smoking (yes vs. no), TIA 
(yes vs. no), HF (yes vs. no), and hs-cTnT level [<14 vs. 
≥14 ng/L (24)]. After stratification of these indicators, a 
higher TyG index was found to be significantly associated 
with an increased risk of AF recurrence after RFCA. 
Moreover, we observed that the results of the HF subgroup 
were unreliable due to low statistical power, while the 
statistical power of the T2DM subgroup was slightly lower 
(0.692<0.8), and those of the other subgroups were close 
to 1. Therefore, the predictive efficiency of the TyG index 
might not have been affected by T2DM status (Pinteraction 

=0.660) (Figure 5). Additionally, the TyG index effectively 
predicted AF recurrence in both the patients with PersAF 
and those with PAF, as shown in Figure 5. 

Comparison and explanation of model performance

The detailed metrics of the models are shown in Table 4 
and Figure 6. In the training set, the average AUC values 
were as follows: 0.733 for the random forest model, 0.736 
for the SVM model, 0.756 for the KNN model, 0.728 for 
the gradient boosting model, 0.555 for the decision tree 
model, and 0.703 for the XGBoost model (Figure 6). The 
SVM model showed the best predictive efficiency (AUC, 
0.793; 95% CI: 0.782–0.805) in this study, and had the 
highest accuracy (0.804) and PPV (0.710), as shown in  
Table 4. Additionally, the AUC t-test comparison results for 
the six models are provided in Table S1, indicating that the 
SVM model had the best predictive performance. Figure 7 
illustrates the explanation of the SVM model. The orders of 
contributions of each feature for predicting AF recurrence 
on the entire dataset are shown in Figure 7A,7B, with the 
TyG index and LA-EATV being the two most important 
predictive variables. In addition, Figure 7C,7D provide a 
local model explanation according to the SHAP method, 
showing how a certain prediction was made for a specific 
individual by incorporating individualized input data.

Comparison of machine learning and traditional models 

Compared with traditional models from previous studies, 
the AUC of the SVM model in our study was 0.793, which 
was higher than the AUCs (0.539–0.780) of the tradition 
models consisting of the TyG index, LA-EAT, or PCAT. A 
summary of the related literature is detailed in Table 5. 

Discussion

Although the technology for radiofrequency ablation is 
continually advancing, the recurrence rate of AF post-
ablation remains high (2), and it remains clinically 
challenging to accurately assess the risk of postoperative 
recurrence. In our study, the performance of six machine 
learning models combining the TyG index and CT features 
in predicting AF recurrence after RFCA were compared, 
and the results showed that the SVM model had the highest 
predictive efficiency (AUC, 0.793), accuracy (0.804), and 
PPV (0.710). 

Machine learning algorithms have the ability to deeply 
mine and analyze large datasets and have been widely 
applied in disease prognosis. The SVM algorithm is one 
of the most widely used algorithms in machine learning, 
suitable for both classification and regression problems. 

https://cdn.amegroups.cn/static/public/QIMS-24-1393-Supplementary.pdf
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Table 2 Univariate and multivariate Cox regression analysis of risk factors for AF recurrence

Variables
Univariate analysis Multivariate analysis

HR 95% CI P HR 95% CI P

Clinical characteristics

Age (years) 0.989 0.967–1.011 0.303 – – –

Male 0.707 0.455–1.101 0.125 – – –

BMI (kg/m2) 0.984 0.922–1.051 0.640 – – –

Paroxysmal AF 0.930 0.595–1.455 0.752 – – –

HTN 1.110 0.713–1.728 0.645 – – –

T2DM 1.026 0.512–2.054 0.943 – – –

Previous stroke/TIA 1.397 0.834–2.340 0.204 – – –

HF 0.562 0.227–1.390 0.212 – – –

CHA2DS2-VASc score 1.006 0.869–1.164 0.936 – – –

HAS-BLED score 1.158 0.941–1.425 0.166 – – –

Laboratory indicators

TC (mmol/L) 1.126 0.904–1.402 0.289 – – –

TG (mmol/L) 1.375 1.059–1.785 0.017 0.944 0.646–1.379 0.766

TyG index 2.603 1.784–3.798 <0.001 2.268 1.372–3.750 0.001

Scr (mmol/L) 0.987 0.972–1.001 0.074 – – –

HDL-C (mmol/L) 1.230 0.588–2.572 0.582 – – –

LDL-C (mmol/L) 1.196 0.936–1.528 0.152 – – –

hs-cTnT (ng/L) 1.005 1.001–1.009 0.013 1.003 0.999–1.008 0.115

Imaging characteristics

LA-EATV (cm3) 1.052 1.033–1.072 <0.001 1.043 1.021–1.066 <0.001

LA-EAT attenuation (HU) 1.074 1.043–1.106 <0.001 1.042 1.007–1.078 0.017

LAD-V (cm3) 1.838 0.994–3.398 0.052 – – –

LAD-FAI (HU) 0.986 0.963–1.010 0.242 – – –

LCX-V (cm3) 0.666 0.372–1.191 0.171 – – –

LCX-FAI (HU) 1.059 1.037–1.082 <0.001 1.032 1.007–1.058 0.012

RCA-V (cm3) 1.382 0.790–2.415 0.256 – – –

RCA-FAI (HU) 0.990 0.971–1.011 0.347 – – –

AF, atrial fibrillation; HR, hazard ratio; CI, confidence interval; BMI, body mass index; HTN, hypertension; T2DM, type 2 diabetes mellitus; 
TIA, transient ischemic attack; HF, heart failure; HAS-BLED, hypertension, abnormal renal/liver function, stroke, bleeding history or 
predisposition, labile INR, elderly, drugs/alcohol concomitantly; INR, international normalized ratio; CHA2DS2-VASc, congestive heart 
failure, hypertension, age ≥75 years (doubled), diabetes mellitus, prior stroke or transient ischemic attack (doubled), vascular disease, 
age 65–74 years, female; TC, total cholesterol; TG, triglyceride; TyG, triglyceride-glucose; Scr, serum creatinine; HDL-C, high-density 
lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; hs-cTnT, high-sensitivity cardiac troponin T; LA-EATV, volume of the 
left atrial epicardial adipose tissue; LA-EAT, left atrium epicardial adipose tissue; HU, Hounsfield unit; LAD, left anterior descending artery; 
LAD-V, adipose volume surrounding the LAD; LAD-FAI, left anterior descending artery fat attenuation index; LCX, left circumflex coronary 
artery; LCX-V, adipose volume surrounding the LCX; LCX-FAI, left circumflex coronary artery fat attenuation index; RCA, right coronary 
artery; RCA-V, adipose volume surrounding the RCA; RCA-FAI, right coronary artery fat attenuation index.
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Table 3 Multivariate Cox regression analysis of independent predictors

Variable
Model 1 Model 2 Model 3

HR 95% CI P HR 95% CI P HR 95% CI P

TyG index 2.614 1.776–3.847 <0.001 3.337 2.086–5.338 <0.001 3.392 2.081–5.529 <0.001

LA-EATV 1.061 1.040–1.081 <0.001 1.060 1.039–1.082 <0.001 1.059 1.037–1.082 <0.001

LA-EAT attenuation 1.073 1.042–1.106 <0.001 1.079 1.047–1.112 <0.001 1.083 1.051–1.116 <0.001

LCX-FAI 1.058 1.036–1.081 <0.001 1.061 1.038–1.085 <0.001 1.064 1.040–1.088 <0.001

Model 1: adjusted for gender, age and BMI. Model 2: adjusted for gender, age, BMI, type, HTN, smoking, and TG. Model 3: adjusted for 
gender, age, BMI, type, HTN, smoking, TG, T2DM, previous stroke/TIA, HF, and hs-cTnT. HR, hazard ratio; CI, confidence interval; TyG, 
triglyceride-glucose; LA-EATV, volume of the left atrial epicardial adipose tissue; LA-EAT, left atrium epicardial adipose tissue; LCX-FAI, 
left circumflex coronary artery fat attenuation index; BMI, body mass index; HTN, hypertension; TG, triglyceride; T2DM, type 2 diabetes 
mellitus; TIA, transient ischemic attack; HF, heart failure; hs-cTnT, high-sensitivity cardiac troponin T.

Figure 3 A heatmap representation of the Spearman correlation matrix of the variables. Relevant correlations are color-coded based on the 
strength of the correlation. LA-EATV, volume of the left atrial epicardial adipose tissue; LA-EAT, left atrial epicardial adipose tissue; LCX-
FAI, left circumflex coronary artery fat attenuation index; TyG, triglyceride-glucose; BUN, blood urea nitrogen; Scr, serum creatinine; GGT, 
γ-glutamyltransferase; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; 
CHA2DS2-VASc, congestive heart failure, hypertension, age ≥75 years (doubled), diabetes mellitus, prior stroke or transient ischemic attack 
(doubled), vascular disease, age 65–74 years, female; HAS-BLED, hypertension, abnormal renal/liver function, stroke, bleeding history or 
predisposition, labile INR, elderly, drugs/alcohol concomitantly; INR, international normalized ratio; BMI, body mass index; TIA, transient 
ischemic attack; hs-cTnT, high-sensitivity cardiac troponin T; HF, heart failure.
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Figure 4 The decision and calibration curve. (A) The decision curve analysis of individual risk factors and combined factors in the 
multivariate Cox regression. (B) Calibration curve for the 12-month prediction of the combined factors. LA-EATV, volume of the left atrial 
epicardial adipose tissue; LA-EAT, left atrium epicardial adipose tissue; LCX-FAI, left circumflex coronary artery fat attenuation index; TyG, 
triglyceride-glucose; OS, overall survival.

Figure 5 Post-hoc subgroup analysis of the TyG index for the primary outcome. PersAF, persistent atrial fibrillation; PAF, paroxysmal 
atrial fibrillation; HTN, hypertension; T2DM, type 2 diabetes mellitus; TIA, transient ischemic attack; HF, heart failure; hs-cTnT, high-
sensitivity cardiac troponin T; OR, odds ratio; CI, confidence interval; TyG, triglyceride-glucose.
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For nonlinear associations, an appropriate kernel function 
is chosen to map the samples to a high-dimensional space 
to identify the optimal hyperplane for separating the  
samples (26). Furthermore, traditional models in previous 
studies have often relied on single indicators for prediction 
and had lower predictive efficiency. However, our model 
quantifies LA-EAT and PCAT based on preoperative CCTA 
and combines them with the TyG index for predictive 
evaluation. This approach not only avoids the need for 
additional examinations but also significantly improves the 
predictive value.

According to the most recent guidelines (27), AF should 

not be viewed in isolation due to the various comorbidities 
associated with its recurrence and progression. Therefore, 
we adjusted for confounding factors among the significant 
indicators from the multivariate Cox regression analysis. 
After adjustments were mode for comorbidities of AF, 
including T2DM, HF, and previous stroke/TIA, we found 
that LA-EATV, LA-EAT attenuation, LCX-FAI, and the 
TyG index remained independent predictors. Additionally, 
univariate and multivariate Cox regression analyses 
demonstrated that hs-cTnT level was a factor influencing 
the recurrence of AF after radiofrequency ablation; 
however, it was not an independent predictive indicator. 
Previous studies have extensively demonstrated a close 
correlation between hs-cTnT levels and the occurrence, 
progression, and recurrence of AF (28,29). For instance, 
Nakanishi et al. analyzed 125 patients with AF and found 
that an elevated serum hs-cTnT level, independent of 
traditional risk factors, was associated with recurrence 
after RFCA (30). However, this is inconsistent with the 
conclusions of our study. The reasons for this finding could 
potentially be attributed to the larger sample size in our 
study, the exclusive focus on patients without CAD, and 
the incorporation of newer imaging markers such as left 
atrial epicardial and pericoronary fat for analysis, leading to 
discrepant results.

The results in our study indicated that the TyG index 
was the primary predictor of AF recurrence. IR is an 
important risk factor for CVD (31,32). However, the 
hyperinsulinemic-euglycemic clamp test, a gold-standard 
test for evaluating IR, is complex, time-consuming, 
expensive, and highly invasive, limiting its clinical 
application. Studies have confirmed that the TyG index is a 
reliable and convenient method for assessing IR (6,7), and it 
can serve as an indicator for risk stratification and prognosis 

Table 4 Predictive performance of the six machine learning models in the validation set for post-RFCA recurrence

Model AUC (95% CI) Accuracy F1 score Sensitivity PPV NPV

Random forest 0.781 (0.729–0.835) 0.792 0.501 0.427 0.647 0.833

SVM 0.793 (0.782–0.805) 0.804 0.489 0.381 0.710 0.825

KNN 0.702 (0.649–0.747) 0.750 0.379 0.329 0.472 0.806

Gradient boosting 0.759 (0.661–0.837) 0.762 0.425 0.363 0.545 0.814

Decision tree 0.616 (0.549–0.695) 0.704 0.422 0.444 0.413 0.816

XGBoost 0.727 (0.655–0.800) 0.754 0.448 0.410 0.502 0.821

RFCA, radiofrequency catheter ablation; AUC, area under the curve; CI, confidence interval; PPV, positive predictive value; NPV, negative 
predictive value; SVM, support vector machine; KNN, k-nearest neighbor; XGB, extreme gradient boosting.
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Figure 6 ROC curves for the six machine learning models in the 
training set. AUC, area under the curve; CI, confidence interval; 
SVM, support vector machine; KNN, k-nearest neighbors; 
XGBoost, extreme gradient boosting; ROC, receiver operating 
characteristic.
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evaluation of acute coronary syndrome, irrespective of 
patients’ diabetes status (33,34). IR increases the oxidation 
of CaMKIIδ, enhances the expression of NCX1, and 
elevates the phosphorylation levels of phospholamban/
RyR-2, resulting in abnormalities of intracellular calcium 
homeostasis. Additionally, IR stimulates the expression of 
TGF-β1 in cardiomyocytes and fibroblasts, contributing 
to atrial structural remodeling through paracrine and 
autocrine pathways, thereby increasing susceptibility to AF. 
IR also promotes atrial electrical and structural remodeling 
by activating the mitogen-activated protein kinase (MAPK) 
pathway (35,36). An animal experiment has indicated that IR 
impairs the translocation of glucose transporter 4 and 8 as 
well as the expression of total protein, providing metabolic 
substrates for the development of AF (37). Inflammation, 
IR, and oxidative stress damage are interrelated, further 
leading to left atrial fibrosis (36) and low-voltage areas in the 
left atrium (38). A recent retrospective study of nondiabetic 

patients undergoing cardiac radiofrequency ablation showed 
that an increased TyG index could increase the risk of late 
AF recurrence (18), which is consistent with our findings. 
However, TyG is calculated using fasting plasma glucose 
(FPG) and TGs, and thus the diabetic status may become 
a crucial factor affecting the predictive performance of the 
TyG index. In addition, the predictive efficiency of the TyG 
index in patients with AF who are diabetic remains unclear. 
To the best of our knowledge, our study represents the 
first attempt to explore the predictive independence of the 
TyG index for AF recurrence in patients with and without 
T2DM. Our subgroup analysis showed that the TyG index 
performed well in nondiabetic patients (Pinteraction=0.660; 
Figure 5). However, it should be noted that the statistical 
power of the T2DM subgroup was limited, primarily due 
to the small sample size of the patients with T2DM in this 
study. Nevertheless, we believe that the TyG index can 
effectively predict AF recurrence, potentially independent 

Figure 7 SVM model explanation via the SHAP method. (A,B) Global model explanation. (C,D) Local model explanation. (A) Summary 
dot plot. The position of the point along the x-axis represents the actual SHAP value, indicating the impact of specific features on the model 
output for a particular patient. A higher SHAP value indicates a higher risk of recurrence. Features are distributed along the y-axis according 
to their importance, and their positions are determined by the average of the absolute SHAP values. The higher the position of a feature 
is, the more significant its impact on the model. (B) Feature importance bar chart. The width of the bar represents the average absolute 
SHAP value for each feature over all samples. (C,D) The waterfall plots of a patient without recurrent atrial fibrillation after RFCA and of 
a patient with recurrence, respectively. The SHAP values in each row quantify the magnitude and direction of the impact that each feature 
has on the prediction outcome. Features that contributed to an increase in the predicted risk of recurrence are displayed in red; features that 
contributed to a decrease in the predicted risk of recurrence are displayed in blue. TyG, triglyceride-glucose; LA-EATV, volume of the left 
atrial epicardial adipose tissue; LA-EAT, left atrium epicardial adipose tissue; LCX-FAI, left circumflex coronary artery fat attenuation index; 
SVM, support vector machine; SHAP, Shapley Additive explanations; RFCA, radiofrequency catheter ablation.
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of T2DM status, but naturally, additional research and 
verification are needed. Similarly, when stratification by 
AF type was applied, the TyG index had good predictive 
value for postoperative AF recurrence in both patients with 
PersAF and those with PAF (Pinteraction =0.21; Figure 5). 

In our study, the volume and attenuation of LA-EAT 
ranked just below the TyG index in feature importance. 
EAT, as a special type of visceral fat, can lead to atrial 
remodeling in patients with AF through complex 
mechanisms such as inflammation, matrix remodeling, fat 
infiltration, and autonomic ganglia [ganglionated plexi 

(GP)] (39). As an important component of EAT, LA-
EAT encompasses 95% of the five major anatomical GP  
regions (40). Clinically, RFCA targets generally overlap with 
LA-EAT locations (39). Therefore, this study focused on 
LA-EAT rather than overall EAT, and the results indicated 
that the LA-EATV and attenuation were independent 
predictors of AF recurrence post-RFCA, consistent with the 
findings of Tsao et al. and Ciuffo et al. (39,41). For one, a 
larger LA-EATV suggests a greater degree of infiltration of 
inflammatory adipokines directly into the left atrium (42), 
causing myocardial cells to secrete inflammatory mediators 
that lead to the loss of myocardial cell homogeneity, 
atrial structural, functional remodeling, and, ultimately, 
atrial fibrosis. For another, several studies have shown 
that only LA-EAT expresses genes related to oxidative 
phosphorylation, muscle contraction, and calcium signaling, 
which may trigger inflammation, release paracrine factors, 
alter adipocyte differentiation, and induce lymphocyte 
migration, leading to increased LA-EAT attenuation (11,40). 

In addition to the TyG index and LA-EAT parameters, 
this study found that LCX-FAI also contributed significantly 
to predicting post-AF ablation recurrence. However, 
previous studies mainly used PCAT for research on coronary 
artery-related diseases, and few studies have analyzed its 
relationship with AF recurrence after ablation. A recent 
study reported that the average CT attenuation (HU) of 
PCAT within 40 mm proximal to all three major coronary 
arteries (43) could predict AF recurrence after second-
generation cryoballoon ablation. Aside from differences in 
surgical methods, our study primarily measured the PCAT 
volume and FAI of the three coronary arteries separately 
and found that only increased LCX-FAI was associated with 
AF recurrence after ablation. The potential explanations 
for this finding are as follows: (I) high levels of FAI indicate 
changes in intracellular lipid accumulation and increased 
local vascular inflammation (14). The development of AF 
leads to the release of inflammatory active factors from 
the LCX near the left atrium, causing dysfunction and 
cellular remodeling of the surrounding fat, resulting in 
increased FAI. This further validates our study’s findings 
that high levels of attenuation in pericardial fat around the 
left atrium are associated with increased AF recurrence 
risk. (II) As the LCX supplies the left atrium, changes in 
LCX-FAI can directly affect the atrial tissue in its supply 
area. Increased FAI leads to a greater abundance of fat 
tissue infiltrating myocardial cells, promoting electrical and 
structural remodeling of atrial tissue, thus increasing the 
risk of AF recurrence. (III) Although quantitative analysis 

Table 5 Performance and features in previous studies

First author/year Features AUC

Zhao/2020 (17) CHA2DS2-VASc; SAMe-TT2R2 0.612; 0.642

Özmen/2023 (20) C2HEST; CHA2DS2-VASc 0.769; 0.644

Sang/2023 (13) LA-EAT volume; LA-EAT 
attenuation

0.714; 0.615

Ma/2023 (19) LCX-FAI; EATVI 0.722; 0.630

Tang/2022 (18) TyG index; LAD 0.737; 0.780

CHA2DS2-VASc; APPLE 0.624; 0.752

Wang/2024 (25) TyG index; METS-IR 0.539; 0.603

TyG-BMI index; TG/HDL-C 
ratio

0.608; 0.524

AUC, area under the curve; CHA2DS2-VASc, congestive heart 
failure, hypertension, age ≥75 years (doubled), diabetes mellitus, 
prior stroke or transient ischemic attack (doubled), vascular 
disease, age 65–74 years, female; SAMe-TT2R2, female, age 
<60 years, a history of at least two comorbidities (hypertension, 
diabetes mellitus, coronary artery disease or myocardial 
infarction, peripheral artery disease, congestive heart failure, 
previous stroke, and pulmonary, hepatic, or renal disease), 
treatment with drugs interacting with vitamin K antagonist (e.g., 
amiodarone) (doubled), current/recent tobacco use (within 
2 years) (doubled), nonwhite ethnicity (doubled); C2HEST, 
coronary artery disease/chronic obstructive pulmonary disease, 
hypertension, age ≥75 years (doubled), systolic heart failure ≥75 
years (doubled), thyroid disease (hyperthyroidism); LA-EAT, left 
atrial epicardial adipose tissue; LCX-FAI, left circumflex coronary 
artery fat attenuation index; EATV, volume of the epicardial 
adipose tissue; EATVI, EATV index (EATV/body surface area); 
TyG, triglyceride-glucose; LAD, left atrial diameter; APPLE, 
age greater than 65 years, persistent atrial fibrillation, reduced 
estimated glomerular filtration rate (<60 mL/min/1.73 m2), left 
atrial diameter >43 mm, and left ventricular ejection fraction 
<50%; METS-IR, metabolic score for insulin resistance; TyG-
BMI, triglyceride-glucose-body mass index; TG/HDL-C, ratio of 
triglyceride to high-density lipoprotein cholesterol.
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of PCAT volume and FAI can reflect the mechanisms 
of AF development from a variety of perspectives (35), 
CT attenuation shows higher accuracy and sensitivity in 
reflecting the physiological and pathological changes of fat 
compared to volume parameters. Our study’s findings are 
generally consistent with those of Ma et al. (19). However, 
the study by Ma et al. did not exclude the influence of 
CAD on PCAT. Our study included 325 patients who were 
confirmed to be free of CAD through CCTA or coronary 
angiography, thereby avoiding potential bias in the results. 

Previous studies have indicated that the CHA2DS2-VASc 
[congestive HF, hypertension, age ≥75 years (doubled), 
diabetes mellitus, prior stroke or TIA (doubled), vascular 
disease, age 65–74 years, female] score is an independent 
predictor of AF recurrence after RFCA (17,20). However, 
in our study, there was no significant difference in this 
indicator among the recurrence and nonrecurrence 
groups; therefore, it was not included in the machine 
learning models. This result may be due to the exclusion 
of patients with CAD in our study, as vascular disease is 
a major component of the CHA2DS2-VASc score. Our 
finding further suggests that the CHA2DS2-VASc score has 
limited predictive value for AF recurrence in non-CAD 
populations. 

This study also involved certain limitations that should be 
addressed. First, we employed a retrospective, single-center 
design that lacked external validation from an independent 
cohort. Moreover, the sample size and variety of features 
were relatively small, leading to slightly lower statistical 
power for certain subgroups in the post-hoc analysis. In 
addition, the incidence rate of endpoint events was also 
relatively low (24.3%). Although we attempted to address 
this issue through fivefold cross-validation, overfitting 
might have occurred. Second, all imaging parameters 
were manually measured, which might have introduced 
errors. Additionally, none of the patients in this study were 
implanted with implantable loop recorders. Therefore, 
continuous monitoring of their heart rhythm during the 
follow-up period was not possible. This potentially led to 
the overlooking of the asymptomatic recurrence of AF in 
these patients. Finally, this study primarily evaluated the 
TyG index of patients at the time of admission, without 
continuously monitoring their blood glucose levels during 
the follow-up period. The cumulative TyG index during 
follow-up may provide a better prediction of AF recurrence. 
Furthermore, the glycemic control status of patients with 
T2DM at admission was not recorded, thus preventing an 
investigation into the relationship between the TyG index 

and glycemic control.

Conclusions

In contrast to models in previous studies, the machine 
learning SVM model in our study integrated the TyG index 
and quantitative CCTA imaging features. This yielded a 
high and improved prediction accuracy for AF recurrence 
after RFCA and could provide clear explanations for 
personalized risk prediction. 
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