Skip to main content
. 2024 Nov 29;14(12):9306–9322. doi: 10.21037/qims-24-1393

Table 4. Predictive performance of the six machine learning models in the validation set for post-RFCA recurrence.

Model AUC (95% CI) Accuracy F1 score Sensitivity PPV NPV
Random forest 0.781 (0.729–0.835) 0.792 0.501 0.427 0.647 0.833
SVM 0.793 (0.782–0.805) 0.804 0.489 0.381 0.710 0.825
KNN 0.702 (0.649–0.747) 0.750 0.379 0.329 0.472 0.806
Gradient boosting 0.759 (0.661–0.837) 0.762 0.425 0.363 0.545 0.814
Decision tree 0.616 (0.549–0.695) 0.704 0.422 0.444 0.413 0.816
XGBoost 0.727 (0.655–0.800) 0.754 0.448 0.410 0.502 0.821

RFCA, radiofrequency catheter ablation; AUC, area under the curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; SVM, support vector machine; KNN, k-nearest neighbor; XGB, extreme gradient boosting.