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Background: Abnormalities of neostriatum have been reported to be implicated in Crohn’s disease (CD). 
However, there are few systematic explorations. We aim to explore the changes that occur in the structure 
and function of the neostriatum and whether these changes are related to the clinical characteristics of CD.
Methods: In this cross-sectional and prospective study, we enrolled 34 CD patients and 31 healthy controls 
(HCs) for analysis. We performed voxel-based morphometry (VBM) and seed-based functional connectivity 
(FC) to evaluate the structural and functional changes in the neostriatum. Correlation analysis was used to 
evaluate the possible relationships between clinical characteristics and neuroimaging findings.
Results: CD patients had significantly increased gray matter volume (GMV) in the bilateral putamen 
compared with HCs. The results showed that CD patients had significantly decreased FC related to the 
putamen-calcarine cortex, putamen-fusiform gyrus, putamen-inferior temporal cortex (ITC), putamen-
parahippocampus, and increased FC associated with the putamen-cuneus/precuneus. Moreover, CD patients 
showed a positive correlation between the GMV in the left putamen and illness duration (r=0.42, P=0.013).
Conclusions: Our study indicated that CD patients had increased GMV and abnormal FC related to 
the putamen. The structural and functional differences could reflect that neostriatum may be linked with 
alterations of aberrant patterns of the default mode network (DMN) and visual processing area.
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Introduction

Several lines of evidence have demonstrated that the 
neostriatum is composed of the caudate nucleus and 
putamen (1-4). As the primary input part of the basal 
ganglia, the neostriatum receives information from the 
cerebral cortex and thalamus. The neostriatum can be 
roughly divided into sensorimotor regions processing 
sensorimotor information, social regions processing 
cognitive information, and regions for reward and 
motivation information (5,6). Specifically, its subregions 
are enrolled in goal-oriented (action result) and habitual 
(stimulus response) learning (7). Previous studies have 
shown that the neostriatum is associated with certain 
disorders, such as Parkinson’s disease, drug addiction, 
Huntington’s disease, depression, and schizophrenia (8,9). 
On the base of brain-gut axis theory, the neostriatum has 
also been found to be involved in gastrointestinal diseases 
including inflammatory bowel diseases (IBDs) as well as 
irritable bowel syndrome (IBS) (10,11).

As one IBD subtype, Crohn’s disease (CD) is characterized 
by repeated attacks of intestinal inflammation, abdominal 
pain, chronic diarrhea, weight loss, etc. (12-14). CD causes 
widespread high-level stress, anxiety and a decline in sleep 
quality (15,16). Worldwide prevalence of CD in adults and 
children is increasing year by year (14,17). The etiology of 
CD is complex and is currently considered to be implicated 
in the interaction of genetic factors, environmental factors 
and changes in intestinal flora (12,17). However, the 
inflammatory response of the gastrointestinal tract can 
not sufficiently explain processes related to psychological 
stress and anxiety, as well as depression (18). In fact, the 
pathophysiology of CD has transcended the gastrointestinal 
tract. There is a two-way exchange of information between 
various visceral signals from the gastrointestinal tract and 
nerve signals in the brain (19). This mechanism may suggest 
that neural abnormalities in brain regions are associated with 
brain-gut axis disorders (18,20).

Recent neuroimaging studies have indicated the complex 
two-way interaction between brain and gut in CD, specially 
related to neostriatum (21-23). Bao et al. found significantly 
changed gray matter volume (GMV) of the putamen, 
globus pallidus, insula and other regions in CD patients 
compared to healthy controls (HCs), and the left insula and 
orbitofrontal cortex were negatively correlated with disease 
duration (24). Li et al. found that the putamen in CD patients 
had higher regional homogeneity (ReHo) values compared 
to those of the HCs (21). Zhang et al. found altered 
functional connectivity (FC) of insula with the caudate 

nucleus, parahippocampus/hippocampus and other brain 
areas in CD patients, and the FC of the parahippocampus/
hippocampus with insula were negatively correlated with 
Crohn’s Disease Activity Index (CDAI) (22). Goodyear 
et al. observed significantly increased activity and FC in 
cognitive and emotional processing brain regions, including 
parts of the limbic system, basal ganglia, and hypothalamus 
of IBD patients compared to HCs, especially the volume 
of the thalamus was positively correlated with C-reactive 
protein (CRP) concentration and was increased in females 
experiencing pain (23). It was also found that the amygdala, 
putamen and other brain regions of CD patients were 
implicated in pro-inflammatory reactions and autonomic 
stress reactions, and regulated changes in stress habits (25). 
Although abnormalities of neostriatum have been reported, 
there is still no detailed research and systematic exposition 
specifically targeting the structure and function of the 
neostriatum in CD patients, which could provide valuable 
evidence to improve our understanding of CD.

The hypothesis of this study is that the changed structure 
in the neostriatum and related intrinsic connectivity could 
be found between CD patients and HCs using voxel-
based morphometry (VBM) and seed-based FC analyses. 
Furthermore, based on structural and functional alterations 
associated with the neostriatum, the relationships could be 
identified between clinical data and these neuroimaging 
findings in CD patients. We present this article in 
accordance with the STROBE reporting checklist (available 
at https://qims.amegroups.com/article/view/10.21037/
qims-23-1603/rc).

Methods

Participants

The study consisted of 65 subjects, including 34 CD 
patients and 31 HCs. CD patients were recruited from 
the Outpatient Clinic of Gastroenterology at the Second 
Affiliated Hospital of Xi’an Jiaotong University. Patients 
with a previous CD diagnosis were contacted by registered 
telephone to determine whether they were willing to 
participate in the experiment for a certain amount of 
monetary compensation, while HCs were recruited through 
advertisement.

CD patients were assessed by i l lness duration, 
Inflammatory Bowel Disease Questionnaire (IBDQ) and 
CDAI (26,27). Visual analog scale (VAS) was used to 
evaluate the pain index. Pain was divided into 11 grades 
ranging from 0 (no pain) to 10 points (maximum pain). 

https://qims.amegroups.com/article/view/10.21037/qims-23-1603/rc
https://qims.amegroups.com/article/view/10.21037/qims-23-1603/rc
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All subjects were assessed with the Hospital Anxiety and 
Depression Scale (HADS) (28). HADS includes two 
parts: HADS-anxiety (HADS-A) and HADS-depression 
(HADS-D). Both HADS-A and HADS-D are composed 
of 7 items, and the score of each item ranges from 0 to 
21 points (score ranges: normal, 0 to 7; mild, 8 to 10; 
moderate, 11 to14; and severe, 15 to 21).

CD has active phase and remission phase, which are 
usually studied in groups in existing studies. The CD 
patients in this study were in remission, so patients 
who had an episode of CD in the past 12 months were 
excluded to avoid confounding the findings. The inclusion 
criteria were based on gastroenterologists at the Second 
Affiliated Hospital of Xi’an Jiaotong University and 
reference to existing literature. CD patients with mild 
disease, especially those with anxiety and depression 
scores of no more than 7, were included in the study to 
prevent the influence of comorbid factors and to reduce 
the potential impact of disease severity on study results. 
CD patients with mild disease may be more representative 
of the pathophysiological processes in the early stages of 
the disease, which would help us better understand the 
mechanisms of disease occurrence and progression.

The inclusion criteria of CD patients were as follows: 
(I) right handedness; (II) between 20 and 45 years of age; 
(III) education years >6 years; (IV) disease remission for 
more than 12 months; (V) CDAI <150; and (VI) HADS-A 
and HADS-D scores ≤7. The exclusion criteria for CD 
patients were as follows: (I) patients with metal implants; 
(II) claustrophobic patients; (III) women in menstruation, 
pregnancy or lactation; (IV) patients who underwent CD-
related abdominal surgery; (V) those who have a history 
of 5-aminosalicylic acid (5-ASA), azathioprine (AZA), 
or psychotropic drug use in the past 3 months; and (VI) 
participants with a history of neurological or psychiatric 
illness.

The basic inclusion criteria for HCs were as follows: 
(I) right handedness; (II) between 20 and 45 years of age; 
(III) education years >6 years; (IV) HADS-A and HADS-D 
scores ≤7; and (V) no abdominal symptoms, intestinal 
transport disorders or abdominal surgery history in the 
past 12 months. HCs performed a basic evaluation to 
ensure they did not have familial psychosis or neurological 
disorders and did not drink alcohol or take drugs 1 week 
prior. And the exclusion criteria for HCs were as follows: (I) 
controls with metal implants; (II) claustrophobic controls; 
(III) women in menstruation, pregnancy, or lactation; and 
(IV) those who have a history of corticosteroids, antitumor 

necrosis factor alpha agent, or psychotropic drug use in the 
past 3 months.

This study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). All examinations 
were performed by specialist gastroenterologists and 
experienced psychiatrists in the Second Affiliated Hospital 
of Xi’an Jiaotong University. The Ethics Committee of the 
Second Affiliated Hospital of Xi’an Jiaotong University in 
China approved all of the procedures of this study (No. 
2020081). Participants were informed of all experimental 
procedures and signed an informed consent form.

Image acquisition

Participants were scanned on a 3.0-T magnetic resonance 
scanner (Signa HDXT, GE Healthcare, Chicago, IL, USA) 
to obtain magnetic resonance imaging (MRI) data. All 
participants were instructed to lie on their backs along a 
pair of foam pads to reduce scanner noise and minimize 
head movement. High-resolution brain structural images 
were obtained with a T1-weighted three-dimensional 
spoiled gradient recall sequence. Sequence parameters were 
as follows: repetition time (TR) =8.78 ms, echo time (TE) 
=2.83 ms, field of view (FOV) =240 mm × 240 mm, matrix 
size =256×256, in-plane resolution =0.94 mm × 0.94 mm, 
slice thickness =1.0 mm (no gaps), flip angle (FA) =12°, and 
slices =150. The resting-state functional MRI (rs-fMRI) 
data were acquired using a gradient-echo echo-planar 
imaging (EPI) sequence with the following parameters: TR 
=2,000 ms, TE =30 ms, FOV =240 mm × 240 mm, matrix 
size =64×64, in-plane resolution =3.75 mm × 3.75 mm, slice 
thickness =3.5 mm (no gaps), FA =90°, and slices =43. All 
subjects were instructed to remain awake and relax with 
their eyes closed throughout the scan. For this purpose, 
the participants received the necessary explanation and 
training before the scan and were questioned after the data 
collection.

Structural MRI data preprocessing

Al l  the  s t ruc tura l  images  were  proces sed  us ing 
computational anatomy toolbox (CAT12) to perform VBM 
analyses. First, structural MRI images were reoriented to the 
anterior commissure by the Montreal Neurological Institute 
(MNI) 152 coordinate system. Next, the images were 
segmented into gray matter, white matter, and cerebrospinal 
fluid (CSF). All gray matter images were normalized to the 
MNI space using the DARTEL method and modulated by 
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the Jacobian determinant of the deformation derived from 
the spatial normalization, avoiding bias in their intensity 
due to the expansion of the region during the distortion 
process. Last, the gray matter images were smoothed with 
a full width at half maximum (FWHM) isotropic Gaussian 
kernel of 6 mm (22,29,30).

FMRI data preprocessing

Data reprocessing of all the original functional images 
was performed with the Data Processing & Analysis for 
Brain Imaging (DPABI) toolkit (version v5.2, http://rfmri.
org/dpabi) based on the MATLAB platform. The data 
underwent processing through the following steps. The 
fMRI data were collected at 180 volumes. To achieve 
magnetization equilibrium, the initial 5 functional volumes 
were discarded. A slice-timing correction was performed to 
adjust for different acquisition time of slices. Head motion 
correction was performed to eliminate movement artifacts 
in the time series. Any fMRI data with excessive head 
movement (translation >2 mm in any plane or rotation >2° 
in any direction) was discarded. All CD patients and HCs 
meet the above requirements. The spatial normalization 
of the realigned functional images into standard MNI152 
space was performed using an EPI template. And the 
normalized functional images were resampled to 3 mm  
× 3 mm × 3 mm. After this, the images were then 
smoothed with a Gaussian kernel with a FWHM of 6 mm. 
Meanwhile, a regression model was utilized to eliminate 

the effects of nuisance variables (including head motion 
parameters from the Friston 24-parameter model, white 
matter signals, and CSF signals) from the time series of 
each voxel. Global signal regression alters the distribution 
of signal correlations in regions of the brain and can induce 
artificial inverse correlations, potentially removing real 
neural signals. Therefore, global signal regression is not 
performed in this step. After detrending the time series, the 
filter with a bandwidth of 0.01–0.1 Hz was used to remove 
the interference of low-frequency drift and high-frequency 
physiological noise.

Statistical analysis

Demographic and clinical data
The Chi-squared test and two-sample t-test were applied to 
estimate differences in the demographic and clinical data, 
as well as the differences of the mean GMV of the caudate 
nucleus and putamen bilaterally between the two groups. 
All analyses were executed with SPSS 19.0 (IBM, Armonk, 
NY, USA). We set significance level at P<0.05.

VBM analysis
We used Statistical Parametric Mapping (SPM12) (http://
www.fil.ion.ucl.ac.uk/spm) to perform a two-sample t-test 
to test for group differences of GMV within the caudate 
nucleus and putamen bilaterally. The regions of the 
caudate nucleus and putamen bilaterally in the automated 
anatomical labeling (AAL) template were shown (Figure 1A).  

Age + sex + TIV + HADSAge + sex + TIV

Putamen

Caudate nucleus

R R R
A B C

Figure 1 The GMV differences between CD patients and HCs in the bilateral neostriatum: (A) the region of the caudate nucleus and 
putamen bilaterally; (B) significant differences in the bilateral putamen between CD patients and HCs (covariates were age, sex and TIV); 
and (C) significant differences in the bilateral putamen between CD patients and HCs (covariates were age, sex, TIV and HADS). R, right; 
TIV, total intracranial volume; HADS, Hospital Anxiety and Depression Scale; GMV, gray matter volume; CD, Crohn’s disease; HCs, 
healthy controls.

http://rfmri.org/dpabi
http://rfmri.org/dpabi
http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
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Covariates including age, sex, and total intracranial volume 
(TIV) were controlled [P<0.05; cluster-level false discovery 
rate (FDR)]. Statistical analysis was performed again after 
HADS was added to the covariate.

Seed-based FC analysis
Different peak values of clusters within the neostriatum 
as assessed by VBM were evaluated as regions of interest 
(ROIs) for seed-based FC analysis. Each ROI was selected 
to create a sphere with a 3 mm radius. The mean blood-
oxygen-level-dependent (BOLD) time course was extracted 
from each ROI, and its Pearson correlation with the time 
course of every voxel in the entire brain was computed 
to generate the resting-state FC map for each subject. 
Finally, we applied a Fisher r-to-z transformation to the 
resting-state FC map to improve normality, resulting in 
the generation of a z-FC map for each subject. Group 
differences of FC between CD patients and HCs were 
tested using two-sample t-tests by SPM12. Age and sex were 
entered as covariates. The FC analysis was reperformed 
with HADS-A and HADS-D scores as additional covariates 
(P<0.05; cluster-level FDR).

Correlation analysis
Different peak values of clusters within the neostriatum as 
assessed by VBM were evaluated as ROIs. Each ROI was 
selected to create a sphere with a 3 mm radius. The mean 
GMV was extracted from each ROI. Pearson correlation 
was used to detect the relationship between the average 

GMV and clinical variables, including VAS, illness duration, 
HADS-A, and HADS-D. Age and sex were included as 
covariates.

Results

Demographics and clinical characteristics result

As shown in Table 1, there were no significantly statistical 
differences by age, sex and weight (P>0.05). However, 
HADS-A and HADS-D scores of CD patients were 
significantly higher (P<0.05).

VBM result

Within the identified neostriatum, group differences were 
found to be located in the bilateral putamen between the 
CD patients and the HCs {left putamen MNI coordinate: 
[(−24, −6, 9), P<0.001]; right putamen MNI coordinate: [(27, 
−9, 9), P<0.001]} (Figure 1B,1C). Peak coordinates of VBM 
results before and after regression HADS were not affected, 
and GMV results are shown in Figure 2.

FC result

The putamen-related FC results are shown in Figure 3 and 
Table 2. Compared with HCs, CD patients had significantly 
decreased FC related to the left putamen-right calcarine 
cortex, left putamen-left fusiform gyrus, left putamen-

Table 1 Clinical and demographic information of CD patients and HCs

Variables CD (n=34) HCs (n=31) P value

Age (years) 30.32±4.89 30.13±3.82 0.860†

Sex (male/female) 26/8 21/10 0.432‡

Weight (kg) 57.12±8.10 60.01±6.89 0.127†

Illness duration (months) 76.06±48.76 – –

CDAI 69.91±39.26 – –

IBDQ 175.90±23.39 – –

VAS 1.23±1.79 – –

HADS-A 6.06±2.71 3.32±2.06 <0.001†***

HADS-D 4.44±2.93 2.87±1.93 0.014†*

Data were expressed as the mean ± SD or number. †, the P value was obtained by two-sample t-test; ‡, the P value was obtained by Chi-
squared; *, P<0.05; ***, P<0.001. CD, Crohn’s disease; HCs, healthy controls; CDAI, Crohn’s Disease Activity Index; IBDQ, Inflammatory 
Bowel Disease Questionnaire; VAS, visual analog scale; HADS-A, Hospital Anxiety and Depression Scale-anxiety; HADS-D, Hospital 
Anxiety and Depression Scale-depression; SD, standard deviation.
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inferior temporal cortex (ITC) as well as right putamen-
bilateral parahippocampus, and increased FC associated 
with the right putamen-right precuneus as well as right 
putamen-left cuneus.

Correlation result

As shown in Figure 4, CD patients had a significant positive 
correlation between the GMV in the left putamen and 
illness duration (r=0.42, P=0.013). However, there was no 
significant correlation between the right putamen and the 
illness duration.

Discussion

In this study, we investigated changes of GMV and FC in 
the neostriatum in CD patients compared with HCs. The 
main findings are as follows: Compared with HCs, (I) CD 
patients had increased GMV in the bilateral putamen; 
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Figure 2 Comparison of GMV in CD patients and HCs at 
peak coordinates. Box represents the quartile range of data. The 
upper boundary of the box is Q3, the lower boundary is Q1, and 
the median inside the box is represented by a line. Whisker: a 
straight line extending from the upper and lower ends of the box 
to represent the maximum and minimum values of the data. ***, P 
value <0.001. CD, Crohn’s disease; HCs, healthy controls; GMV, 
gray matter volume.

Figure 3 Brain regions with significant differences in FC between CD patients and HCs of (A) the left putamen and (B) the right putamen. 
Circles: the activation region where the ROIs are located. R, right; HADS, Hospital Anxiety and Depression Scale; ITC, inferior temporal 
cortex; CD, Crohn’s disease; HCs, healthy controls; FC, functional connectivity; ROIs, regions of interest.
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Table 2 Brain regions showing significantly altered FC between CD patients and HCs

Brain region BA Hem
Peak MNI

Cluster size T value
X Y Z

Seed: L putamen

CD < HCs

Calcarine 18 R 3 −93 12 104 −3.53

Fusiform 18 L −21 −84 −6 63 −3.73

ITC 20 R 39 9 −45 93 −3.92

Seed: R putamen

CD < HCs

Parahippocampus 28 L −21 −3 −27 67 −3.83

35 R 21 −3 −30 79 −4.16

CD > HCs

Cuneus 19 L −9 −84 36 62 3.82

Precuneus 7 R 9 −75 54 82 3.95

FC, functional connectivity; CD, Crohn’s disease; HCs, healthy controls; BA, Brodmann’s area; Hem, hemisphere; MNI, Montreal 
Neurological Institute; X, Y, Z, peak coordinate in the MNI space; ITC, inferior temporal cortex; L, left; R, right.
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Figure 4 Correlation between the illness duration and GMV in the left and right putamen. GMV, gray matter volume.

(II) CD patients had significantly decreased FC related to 
the putamen-calcarine cortex, putamen-fusiform gyrus, 
putamen-ITC, putamen-parahippocampus, and increased 
FC associated with the putamen-cuneus/precuneus; and 
(III) CD patients showed a positive correlation between the 
GMV in the left putamen and illness duration.

Group differences in GMV between CD and HCs

In our study, the increased GMV in the putamen was found 
in CD patients compared with HCs. As the receiving part 

of the neostriatum, the putamen contains various neuronal 
populations of relatively uniform density and plays a 
significant role in motor planning, emotional regulation as 
well as cognition activity. As part of the brain-gut axis, gut 
motor and visceral discomfort information in CD patients 
could activate visceral afferent neurons and transmit to 
the central nervous system, thereby affecting the putamen. 
And putamen also contains a somatotopic representation 
of bodily pain (31). Changed GMV in the putamen may 
reflect increased pain sensitivity in CD patients. Further, 
previous studies have revealed that the putamen-related 
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GMV is affected by cognition activity and is associated with 
the illness duration (32,33). Our results complemented 
the relationship between GMV in the putamen and illness 
duration. Combined with the evidence, it is possible that 
self-reflection, interoceptive stimuli, and visceral discomfort 
in CD patients may be affected by increased GMV in the 
putamen and illness duration. Notably, there were different 
patterns of correlation between GMV and illness duration in 
the left and right putamen. It may be caused by the division 
of labor between left and right putamen in CD patients and 
the connection with different brain networks. It could also 
involve differences in hemispheric specialization, structural 
connectivity, or functional roles of the putamen. And GMV 
in the putamen decreased significantly in patients with  
IBS (34). Studies indicated that ulcerative colitis (UC) 
patients also showed increased GMV in the putamen. This 
may be the characteristic that distinguishes CD and UC 
from other gastroenteric diseases (35).

Group differences in FC between CD and HCs

Compared with HCs, CD patients showed increased 
putamen-cuneus/precuneus FC in our study. The cuneus/
precuneus partakes in the default mode network (DMN) 
(36,37). As one of the functional cores of DMN, the cuneus/
precuneus is involved in higher-level cortical structures and 
broader functions such as information integration related 
to environmental perception and emotional response to 
pain (38,39). It also plays a role in the fields of attention 
and self-awareness (40,41). Meanwhile, abnormalities of the 
DMN have been reported several times in CD (19,42). The 
processing of visceral sensation information caused by CD 
is related to the DMN, especially to the cuneus/precuneus. 
The cuneus/precuneus may integrate visceral information 
including somatic sensory disturbance and expected pain 
of the gastrointestinal disease. The cuneus/precuneus 
responses induced by destructive stimuli may enhance 
processing of self-awareness. Thereby, we speculate that the 
increased FC putamen-cuneus/precuneus may represent 
abnormal perception or abnormal regulation of visceral 
discomfort in CD patients.

Compared with HCs, CD patients had significantly 
decreased FC related to the putamen-calcarine cortex, 
putamen-fusiform gyrus, putamen-ITC, and putamen-
parahippocampus in our study. The calcarine cortex and 
the fusiform gyrus are inner central nodes in the DMN 
and visual network (43,44). The ITC is a central part of the 
tertiary visual association cortex and language expression 

area, associated with visual perception, language, and 
memory functions (45,46). The parahippocampus, located in 
the medial temporal lobe, is the key structure for processing 
declarative memory (47). Damage to the orbital and optic 
nerves has been reported in CD patients (48). And there is 
evidence that CD is associated with verbal abnormalities, 
possibly due to pro-inflammatory cytokines (49).  
Gut inflammation and stress can produce damaging 
messages to the central nervous system, thereby prolonging 
or amplifying the sensitization of visceral afferents. It may 
cause high neuronal activity in endogenous nociceptive 
regulatory areas and central sensory amplification areas and 
could lead to occasional interruption within the temporal 
lobe network (50). We suppose that long-term chronic 
inflammation and abdominal stimulation might cause 
increased pressure on the optic nerve, stimulating the visual 
area and affecting the calcarine cortex and fusiform gyrus. 
In addition, existing literature shows that FC increased in 
the precuneus and FC decreased in the parahippocampal 
region are common in CD patients in the periaqueductal 
gray, insula and whole brain network, which is consistent 
with our results (22,42,51,52). This suggests the widespread 
alteration of DMN in CD patients and its close association 
with subcortical nuclei.

In our study, to a certain extent, emotional factors 
affected the putamen-related FC results but the impact 
was not significant. According to the previous studies, the 
structural differences among several regions including the 
putamen and caudate nucleus were not significant after 
controlling for emotional factors (anxiety and depression) 
(24,35). In addition, the effects of emotional factors on CD-
related brain structures and functions were inconsistent 
(22-24,35). The relationship between the neostriatum and 
emotional factors in CD patients remains to be studied.

Limitations

There are several limitations in this study. First, there 
were no significant GMV differences emerged in the 
caudate nucleus. It might be due to the effects of CD 
being in remission. Moreover, the factors of anxiety and 
depression had no significant effect on the abnormality of 
putamen. Further studies should be applied to assess this 
in the future. The laterality of the putamen also needs 
further investigation. This will require the inclusion of 
different CD populations and more detailed grouping of 
CD patients based on emotional factors. VBM and seed-
based FC analyses have inherent limitations. Whole-brain 
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connectivity analyses or machine learning approaches, could 
provide a more comprehensive understanding of brain 
alterations.

Conclusions

In summary, we found that CD patients had increased 
GMV in the bilateral putamen and changed patterns 
of FC based on the bilateral putamen as ROI. And CD 
patients had a positive correlation between the GMV in left 
putamen and illness duration. These imaging abnormalities 
might be related to aberrant patterns of DMN and visual 
processing area. It is indicated that the putamen might be a 
valuable marker to distinguish CD patients from HCs.
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