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Background: The accurate classification of lung nodules is critical to achieving personalized lung 
cancer treatment and prognosis prediction. The treatment options for lung cancer and the prognosis of 
patients are closely related to the type of lung nodules, but there are many types of lung nodules, and the 
distinctions between certain types are subtle, making accurate classification based on traditional medical 
imaging technology and doctor experience challenging. This study adopts a novel approach, using computed 
tomography (CT) radiomics to analyze the quantitative features in CT images to reveal the characteristics 
of lung nodules, and then employs diversity-weighted ensemble learning to enhance the accuracy of 
classification by integrating the predictive results of multiple models. 
Methods: We extracted lung nodules from the Lung Image Database Consortium image collection (LIDC-
IDRI) dataset and derived radiomics features from the nodules. For the classification tasks of seven types of 
lung nodules, each was split into binary classifications. Two model-building methods were employed: M1 
(equal-weighted voting ensemble classifier) and M2 (diversity-weighted voting ensemble classifier). Models 
were evaluated using 10-fold cross-validation with metrics including the area under the receiver operating 
characteristic curve (AUC), accuracy, specificity, and sensitivity. 
Results: Both methods effectively completed classification tasks. The M2 method outperformed M1, 
particularly in classifying texture, calcification, and the benign and malignant nature of lung nodules. The AUC 
values of the M2 method in the four subclassifications of texture types of lung nodules were 0.9913, 0.8838, 
0.9525, and 0.8845, with the corresponding accuracies of 0.9651, 0.8116, 0.9000, and 0.8284, respectively. In 
the classification of the degree of calcification of lung nodules, the AUC value of the M2 method was 0.9775 
with an accuracy of 0.9642. In the classification of the benign and malignant nature of lung nodules, the 
AUC value of the M2 method was 0.8953 with an accuracy of 0.8168. The combination of CT radiomics and 
diversity-weighted ensemble learning effectively identifies lung nodule types, providing a novel method for the 
precise classification of lung nodules and aiding personalized lung cancer treatment and prognosis prediction.
Conclusions: The combination of CT radiomics and ensemble learning for diversity weighting can be 
well realized to identify the type of lung nodules.
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Introduction

The global prevalence of lung cancer makes it one of the 
most lethal malignancies (1). It begins in the lungs and 
initially develops as a single or multiple nodules that can 
eventually spread to other organs and tissues in the body. 
Lung nodules can be categorized into different nodule types 
based on their shape, margins, and internal features, such 
as lobulated nodules, spiculated nodules, and ground-glass 
nodules (GGNs) (2). Determining the type of nodules is 
crucial for doctors to assess the risk of the nodule becoming 
cancerous and to choose the appropriate personalized 
treatment for the patient (3). In the past two decades, there 
has been a remarkable surge in artificial intelligence (AI) 
technology, leading to an increasing number of researchers 
focusing on investigating computer-assisted diagnostic 
(CAD) systems that integrate AI technology. For example, 
Ni et al. (4) developed an artificial neural network (ANN)-
based model for the classification of eight types of lung 
nodules using computed tomography (CT) images. 
However, training deep learning models with CT images 
requires significant resources and costs, especially for three-
dimensional (3D) medical images. Furthermore, the efficacy 
of deep learning methods heavily relies on large amounts of 
quality data, which are often limited by privacy and ethical 
concerns in medicine.

Radiomics is a technique for analyzing lesions by 
employing digital image processing methods to extract 
high-throughput features from medical images that are 
imperceptible to the human eyes (5,6). In contrast to 
image data, radiomics feature data are commonly stored 
in a tabular format, which offers a more straightforward 
and organized data structure. This format aligns well with 
the mature utilization of traditional machine learning 
algorithms, ensuring enhanced speed and efficiency in 
data processing. Compared to deep learning, traditional 
machine learning algorithms can be effectively trained on 
smaller datasets. For example, Rundo et al. (7) employed 
a combination of radiomics and machine learning 
techniques, which demonstrated relatively low training 
data requirements, training time, and computational power 
costs. Their approach successfully enabled the classification 
of solid versus sub-solid lung nodules as well as non-solid 
versus partially solid lung nodules. The mean area under 
the receiver operating characteristic (ROC) curve (AUC) 
for these two classifications in this study reached 0.89±0.02 
and 0.80±0.18, respectively. This study confirms that 
radiomics combined with machine learning can achieve 

the classification of texture types of lung nodules. Based on 
this, we consider whether the combination of radiomics and 
machine learning can also achieve the classification of more 
lung nodule types, like the study by Ni et al. (4). Recent 
advancements have also explored the broad applications 
of radiomics in lung cancer management. Although the 
primary focus of this study is the classification of nodule 
morphology categories, it is worth noting that radiomics 
and the morphological characteristics of lung nodules 
have also shown potential in other related areas, such as 
predicting lung tumor growth intervals (8,9) and predicting 
lung adenocarcinoma and its subtypes (10,11). Additionally, 
accurately predicting the type of lung nodule (e.g., solid 
or subsolid) further contributes to the advancement of 
such studies. These related studies highlight the versatility 
of radiomics in offering deeper insights into lung 
cancer behavior, thereby supporting early detection and 
personalized treatment approaches.

Accurate classification of different nodule types 
requires the construction of multitasking models with high 
generalisability and robustness. Ensemble learning is a 
powerful strategy in machine learning that improves model 
performance by building and combining multiple learners. 
Ensemble learning is a powerful strategy in machine 
learning that improves model performance by building and 
combining multiple learners. It can effectively integrate the 
advantages of different models when dealing with multiple 
different tasks, thus demonstrating superior generalization 
ability and robustness than a single model.

In summary, the objective of this study is to integrate 
CT radiomics and ensemble learning methods for precise 
classification of seven distinct types of lung nodules, thereby 
providing more efficient and accurate computer-aided 
decision support for lung cancer diagnosis. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-24-1315/rc).

Methods

Dataset

The Lung Image Database Consortium image collection 
(LIDC-IDRI) (12) is an international web-based resource 
containing images and lesion annotations for lung diagnosis, 
lung cancer screening, and chest CT scans, specifically 
designed for the development, training, and evaluation of 
CAD techniques for lung cancer detection and diagnosis. 

https://qims.amegroups.com/article/view/10.21037/qims-24-1315/rc
https://qims.amegroups.com/article/view/10.21037/qims-24-1315/rc
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The dataset includes 1,018 chest CT scans, with a peak 
voltage of 120 to 140 kV and a peak current of 40 to  
624 mA during CT image acquisition. The CT scan images 
are in Digital Imaging and Communications in Medicine 
(DICOM) format, which is the standard image format in 
the medical field. The image size is 512×512 pixels, and the 
pixel values are expressed in Hounsfield units (HU). The 
CT scans that make up the dataset were acquired using the 
following slice thickness settings: 0.6, 0.75, 0.9, 1.0, 1.25, 
1.5, 2.0, 2.5, 3.0, 4.0, and 5.0 mm. The lesions range from 
3 to 30 mm in diameter, and each lesion was independently 
labeled by experienced radiologists. There is no shortage 
of multinodular cases in the CT data, and each nodule 
has been assessed in detail for the type of features (13), 
including malignant potential, sphericity, margin definition, 
spiculation, lobulation, texture, calcification, and internal 
structure. Considering the differences in nodule labeling 
by different physicians, we extracted nodules that obtained 
consensus from at least three physicians in the current 
study. After this screening, the final number of nodules 
identified was 1,426. Specific data on nodule types are 
shown in Table 1. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013).

To address the imbalance in the number of type 
categories among the same lung nodule types in the LIDC-
IDRI dataset, we adopted a hierarchical stratification 
processing strategy. This approach first segments the 
type hierarchically based on the number of nodules. 
Then, it assigns binary classification labels based on the 
characteristics associated with the type itself. For example, 
based on the annotations provided in the original dataset 
for lobulated lung nodules, there are five lobulation grades: 
grade 1 (no lobulation), grade 2 (nearly no lobulation), grade 
3 (medium lobulation), grade 4 (nearly marked lobulation), 
and grade 5 (marked lobulation). A hierarchical framework 
was constructed based on these grades, where grades 1 and 
2 were categorized as “lowly lobulated nodules”, grades 4 
and 5 were categorized as “highly lobulated nodules”, and 
grade 3 was categorized as “moderately lobulated nodules”. 
Furthermore, to achieve precise binary classification, we 
established three sets of binary classification labels based 
on the aforementioned hierarchical stratification outcomes. 
The labels “3 [0]–12 [1]” represent the classification task 
between moderately lobulated and lowly lobulated lung 
nodules, “45 [0]–12 [1]” represent the classification task 
between highly lobulated and lowly lobulated lung nodules, 
and “45 [0]–3 [1]” represents the classification task between 
highly lobulated and moderately lobulated lung nodules. 

Table 2 for further elaboration.
However, even after stratification, the problem of 

imbalance in the number of classification classes among 
classification labels remains prominent. For this reason, we 
further subdivide the classes with larger sample sizes into 
multiple small subsets and train on these subsets separately. 
These small subsets are collectively called the ‘training 
subset’. For example, in the lung nodules sphericity 
classification task, the number of classification classes for 
binary classification is 411 [0] and 985 [1], respectively, with 
a ratio close to 1:2. Therefore, during training, we randomly 
divide the class labeled ‘1’ in this classification dataset into 
two equal parts, forming two small training subsets together 
with the class labeled ‘0’. The number of classification 
classes for the two small training subsets is 441:493 and 
441:491, respectively. The classification performance is 
finalized by calculating the average of the training results of 
each subset. This approach aims to mitigate the impact of 
imbalance in classification label categories on classification 
performance.

Feature processing

CT image pre-processing and region‑of‑interest 
segmentation
To eliminate batch effects in CT images from the LIDC-
IDRI dataset due to differences in institutions and 
equipment, this study employed various standardization 
and correction techniques on the original CT images. 
First, intensity normalization (normalizing all CT image 
intensity values to the range of 0 to 1) and voxel resampling 
(resampling all slice thicknesses to 1 mm) were applied 
to ensure image uniformity. Next, the region of interest 
(ROI) masks required for radiomics feature extraction 
were obtained from the true nodule contour annotations 
in the dataset. Due to variations in contour annotations 
by different physicians, a 50% consistency criterion was 
used to extract the ROI masks. In practical applications, 
3D Slicer (www.slicer.org) can be used for semi-automatic 
segmentation of ROI slices to achieve effective nodule ROI 
extraction.

Feature extraction
In this study, we used the PyRadiomics (5) tool to extract 
radiomics features from lung CT images provided by the 
LIDC-IDRI dataset. This process involves using nodule 
masks and actual nodule information from the dataset. 
We extracted a total of 1,064 features from each case of 

http://www.slicer.org
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Table 1 Distribution of nodule types in the LIDC-IDRI dataset

Annotation of nodule  
type in the dataset

Description Nodule type grading Quantities

Sphericity 3D shape of the nodule 1: linear 1

2: ovoid/linear 67

3: ovoid 373

4: ovoid/round 598

5: round 387

Lobulation Degree of lobulation 1: no lobulation 730

2: nearly no lobulation 363

3: medium lobulation 201

4: near marked lobulation 90

5: marked lobulation 42

Spiculation Degree of spiculation 1: no spiculation 843

2: nearly no spiculation 334

3: medium spiculation 127

4: near marked spiculation 69

5: marked spiculation 53

Texture Nodule texture traits (solid, ground glass, 
or mixed)

1: non-solid/GGO 205

2: non-solid/mixed 65

3: part solid/mixed 115

4: solid/mixed 214

5: solid 827

Margin Description of how well-defined the nodule 
margin is

1: poorly defined 115

2: near poorly defined 194

3: medium margin 186

4: near sharp 399

5: sharp 532

Calcification Pattern of calcification 1: popcorn 0

2: laminated 0

3: solid 100

4: non-central 4

5: central 10

6: absent 1,312

Malignancy Subjective assessment of the likelihood of 
malignancy

1: highly unlikely 127

2: moderately unlikely 164

3: indeterminate 685

4: moderately suspicious 276

5: highly suspicious 174

Internal structure Internal composition of the nodule 1: soft tissue 1,417

2: fluid 3

3: fat 0

4: air 6

LIDC-IDRI, the lung image database consortium image collection; 3D, three-dimensional; GGO, ground glass opacity.
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nodule, which were categorized into three main groups 
based on the filtering status of the image: (I) unfiltered 
features of the original image, 124 in total; (II) features 
obtained by applying Laplacian of Gaussian filtering to 
the original image, 188 in total; and (III) features obtained 
by applying wavelet filtering to the original image, 752 
in total. Further, these features are subdivided into first-
order statistical features (222 in total), 3D shape features  
(17 in total), and higher-order texture features (825 in 
total). The higher-order texture features include gray level 
co-occurrence matrix (GLCM) features (14,15), gray level 
size zone matrix (GLSZM) features (16), gray level run 
length matrix (GLRLM) features (17), neighbouring gray 
tone difference matrix (NGTDM) features (18), gray level 
dependence matrix (GLDM) features (19). More detailed 
information about additional radiomics features and their 
extracted reproducibility can be found at the following link: 
https://pyradiomics.readthedocs.io/en/latest/.

For ease of presentation in this thesis, all feature names 
are abbreviated. For example: the feature name ‘wavelet-
LLL_gldm_DependenceNonUniformity’ is abbreviated to 

‘wav-LLL_gldm_DN’. The feature name consists of three 
parts: (I) filtering status, (II) feature type, and (III) name. 

Image filtering includes diagnostics (CT voxel statistics in 
the region of ROI), abbreviated as diag; original (unfiltered 
original data), abbreviated as org; wavelet-LLL (wavelet 
filtering. All possible combinations of applying either a 
high or a low pass filter in each of the three dimensions, 
respectively. Such as LLL, HHH, HHL...) abbreviated as 
wav-LLL; log-sigma-3-mm-3D (Laplacian of Gaussian 
filtering. Sigma is set to 3 to improve fine textures), 
abbreviated as log-sigma-3; log-sigma-5-mm-3D (Laplacian 
of Gaussian filtering. Sigma is set to 5 to improve rough 
textures), abbreviated as log-sigma-5. 

Feature types include: image-original (CT image before 
resampling), mask-original (nodule mask before resampling), 
image-interpolated (CT image after resampling), mask-
interpolated (nodule mask after resampling), first-order, 
shape, GLCM, GLSZM, NGTDM, GLDM. 

Names include the name of each feature, including 
Energy, Entropy, etc. The abbreviations of the names refer 
to the official PyRadiomics documentation.

Table 2 Binary classification labels

Nodule’s types Nodule type grading [binary label] Quantities Code name

Sphericity 123 [0]–45 [1] 441–985 Sph1

Lobulation 3 [0]–12 [1] 201–1,093 Lob1

45 [0]–12 [1] 132–1,093 Lob2

45 [0]–3 [1] 132–201 Lob3

Spiculation 3 [0]–12 [1] 127–1,177 Spi1

45 [0]–12 [1] 122–1,177 Spi2

45 [0]–3 [1] 122–127 Spi3

Texture 1 [0]–5 [1] 205–827 Tex1

1 [0]–234 [1] 205–394 Tex2

23 [0]–5 [1] 180–827 Tex3

4 [0]–5 [1] 214–827 Tex4

Margin 3 [0]–12 [1] 186–309 Mar1

12 [0]–45 [1] 309–931 Mar2

3 [0]–45 [1] 186–931 Mar3

Calcification 345 [0]–6 [1] 114–1,312 Cal1

Malignancy 123 [0]–45 [1] 976–450 Mal1

Internal structure – – –

A code name is a surrogate name for that classification in this article.

https://pyradiomics.readthedocs.io/en/latest/
https://pyradiomics.readthedocs.io/en/latest/index.html
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Feature pre-processing
The features need to be preprocessed before model training (20).

(I)	 Z-score normalization: after extracting radiomics 
features, Z-score normalization (subtracting the 
mean and dividing by the standard deviation) was 
performed to ensure that different features were 
on the same scale. This approach also effectively 
mitigates the differences introduced by varying 
equipment or imaging protocols.

(II)	 Near-zero variance analysis: near-zero variance 
analysis aims to screen out features that do not 
contribute to the model’s prediction of the target 
category. The key to this approach lies in calculating 
the variances of features and eliminating those with 
minimal variances, thereby enhancing both the 
computational efficiency and predictive accuracy of 
the model.

(III)	 Redundant feature analysis: the purpose of 
performing redundant feature analysis is to 
eliminate redundant features to simplify the model. 
First, we construct the Spearman correlation 
coefficient matrix between features and filter out 
the feature pairs with a more than 90% correlation. 
Linear regression was then utilized to assess 
the predictive power of these features for the 
categorical variable. Finally, we retain the features 
with higher AUC values in the feature pairs. 
This step helps to improve the performance and 
predictive accuracy of the model.

Feature selection
To reduce the complexity of the model, improve the 
computational efficiency, and enhance the prediction 
accuracy of the model, this study applied the least absolute 
shrinkage and selection operator (LASSO) algorithm (21) 
to perform the dimensionality reduction and selection 
of the features. The core of the LASSO algorithm lies in 
introducing the L1 penalty term in the loss function, which 
enables the constraint and compression of the variable 
weights in the model. In the implementation process, we 
have chosen the LassoCV tool provided by the Sklearn 
library (22). The tool calculates the weight coefficients of 
each feature through the LASSO model with a value range 
between −1 and 1. The size of the absolute value of the 
feature weights directly reflects the importance of their 
contribution to the model; the larger the absolute value, 
the higher the contribution of the feature in the model. 
Finally, the downscaling and feature selection process is 

completed by retaining only the features with non-zero 
weights.

Classifier

The classification of the given data into specific classes 
necessitates the utilization of classifiers. Choosing the 
right classifier or the right combination of classifiers is 
an important part of building a classification model. The 
present study employed a weighted voting mechanism 
to integrate five distinct classifiers, thereby establishing 
an ensemble classifier. This ensemble approach aims to 
synthesize the unique advantages of each base classifier, and 
by weighing their prediction results, it improves the overall 
classification performance while allowing it to be better 
adapted to the seven different classification tasks in this 
paper.

Base classifiers
In the field of machine learning, support vector machine 
(SVM) (23) is a supervised learning algorithm for data 
classification that finds the optimal hyperplane. The core 
principle is to construct one or more hyperplanes to achieve 
linear differentiability of data in the feature space.

The K-nearest neighbors (KNN) algorithm (24), as 
an instance-based learning method, is based on the core 
principle of predicting the class of a sample by considering 
the classification information from its k nearest neighbors 
in the feature space.

Linear discriminant analysis (LDA) (25), also known as 
Fisher’s discriminant analysis, aims to achieve maximum 
separability between classes. This method introduces a 
projection surface. Samples are mapped onto this surface, 
and their category is determined based on their resulting 
projection points.

Random forest (RF) (26), an ensemble learning 
algorithm, predicts by building multiple decision trees from 
bootstrapped dataset samples. Each tree splits on a subset 
of features selected randomly at each node, with the final 
prediction derived by aggregating individual tree outcomes 
through voting or averaging. This method extends and 
optimizes the Bagging approach (27).

eXtreme gradient boosting tree (XGBoost) (28), an 
advanced form of gradient boosting decision tree (GBDT) 
(29,30), enhances the traditional framework by adding 
regularization to prevent overfitting. Unlike GBDT, which 
uses a greedy algorithm to explore all split points, XGBoost 
employs an approximate greedy algorithm, improving 
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efficiency by sorting eigenvalues and selecting splits based 
on quartiles. With parallel processing for faster split finding, 
XGBoost excels in speed and performance on large datasets.

Table 3 shows the parameters commonly used for the five 
base classifiers and the values at which these parameters 
were set in this paper.

Diversity-ensemble classifier
The fundamental concept of ensemble learning (31) is to 
construct and integrate multiple classifiers to accomplish 
diverse tasks. With ensemble learning, it is often possible 
to achieve superior performance over a single classifier. 
In ensemble learning, a good ensemble strategy is crucial, 

and different learning tasks may require different ensemble 
strategies. For numerical outputs, common ensemble 
methods include simple averaging and weighted averaging. 
On the other hand, for classification tasks, the voting 
method is typically employed for the ensemble. Voting 
methods can be further subdivided into absolute majority, 
relative majority, and weighted voting methods. Among 
them, the voting for class label classification is called hard 
voting, while the voting for class probability is called soft 
voting. In soft voting, the weighted voting method is often 
used. In this study, we adopted the weighted voting method 
as the ensemble strategy for the ensemble classifier.

In the weighted voting method, accurately determining 
the weighting factor is the most critical issue. In common 
ensemble learning algorithms, the confidence method and 
error rate weighting method are commonly employed 
to assign weights to the base classifiers, such as the RF 
algorithm, which is a representative example of an error 
rate weighting method. These methods can be collectively 
referred to as objective weighting methods. There is also 
a subjective weighting method, such as the hierarchical 
weighting method. Due to the differences in the mechanism 
and parameter settings of different base classifiers, it is more 
difficult for the subjective weighting method to assess the 
importance of each base classifier accurately. The objective 
weighting method mainly sets the weights based on the 
fluctuation of the performance index, but the uncertainty 
of the output of the base classifiers is significant, which 
leads to the lack of precision of the weights obtained by 
this type of method. Especially when the performance 
difference between base classifiers is slight, it is difficult 
for the confidence and error rate weighting methods to 
perform effective weighting. To compensate for these 
shortcomings, we used diversity weighting in this study. The 
diversity weighting method assigns weights by evaluating 
the uniqueness of individual base classifiers and their 
complementary roles in the overall decision. The diversity 
weighting method focuses on the performance differences 
between base classifiers and avoids simply favoring the best-
performing base classifiers.

The effectiveness of the diversity weighting method in 
ensemble learning has been demonstrated with favorable 
outcomes. For example, Yang et al. (32) proposed an 
ensemble classification method based on accuracy and 
diversity. Experiments on the UC Irvine Machine Learning 
Repository show that the method can achieve good 
classification performance. 

In this study, we have chosen five classifiers, namely 

Table 3 Base classifier parameter settings

Classifiers Parameter Value

SVM Regularization parameter: C exp−3–exp3*

Kernel linear, rbf, sigmoid*

Class_weight balanced

Gama scale, auto*

KNN N_neighbors 1–21*

Power parameter for the 
Minkowski metric: P

1, 2*

Weight uniform, distance*

LDA Solver lsqr, eigen*

Shrinkage auto

RF N_estimators 50–1,000*

Max_depth 1–20*

Criterion gini, entropy*

Max_features sqrt, log2*

XGBoost Colsample_bytree 0.6–1*

Subsample 0.6–1*

Gamma 0–0.5*

Learning_rate 0.01–0.15*

Max_depth 1–13*

Min_child_weight 1–10*

N_estimators 50–1,000*

Objective Binary: logistic

* the parameter was optimized using grid search in the 
experiment. SVM, support vector machine; KNN, k-nearest 
neighbors; LDA, linear discriminant analysis; RF, random forest; 
XGBoost, extreme gradient boosting tree.
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SVM, KNN, LDA, RF, and XGBoost, as the base classifiers 
and use the weighted voting method to integrate them and 
build the ensemble classifiers. In the weighting process, we 
use the diversity expressed by the disagreement measure (33) 
as the weights of the weighted voting method. The weights 
are calculated (34) as follows:

( )
1 1 1

/
n n n

i ij ij
j i j

c dval dvalω
= = =

=∑ ∑∑ 	 [1]

where ci denotes the base classifier, n denotes the number of 
base classifiers, and dvalij denotes the number of cj classified 
incorrectly and ci classified correctly.

Model building and evaluation

Model building
This study aims to enhance the model’s performance in 
classifying different types of lung nodules by integrating 
radiomics features with a diversity-weighted voting 
ensemble classifier. Based on this, we used two different 
model construction methods to build the corresponding 
nodule-type classification models. And analyzed and 
compared the modeling results of these models. The two 
modeling methods are notated as M1: the selected features 
are inputted into the equal-weighted voting ensemble 
classifier for classification (this method is used as a baseline 
to compare with improved methods); M2: the selected 
features are inputted into the diversity-weighted voting 
ensemble classifier for classification.

The overall flowchart of this study is shown in  
Figure 1. During the experimental process, we employed a 
10-fold cross-validation method. Specifically, the training 
subset for each task was randomly divided into 10 equal 
subsets to ensure consistency in data distribution. In ten 
iterations, one subset was selected as the test set in each 
iteration, while the remaining nine subsets were combined 
to serve as the training set. Within the training set, 10% of 
the data was randomly chosen as the validation set, which 
was used to generate weighted voting weights. It should 
be noted that both the validation set and the test set were 
excluded from feature selection; their roles were confined 
to weight generation and model performance validation. 
The performance metrics of the model on the test set 
were recorded in each iteration. Finally, by calculating the 
average of the model performance metrics across all test 
sets, a comprehensive evaluation of the model performance 
was obtained.

Evaluation metrics
In this study, we used accuracy (ACC), AUC, specificity 
(SP), and sensitivity (SN) as evaluation metrics to assess 
the performance of the classification model quantitatively. 
Accuracy is the most intuitive performance metric, which is 
the ratio of the number of correctly classified samples to the 
total number of samples. The specificity metric evaluates 
the model’s capacity to correctly identify negative samples 
(non-target classes), while sensitivity measures its ability 
to accurately recognize positive samples (target classes). 
These metrics constitute a comprehensive evaluation 
system to ensure a comprehensive quantitative assessment 
of the accuracy and effectiveness of the classification model. 
According to the confusion matrix (35), they are calculated 
as follows:

tp tnACC
tp fp tn fn

+
=

+ + + 	 [2]

tnSpecificity
tn fp

=
+

	 [3]

tpSensitivity
tp fn

=
+ 	 [4]

where tp (true positive) denotes an actual positive sample 
and a positive prediction; fp (false positive) denotes an actual 
negative sample but a positive prediction; fn (false negative) 
denotes an actual positive sample but a negative prediction; 
and tn (true negative) denotes an actual negative sample and 
a negative prediction as well.

AUC measures the overall ability of a classifier to 
discriminate between positive and negative samples (36), 
and its value ranges from 0.5 to 1. The closer the AUC 
approaches 0.5, the model exhibits limited discriminatory 
capacity among samples; conversely, as the AUC approaches 
1, the model demonstrates a robust ability to discriminate 
between samples. It is calculated by the following formula:

( )1 / 2p p p

p n

s n n
AUC

n n
− +

= 	 [5]

where sp denotes the rank sum of positive samples, np and nn 
denote the number of positive and negative samples.

In this study, to evaluate the statistical significance of 
the differences in the AUC between the two models, the 
DeLong test (37) was utilized. This test is specifically 
designed to compare the AUCs of correlated ROC curves, 
thereby providing a robust method for assessing the 
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performance disparities in models concerning their ability 
to discriminate between binary outcomes. Furthermore, to 
assess the significance of differences in accuracy, sensitivity, 
and specificity between the two models, the Wilcoxon 
signed-rank test (38) was employed. This non-parametric 
test is favorable for paired data and is particularly useful 
in situations where the normality assumption may not 
hold. By implementing these statistical tests, the study 
ensures a rigorous evaluation of the models’ comparative 
performance metrics. In the context of assessing the 
statistical significance between models, a P value threshold 
of less than 0.05 was adopted. Should the P value derived 
from the DeLong or Wilcoxon signed-rank tests fall below 

this threshold, it is interpreted as indicative of a statistically 
significant difference in the respective performance metrics 
under consideration between the two models.

To comprehensively assess the importance of input 
features for classifiers, we adopted three distinct evaluation 
methods: permutation importance, LASSO coefficient (LC), 
and mutual information approaches. 

(I)	 Permutation importance: this method involves 
randomly shuffling the values of each feature and 
then calculating the impact of this perturbation 
on model performance (such as a decrease in 
accuracy) to assess the importance of features. If 
the model’s performance significantly deteriorates 

Figure 1 Experimental process. SVM, support vector machine; LDA, linear discriminant analysis; KNN, K-nearest neighbors; RF, 
random forest; XGBoost, extreme gradient boosting tree; ROC, receiver operating characteristic; AUC, area under the ROC curve; PIS, 
Permutation Importance score; LC, LASSO coefficient; MIS, mutual information score; L, low; H, high; LASSO, least absolute shrinkage 
and selection operator.
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after shuffling a particular feature, then that feature 
is considered important.

(II)	 LC: in this study, we utilized the coefficients 
generated by the LASSO algorithm during the 
feature selection process. The larger the coefficient, 
the greater the contribution of the feature to 
the model; hence, the feature is deemed more 
important.

(III)	 Mutual information: mutual information measures 
the mutual dependence between two variables. 
In evaluating feature importance, the importance 
of a feature is assessed by calculating the mutual 
information value between each feature and the 
target variable. A high mutual information value 
indicates a strong mutual dependence between the 
feature and the target variable, thus making the 
feature very important for predicting the target 
variable.

In this paper, the normalized importance scores obtained 
by these three methods are referred to as Permutation 
Importance score (PIS), LC, and mutual information score 
(MIS), respectively.

Operations such as feature extraction, model establishment, 
and statistical comparison were all based on the Python 
(https://www.python.org/), Scikit-learn (https://scikit-
learn.org/), and PyRadiomics libraries (https://pyradiomics.
readthedocs.io/en/latest/index.html) of the Anaconda3 
software platform (https://www.anaconda.com).

Results

Tables 4-10 demonstrate the evaluation results of the lung 
nodule type classification models constructed by the M1 and 
M2 methods. Additionally, we use the Hosmer-Lemeshow 
test statistic (Phl) to show the model’s calibration. If Phl is 
>0.05, it indicates that the model is well-calibrated. Part A 
in Figures 2-8 displays the ROC curves of M1 and M2 for 
each classification task. Part B in Figures 2-8 displays the 
feature importance scores of the top five features ranked 
according to the average of the three values, PIS, LC, 
and MIS, in each classification task. If the average value 
of a feature is greater than 0.75, we consider it to have 
high feature importance and mark it with an asterisk (*).  
Figure 8C demonstrates the decision curve analysis in the 

Table 4 Sphericity classification results

Class  
code

Method AUC (95% CI) ACC (95% CI) SN (95% CI) SP (95% CI) Phl

P value  
(AUC, ACC, SN, SP)

Sph1 M1 0.7109 (0.69, 0.73) 0.6545 (0.63, 0.67) 0.6861 (0.63, 0.74) 0.6193 (0.58, 0.65) 0.10 0.07, 0.002, 0.08, 0.37

M2 0.7154 (0.69, 0.74) 0.6669 (0.63, 0.69) 0.7014 (0.64, 0.75) 0.6284 (0.58, 0.66) 0.11

M1: equal-weighted ensemble; M2: diversity-weighted ensemble. AUC, area under the receiver operating characteristic curve; CI, 
confidence interval; Phl, Hosmer-Lemeshow test statistic; ACC, accuracy; SN, sensitivity; SP, specificity. 

Table 5 Lobulation classification results

Class 
code

Method AUC (95% CI) ACC (95% CI) SN (95% CI) SP (95% CI) Phl

P value  
(AUC, ACC, SN, SP)

Lob1 M1 0.7612 (0.74, 0.78) 0.6987 (0.65, 0.75) 0.7300 (0.65, 0.81) 0.6640 (0.60, 0.73) 0.13 0.02, 0.001, 0.04, 0.01

M2 0.7662 (0.75, 0.79) 0.7135 (0.67, 0.76) 0.7484 (0.68, 0.82) 0.6750 (0.61, 0.74) 0.30

Lob2 M1 0.8109 (0.79, 0.83) 0.7355 (0.68, 0.79) 0.7666 (0.69, 0.85) 0.7029 (0.63, 0.77) 0.39 0.0003, 0.0005, 0.006, 
0.004

M2 0.8191 (0.80, 0.84) 0.7631 (0.71, 0.82) 0.7864 (0.71, 0.87) 0.7385 (0.67, 0.81) 0.41

Lob3 M1 0.5820 (0.53, 0.64) 0.5709 (0.50, 0.64) 0.3697 (0.26, 0.48) 0.7265 (0.62, 0.83) 0.13 0.01, 0.03, 0.01, 0.39

M2 0.6004 (0.55, 0.66) 0.5926 (0.51, 0.68) 0.4146 (0.29, 0.54) 0.7308 (0.62, 0.84) 0.28

M1: equal-weighted ensemble; M2: diversity-weighted ensemble. AUC, area under the receiver operating characteristic curve; CI, 
confidence interval; Phl, Hosmer-Lemeshow test statistic; ACC, accuracy; SN, sensitivity; SP, specificity.

https://www.python.org/
https://scikit-learn.org/
https://scikit-learn.org/
https://pyradiomics.readthedocs.io/en/latest/index.html
https://pyradiomics.readthedocs.io/en/latest/index.html
https://www.anaconda.com
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Table 6 Spiculation classification results

Class 
code

Method AUC (95% CI) ACC (95% CI) SN (95% CI) SP (95% CI) Phl

P value (AUC, ACC, 
SN, SP)

Spi1 M1 0.7723 (0.75, 0.79) 0.7050 (0.64, 0.77) 0.7239 (0.64, 0.80) 0.6853 (0.59, 0.78) 0.46 0.0001, 0.0006, 
0.0009, 0.0007

M2 0.7855 (0.77, 0.80) 0.7275 (0.66, 0.80) 0.7454 (0.66, 0.83) 0.7095 (0.61, 0.81) 0.62

Spi2 M1 0.8079 (0.79, 0.83) 0.7398 (0.69, 0.79) 0.7781 (0.70, 0.86) 0.6981 (0.63, 0.77) 0.36 0.0001, 0.0001, 
0.02, 0.0001

M2 0.8185 (0.80, 0.84) 0.7610 (0.71, 0.81) 0.7943 (0.72, 0.87) 0.7250 (0.65, 0.80) 0.58

Spi3 M1 0.5304 (0.44, 0.62) 0.5026 (0.39, 0.61) 0.5055 (0.39, 0.62) 0.5000 (0.36, 0.64) 0.06 0.03, 0.04, 0.1, 0.34

M2 0.5627 (0.48, 0.65) 0.5721 (0.47, 0.67) 0.5888 (0.55, 0.62) 0.5577 (0.38, 0.74) 0.06

M1: equal-weighted ensemble; M2: diversity-weighted ensemble. AUC, area under the receiver operating characteristic curve; CI, 
confidence interval; Phl, Hosmer-Lemeshow test statistic; ACC, accuracy; SN, sensitivity; SP, specificity.

Table 7 Texture classification results

Class  
code

Method AUC (95% CI) ACC (95% CI) SN (95% CI) SP (95% CI) Phl

P value (AUC, 
ACC, SN, SP)

Tex1 M1 0.9920 (0.98, 0.99) 0.9596 (0.94, 0.98) 0.9660 (0.94, 0.99) 0.9530 (0.92, 0.98) 0.07 0.4, 0.006, 0.053, 
0.05

M2 0.9913 (0.98, 0.99) 0.9651 (0.95, 0.98) 0.9720 (0.95, 0.99) 0.9580 (0.93, 0.99) 0.15

Tex2 M1 0.8784 (0.86, 0.89) 0.7929 (0.75, 0.84) 0.8123 (0.75, 0.87) 0.7742 (0.70, 0.85) 0.21 0.01, 0.001, 0.06, 
0.005

M2 0.8838 (0.87, 0.90) 0.8116 (0.77, 0.86) 0.8257 (0.77, 0.88) 0.7982 (0.73, 0.87) 0.31

Tex3 M1 0.9501 (0.94, 0.96) 0.8844 (0.85, 0.92) 0.8963 (0.86, 0.94) 0.8710 (0.82, 0.92) 0.35 0.88, 0.001, 0.01, 
0.018

M2 0.9525 (0.94, 0.96) 0.9000 (0.87, 0.93) 0.9095 (0.87, 0.95) 0.8892 (0.84, 0.94) 0.36

Tex4 M1 0.8799 (0.86, 0.90) 0.8034 (0.75, 0.85) 0.7871 (0.71, 0.87) 0.8194 (0.76, 0.88) 0.38 0.1, 0.0008, 
0.002, 0.04

M2 0.8845 (0.86, 0.91) 0.8284 (0.78, 0.87) 0.8251 (0.75, 0.90) 0.8318 (0.76, 0.90) 0.95

M1: equal-weighted ensemble; M2: diversity-weighted ensemble. AUC, area under the receiver operating characteristic curve; CI, 
confidence interval; Phl, Hosmer-Lemeshow test statistic; ACC, accuracy; SN, sensitivity; SP, specificity.

Table 8 Margin classification results

Class 
code

Method AUC (95% CI) ACC (95% CI) SN (95% CI) SP (95% CI) Phl

P value (AUC, 
ACC, SN, SP)

Mar1 M1 0.7433 (0.71, 0.78) 0.6990 (0.65, 0.75) 0.6198 (0.54, 0.70) 0.7642 (0.69, 0.84) 0.26 0.04, 0.49,  
0.65, 0.9

M2 0.7522 (0.72, 0.79) 0.7048 (0.65, 0.76) 0.6296 (0.54, 0.72) 0.7665 (0.69, 0.84) 0.51

Mar2 M1 0.9335 (0.92, 0.94) 0.8607 (0.83, 0.89) 0.8691 (0.83, 0.91) 0.8524 (0.81, 0.89) 0.12 0.1, 0.01, 0.15, 
0.05

M2 0.9352 (0.92, 0.95) 0.8699 (0.84, 0.90) 0.8745 (0.83, 0.92) 0.8653 (0.82, 0.91) 0.61

Mar3 M1 0.8300 (0.81, 0.85) 0.7560 (0.72, 0.79) 0.7600 (0.69, 0.83) 0.7515 (0.69, 0.81) 0.31 0.0009, 0.001, 
0.16, 0.0013

M2 0.8371 (0.82, 0.86) 0.7732 (0.73, 0.81) 0.7696 (0.71, 0.83) 0.7764 (0.71, 0.84) 0.39

M1: equal-weighted ensemble; M2: diversity-weighted ensemble. AUC, area under the receiver operating characteristic curve; CI, 
confidence interval; Phl, Hosmer-Lemeshow test statistic; ACC, accuracy; SN, sensitivity; SP, specificity.
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Table 9 Calcification classification results

Class 
code

Method AUC (95% CI) ACC (95% CI) SN (95% CI) SP (95% CI) Phl

P value  
(AUC, ACC, SN, SP)

Cal1 M1 0.9764 (0.97, 0.98) 0.9500 (0.92, 0.98) 0.9618 (0.92, 1) 0.9375 (0.89, 0.98) 0.41 0.26, 0.0001, 0.0008, 
0.0007

M2 0.9775 (0.97, 0.98) 0.9642 (0.94, 0.99) 0.9763 (0.95, 1) 0.9512 (0.91, 0.99) 0.54

M1: equal-weighted ensemble; M2: diversity-weighted ensemble. AUC, area under the receiver operating characteristic curve; CI, 
confidence interval; Phl, Hosmer-Lemeshow test statistic; ACC, accuracy; SN, sensitivity; SP, specificity.

Table 10 Malignancy classification results

Class 
code

Method AUC (95% CI) ACC (95% CI) SN (95% CI) SP (95% CI) Phl

P value  
(AUC, ACC, SN, SP)

Mal1 M1 0.8937 (0.88, 0.91) 0.8088 (0.79, 0.83) 0.8133 (0.78, 0.85) 0.8040 (0.77, 0.84) 0.13 0.15, 0.01,  
0.19, 0.07

M2 0.8953 (0.88, 0.91) 0.8168 (0.80, 0.84) 0.8195 (0.79, 0.86) 0.8140 (0.78, 0.84) 0.25

M1: equal-weighted ensemble; M2: diversity-weighted ensemble. AUC, area under the receiver operating characteristic curve; CI, 
confidence interval; Phl, Hosmer-Lemeshow test statistic; ACC, accuracy; SN, sensitivity; SP, specificity.

Figure 2 ROC curves and importance scores of the top five features ranked by average value in the sphericity classification task. (A) ROC 
for each model in the Sph1 classification. (B) The feature importance scores for the Sph1 classification. * denotes that the average values 
of PIS, LC, and MIS for that feature are greater than 0.75. ROC, receiver operating characteristic; AUC, area under the ROC curve; PIS, 
permutation importance score; LC, LASSO coefficient; MIS, mutual information score; L, low; H, high; LASSO, least absolute shrinkage 
and selection operator.

benign and malignant classification of lung nodules.

Sphericity

In the lung nodules sphericity classification task, we 
focus on a single classification problem, i.e., efficiently 
distinguishing between ellipsoid-biased and round-biased 

nodules. This task is denoted as Sph1. Table 4 shows the 
evaluation results. Figure 2B shows the importance scores of 
the features. The ROC is shown in Figure 2A.

Lobulation

In this study, we divided the task of classifying the degree 
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Figure 3 ROC curves and importance scores of the top five features ranked by average value in the lobulation classification task. (A1, A2, 
A3) ROC for each model in the Lob1, Lob2, and Lob3 classifications. (B1, B2, B3) The feature importance scores for the Lob1, Lob2, and 
Lob3 classifications. * denotes that the average values of PIS, LC, and MIS for that feature are greater than 0.75. ROC, receiver operating 
characteristic; AUC, area under the ROC curve; PIS, permutation importance score; LC, LASSO coefficient; MIS, mutual information 
score; L, low; H, high; MCC, maximal correlation coefficient; GLNN, gray level non-uniformity normalized; LASSO, least absolute 
shrinkage and selection operator. 

of lobulation of lung nodules into three separate binary 
classification tasks named Lob1, Lob2, and Lob3, according 
to the degree of nodule lobulation given in the original 
dataset. Lob1 aims to distinguish moderately lobulated 
nodules from lowly lobulated nodules, Lob2 aims to 
distinguish highly lobulated nodules from lowly lobulated 
nodules, and Lob3 aims to distinguish highly lobulated 
nodules from moderately lobulated nodules. Table 5 shows 
the evaluation results. Figure 3B shows the importance 
scores of the features. The ROC is shown in Figure 3A.

Spiculation

Similarly, we divided the task of classifying the degree 
of spiculation of lung nodules into three separate binary 

classification tasks named Spi1, Spi2, and Spi3, according 
to the degree of nodule spiculation given in the original 
dataset. Spi1 aims to distinguish moderately spiculated 
nodules from lowly spiculated nodules, Spi2 aims to 
distinguish highly spiculated nodules from lowly spiculated 
nodules, and Spi3 aims to distinguish highly spiculated 
nodules from moderately spiculated nodules. Table 6 shows 
the evaluation results. Figure 4B shows the importance 
scores of the features. The ROC is shown in Figure 4A.

Texture

We divided the task of lung nodule texture classification 
into four separate binary classification tasks named Tex1, 
Tex2, Tex3, and Tex4, according to the nodule texture 
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Figure 4 ROC curves and importance scores of the top five features ranked by average value in the spiculation classification task. (A1, A2, 
A3) ROC for each model in the Spi1, Spi2, and Spi3 classifications. (B1, B2, B3) The feature importance scores for the Spi1, Spi2, and 
Spi3 classifications. * denotes that the average values of PIS, LC, and MIS for that feature are greater than 0.75. ROC, receiver operating 
characteristic; AUC, area under the ROC curve; PIS, permutation importance score; LC, LASSO coefficient; MIS, mutual information score; L, 
low; H, high; SAE, small area emphasis; MCC, maximal correlation coefficient; LASSO, least absolute shrinkage and selection operator.

information given in the original dataset. Tex1 aims to 
distinguish pure GGNs from solid nodules, Tex2 aims to 
distinguish pure GGNs from mixed GGNs, Tex3 aims to 
distinguish mixed GGNs from solid nodules, and Tex4 
focuses on the distinguishing of micro-mixed GGNs [the 
LIDC-IDRI dataset provides labels (solid/mixed)] from 
solid nodules. Table 7 shows the evaluation results. Figure 5B 
shows the importance scores of the features. The ROC is 
shown in Figure 5A.

Margin

For the classification of margin clarity in lung nodules, we 
divided this classification task into three separate binary 
classification tasks named Mar1, Mar2, and Mar3, according 
to the degree of nodule margin clarity given in the original 

dataset. Mar1 aims to distinguish moderately defined 
margin nodules from lowly defined margin nodules, Mar2 
aims to distinguish lowly defined margin nodules from 
well-defined margin nodules, and Mar3 aims to distinguish 
moderately defined margin nodules from well-defined 
margin nodules. Table 8 shows the evaluation results.  
Figure 6B shows the importance scores of the features. The 
ROC is shown in Figure 6A.

Calcification

In the task of classifying the degree of calcification in 
lung nodules, we focus on a single classification problem, 
i.e., effectively distinguishing calcified nodules from 
non-calcified nodules. And this task is denoted as Cal1. 
Table 9 shows the evaluation results. Figure 7B shows the 
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importance scores of the features. The ROC is shown in 
Figure 7A.

Malignancy

In this study, we denoted the classification of lung nodules’ 
malignancy as Mal1. The binary classification labels were 
divided according to the malignant grades of nodules given 
by the original dataset. The first three grades were classified 
as benign nodules, and the last two grades were classified 
as malignant nodules. Table 10 shows the evaluation results. 
Figure 8B shows the importance scores of the features. ROC 
is shown in Figure 8A. Decision curve analysis (DCA) is 
shown in Figure 8C.

Discussion

Low-dose CT (LDCT) screening can detect early lung 
cancer and reduce lung cancer mortality (39). In clinical 
practice, radiologists use superficial features (e.g., nodule 
size, margins, shape, etc.) on CT scans to make disease 

diagnoses. However, the information that these features 
can bring is limited, and it is difficult to make the diagnosis 
more accurate. CT radiomics research involves extracting 
high-throughput digital image features imperceptible to the 
human eye from CT scan results, followed by processing 
and analysis of these features to predict a reference 
outcome. This prediction can be utilized by doctors in 
conjunction with their own experience to enhance the 
accuracy of disease diagnosis. At present, it has been 
proved that radiomics has a good application prospect in 
the prediction of benign and malignant lung nodules, the 
differentiation of lung tumor subtypes, and the prognosis 
analysis of lung cancer (40).

Several recent studies have demonstrated the superiority 
of using radiomics to classify lung nodules. For example, 
Gupta et al. (41) extracted radiomics features from the 
LIDC-IDRI dataset and, after feature selection, utilized 
seven classifiers, such as decision tree, SVM, and Bayesian 
classifier, to build a classification model for distinguishing 
between benign and malignant lung nodules. The highest 
AUC of 0.96 and ACC of 0.908 were finally achieved. Xu 

Figure 5 ROC curves and importance scores of the top five features ranked by average value in the texture classification task. (A1, A2, A3, A4) 
ROC for each model in the Tex1, Tex2, Tex3, and Tex4 classifications. (B1, B2, B3, B4) The feature importance scores for the Tex1, Tex2, Tex3, 
and Tex4 classifications. * denotes that the average values of PIS, LC, and MIS for that feature are greater than 0.75. ROC, receiver operating 
characteristic; AUC, area under the ROC curve; PIS, permutation importance score; LC, LASSO coefficient; MIS, mutual information score; L, 
low; H, high; RMS, root mean squared; LASSO, least absolute shrinkage and selection operator; RE, run entropy.
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Figure 6 ROC curves and importance scores of the top five features ranked by average value in the margin classification task. (A1, A2, A3) 
ROC for each model in the Mar1, Mar2, and Mar3 classifications. (B1, B2, B3) The feature importance scores for the Mar1, Mar2, and 
Mar3 classifications. * denotes that the average values of PIS, LC, and MIS for that feature are greater than 0.75. ROC, receiver operating 
characteristic; AUC, area under the ROC curve; PIS, permutation importance score; LC, LASSO coefficient; MIS, mutual information 
score; L, low; H, high; DV, dependence variance; LASSO, least absolute shrinkage and selection operator.

Figure 7 ROC curves and importance scores of the top five features ranked by average value in the calcification classification task. (A) ROC 
for each model in the Cal1 classification. (B) The feature importance scores for the Cal1 classification. * denotes that the average values of 
PIS, LC, and MIS for that feature are greater than 0.75. ROC, receiver operating characteristic; AUC, area under the ROC curve; PIS, 
permutation importance score; LC, LASSO coefficient; MIS, mutual information score; L, low; H, high; LASSO, least absolute shrinkage 
and selection operator. 
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et al. (42) used radiomics features to establish three models 
to classify lung nodules’ benign, malignant, and invasive 
nature. Their study achieved an AUC of up to 0.89. Jing  
et al. (43) developed a model to identify lung nodules’ 
benign and malignant nature based on radiomics combined 
with LASSO and multivariate logistic regression. The AUC 
on the validation set achieved a score of 0.8454. Garau  
et al. (44) used radiomics to develop a LASSO-SVM model 
and an ANN model to predict the degree of malignancy of 
lung nodules. Both models were able to achieve an AUC of 
more than 0.89.

Although all of the above studies have used radiomics 
features to build models, there are obvious limitations in 
the choice of classification algorithms. Specifically, these 
studies usually use only a single classification algorithm for 
model training and do not take advantage of the potential 

advantages of the combination of multiple algorithms to 
improve model performance. In contrast, this study uses 
a diversity-weighted ensemble learning strategy, which 
integrates the advantages of multiple classifiers and aims to 
improve the overall performance of the model. 

Specifically, we extracted 112 radiomics features totaling 
1,064 from each nodule in the LIDC-IDRI dataset. 
These features were subjected to selection processes 
before being put into an ensemble classifier weighted by a 
diversity metric. Subsequently, we employed two model-
building methods to construct a classification model for 
distinguishing between benign and malignant lung nodules. 
As shown in Table 10, M2 exhibited superior ACC (0.8168) 
compared to M1 (0.8088), and the difference is statistically 
significant (P=0.01<0.05), which indicates that M2 method 
may be more reliable in overall classification performance. 

Figure 8 ROC curves and importance scores of the top five features ranked by average value in the malignancy classification task. (A) ROC 
for each model in the Mal1 classification. (B) The feature importance scores for the Mal1 classification. (C) DCA of classification models 
built by M1 and M2 methods in the Mal1 classification. * denotes that the average values of PIS, LC, and MIS for that feature are greater 
than 0.75. ROC, receiver operating characteristic; AUC, area under the ROC curve; DCA, decision curve analysis; PIS, permutation 
importance score; LC, LASSO coefficient; MIS, mutual information score; L, low; H, high; ZE, zone entropy; MCC, maximal correlation 
coefficient; LASSO, least absolute shrinkage and selection operator. 
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In addition, M2 was 0.16%, 0.62%, and 1% higher than M1 
in AUC, sensitivity, and specificity, respectively, although 
these differences were not significant. In addition, as can 
be seen from the decision curves in Figure 8C, all two 
models in this study have high decision benefits in benign 
and malignant classification. The decision benefits of the 
diversity-weighted ensemble model (M2) are better than 
the equal-weighted ensemble classifier (M1). The specific 
numerical results are shown in Table 10 and Figure 8A.

In medicine, lung nodules are classified into various 
types (e.g., lobulated nodules, spiculated nodules, GGNs, 
etc.), and different types of nodules have an impact on 
doctors’ diagnosis of patients’ conditions and formulation 
of diagnostic and therapeutic programs. For example, 
calcified nodules, particularly those with central or layered 
calcification, are usually indicative of benign conditions 
such as granulomas or sarcoidosis. The identification of 
these nodules often reduces the need for unnecessary 
invasive procedures (45). Lobulated and spiculated nodules 
often signify irregular tumor growth, indicating a higher 
risk of malignancy (46). GGNs, especially those with solid 
components, are strongly associated with early-stage lung 
adenocarcinoma. These nodules appear blurred on imaging 
and typically grow slowly, making them ideal for early 
intervention (47,48). Moreover, regular round nodules 
are generally benign, while irregular or blurred-margin 
nodules suggest potential malignancy, necessitating closer 
follow-up (49). Additionally, in recent years, some studies 
have utilized radiomics to explore the growth patterns of 
subsolid nodules, aiming to further reduce overtreatment 
and diagnostic delays (50). Accurately classifying the texture 
types and benign or malignant nature of lung nodules 
can contribute to these studies. Therefore, in addition to 
realizing the benign and malignant classification of lung 
nodules in this study, the classification of six other lung 
nodule types was modeled in the same way.

In the lung nodules sphericity classification task, the 
M2 method shows improvement in all metrics: AUC is 
increased by 0.45%, ACC is increased by 1.24%, sensitivity 
is increased by 1.53%, and specificity is increased by 
0.91%. However, in terms of statistical significance, only 
the improvement in ACC was significant (P=0.002), but 
not in AUC, sensitivity, and specificity (P=0.07, 0.08, 0.37). 
This indicates that the M2 method has a slight advantage 
in overall performance compared to the M1 method. 
The specific numerical results are shown in Table 4 and  
Figure 2A.

In the classification task of lung nodule lobulation 

degree, overall, the M2 method completely outperformed 
the M1 method on all metrics. In Lob1 classification, the 
M2 method was better than the M1 method in AUC, 
ACC, sensitivity, and specificity, and these differences were 
statistically significant (P=0.02, 0.001, 0.04, 0.01). For Lob2 
classification, M2 also performed better, with all metrics 
higher than M1, and the improvement was also statistically 
significant (P=0.0003, 0.0005, 0.006, 0.004). As for the 
Lob3 classification, although M2 still outperformed M1 
on all metrics, the overall performance was relatively low, 
with statistically significant improvements in AUC, ACC, 
and sensitivity (P=0.01, 0.03, 0.01). In general, Overall, the 
diversity-weighted M2 method performed better than the 
equal-weighted M1 method in the classification of lung 
nodule lobulation, especially in the Lob2 classification, 
demonstrating its effectiveness in handling the classification 
issues of high lobulation and low lobulation nodules. 
The specific numerical results are shown in Table 5 and  
Figure 3A.

In the task of classifying the degree of spiculation 
in lung nodules, overall, the M2 method consistently 
outperforms the M1 method across all evaluation metrics. 
In the Spi1 classification, the M2 method surpasses the 
M1 method in AUC, ACC, sensitivity, and specificity, 
with these improvements being highly statistically 
significant (P<0.001). In the Spi2 classification, the M2 
method also performs excellently, improving AUC, ACC, 
sensitivity, and specificity to 0.8185, 0.7610, 0.7943, 
and 0.7250, respectively, with significance tests showing 
these improvements are statistically significant (P<0.02). 
However, in the Spi3 classification, although the M2 
method’s performance (AUC of 0.5627, ACC of 0.5721, 
sensitivity of 0.5888, specificity of 0.5577) also exceeds 
that of the M1 method, except for the significant statistical 
improvements in AUC and ACC (P=0.03, 0.04), the 
increases in sensitivity and specificity are not significant 
(P=0.1, 0.34), and the overall performance is relatively low. 
In general, the diversity-weighted M2 method performs 
better than the equal-weighted M1 in the classification 
of lung nodule spiculation, particularly excelling in the 
Spi1 and Spi2 classifications, demonstrating its accuracy 
in addressing the classification issues of nodules with low 
and more pronounced spiculation. The specific numerical 
results are shown in Table 6 and Figure 4A.

In the classification of lung nodule texture, the M2 
method generally outperformed the M1 method in all 
metrics. In Tex1, the M2 method slightly outperformed M1 
in ACC and specificity by 0.55% and 0.5%, respectively, 
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and the improvement in these two metrics was significant (p 
less than 0.05 for both). In Tex3, M2 outperformed M1 in 
all metrics, especially in ACC (0.9000, P=0.001), sensitivity 
(0.9095, P=0.01), and specificity (0.8892, P=0.018). The 
performance in the Tex2 task is similar, with M2 performing 
better on all metrics, particularly on AUC (0.8838, P=0.01), 
ACC (0.8116, P=0.001), and specificity (0.7982, P=0.005). 
In the Tex4 task, M2 similarly outperformed M1 on all 
assessment metrics than M1, and the boosts in ACC (0.8284, 
P=0.0008), specificity (0.8318, P=0.04), and sensitivity 
(0.8251, P=0.002) were statistically significant. These results 
indicate that the diversity-weighted M2 method exhibits 
higher accuracy in handling the more complex task of lung 
nodule texture classification. The specific numerical results 
are shown in Table 7 and Figure 5A.

In the classification of margin clarity in lung nodules, the 
M2 method generally outperforms the M1 method across 
various metrics. In the Mar1 task, the M2 method shows 
higher AUC, ACC, sensitivity, and specificity than M1 
by 0.89%, 0.58%, 0.98%, and 0.23%, respectively, with a 
significant difference in AUC (P=0.04). In the Mar2 task, 
M2 also performs better across all metrics, particularly 
showing significant improvements in ACC (0.8699, P=0.01) 
and specificity (0.8653, P=0.05). In the Mar3 task, the M2 
method not only exceeds M1 across all metrics but also 
shows statistically significant improvements in AUC (0.8371, 
P=0.0009), ACC (0.7732, P=0.001), and specificity (0.7764, 
P=0.0013). These results indicate that the diversity-
weighted M2 method performs better overall than the 
equal-weighted M1 method in classifying lung nodules of 
different clarities. The specific numerical results are shown 
in Table 8 and Figure 6A.

In the Cal1 task, we focused on distinguishing between 
calcified and non-calcified nodules. The M2 method has 
shown improvements across multiple key performance 
metrics. Specifically, M2’s AUC slightly increased by 
0.11%, ACC improved by 1.42%, sensitivity increased by 
1.45%, and specificity rose by 1.37%. Except for AUC, the 
improvements in other metrics have reached statistically 
significant levels (P<0.05). The specific numerical results 
are shown in Table 9 and Figure 7A.

In each classification, the non-significant Hosmer-
Lemeshow test statistic (Phl) indicates that the models are 
well-calibrated. Moreover, the Phl values of the M2 model 
are consistently greater than or equal to those of the M1 
model, suggesting that the M2 model exhibits better 
calibration than the M1 model.

In summary, the lung nodule classification models in 

this study perform well in classifying various types of lung 
nodules. They particularly excel in classifying the texture 
types of lung nodules, the degree of calcification, and the 
benign or malignant nature of the nodules. Moreover, the 
innovation and advantages of combining CT radiomics 
with diversity-weighted ensemble learning the organic 
integration of the powerful expressive capabilities of 
high-dimensional imaging features with the robustness 
of diversity-weighted ensemble algorithms in complex 
classification tasks. This approach significantly improves 
the accuracy and robustness of multiple lung nodule 
classification tasks while demonstrating lower resource 
consumption compared to deep learning methods. Not only 
does this method excel in lung nodule classification, but it 
also has broad application potential. Beyond lung nodule 
type classification research, radiomics combined with machine 
learning can be extended to other medical imaging analysis 
fields, such as the study of lung adenocarcinoma interstitial 
growth (8), tumor volume doubling time analysis (9), and 
molecular subtyping of diffuse gliomas (51). Furthermore, 
in clinical practice, radiomics methods can be integrated 
into existing imaging diagnostic workflows, providing 
physicians with refined disease classification information to 
assist in formulating more precise diagnostic and treatment 
plans (40,50).

Table 11 shows the comparison of the results between the 
related methods and the proposed method for classifying 
multiple types of lung nodules. Among them, Ni et al. (4) 
used ANNs to develop a model for feature extraction of 
lung nodule types. Chen et al. (52) extracted convolutional 
neural network and stacked denoising autoencoder 
features from lung nodule CT data, integrating them 
into a hybrid feature set. An RF classifier was then used 
to classify different lung nodule types. As shown in the 
table, our method outperforms the other two studies in 
the classification of nodule calcification and texture. The 
absolute distance error (ADE) results also surpass them in 
the classification of nodule sphericity, margin, and benign-
malignant distinction. However, in the classification of 
nodule lobulation and spiculation, the two studies based on 
CNN features perform better than ours, possibly due to 
CNN’s superior ability to capture spatial information.

In this study, we analyzed the confidence levels of the 
original radiomics features for different classification tasks 
and found differences in the contribution of these features 
to each classification task. This suggests that the features 
differ in their ability to describe and differentiate between 
different types of lung nodules. Specifically:
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(I)	 In the lung nodules sphericity classification 
task, as shown in Figure 2B, the Flatness, which 
shows the relationship between the largest and 
smallest principal components in the ROI shape, 
and compactness1, which measures how dense 
the nodule is relative to the shape of the sphere, 
both have relatively high importance scores. 
Higher values of Flatness indicate that the nodule 
is closer to a sphere, and lower values indicate 
that the nodule is more flattened. The value of 
compactness1 ranges from 0 to 1/6π. The closer 
its value is to 1/6π, the more spherical the nodule 
shape is.

(II)	 In the lung nodule lobulation degree classification 
task, as shown in Figure 3B, compactness1, run 
entropy (RE), small dependence emphasis (SDE), 
and Maximum2DDiameterSlice were shown to 
have higher importance. Compactness1 focuses 
on the shape and compactness of the nodule, and 
RE indicates the complexity of the image texture. 
SDE highlights the grayscale dependence in small 
areas, and Maximum2DDiameterSlice measures 
the maximum diameter of the nodule in any two-
dimensional (2D) slice.

(III)	 In the lung nodule spiculation degree classification 
task, as shown in Figure 4B, compactness1, kurtosis, 
cluster shade, correlation, small area emphasis 
(SAE), and maximal correlation coefficient (MCC) 
were shown to have higher importance. These 

features are closely related to the spiciness of 
lung nodules, including the shape irregularity of 
nodules (compactness1), the texture complexity 
on the surface and inside (Cluster Shade, MCC, 
correlation), and the characteristics of the pixel 
intensity distribution (Kurtosis, SAE).

(IV)	 In the lung nodule texture classification task, 
as shown in Figure 5B, 10th percentile, 90th 
percentile, inverse variance, compactness1, and 
difference entropy were shown to have higher 
importance. The 10th percentile and 90th 
percentile features help distinguish different types 
of nodules by reflecting the range of grayscale 
values, such as GGN typically having lower 
grayscale values. Inverse Variance measures texture 
uniformity, which is useful for identifying nodules 
like ground glass ones. Compactness1 shows shape 
compactness, differentiating nodules by shape. 
Difference Entropy indicates internal texture 
complexity.

(V)	 In the lung nodule margin clarity classification task, 
as shown in Figure 6B, skewness, 10th percentile, 
90th percentile, compactness1, dependence 
variance (DV), and inverse variance were shown to 
have higher importance. These features reveal the 
asymmetry of margin pixel intensity distribution 
(skewness), the extreme distribution of pixel 
intensity (10th percentile, 90th percentile), the 
shape irregularity of nodules (compactness1), and 

Table 11 Comparison of the results of related method and proposed method for classifying multiple types of lung nodules

Nodule’s types
Chen et al. (52) Ni et al. (4) Ours (M2)

ACC ADE ACC ADE ACC ADE

Sphericity – 0.8600 0.7121 0.7000 0.6669 0.6662

Lobulation – 0.8000 0.9566 0.5000 0.6897 0.6205

Spiculation – 0.6400 0.9431 0.5000 0.6869 0.6261

Texture – 0.1800 0.7888 0.4800 0.8762 0.2473

Margin – 0.9200 0.8111 0.7400 0.7826 0.4346

Calcification – 0.8700 0.9221 0.3100 0.9642 0.0714

Malignancy – 0.8700 0.8661 0.5900 0.8168 0.3662

The ADE is a metric that quantifies the disparity between the model’s predicted value and the actual value. A smaller ADE indicates 
the model’s superior predictive performance. In the classification of lobulation, spiculation, texture, and margin of nodules, this 
study performed a more detailed binary classification of nodules, while other studies were more general. To facilitate an approximate 
comparison, in this table, we averaged the metric results of the sub-tasks for each of these four classification tasks. ACC, accuracy; ADE, 
absolute distance error.
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the consistency and complexity of texture structure 
(inverse variance, DV), providing key information 
for differentiating between lung nodules with clear 
margins and those with blurred margins.

(VI)	 In the task of classifying the degree of calcification 
of lung nodules, as shown in Figure 7B, Mask-
interpolated maximum and inverse difference (Id) 
were shown to have higher importance. Mask-
interpolated Maximum, by reflecting the highest 
density areas and the upper-density limits within 
the nodules, reveals the density characteristics 
of calcified nodules. In contrast, Id further 
differentiates between calcified and non-calcified 
nodules by measuring the smoothness of texture or 
the differences between pixels.

(VII)	In the classification of benign and malignant 
l u n g  n o d u l e s ,  a s  s h o w n  i n  F i g u r e  8 B , 
Maximum2DDiameterSlice, zone entropy (ZE), 
MCC, and informational measure of correlation2 
(IMC2) were shown to have higher importance. 
They effectively capture key aspects like the size 
of the nodules (Maximum2DDiameterSlice) and 
the heterogeneity and complexity of their internal 
structure (MCC, ZE, IMC2). These characteristics 
are crucial for distinguishing between benign and 
malignant nodules. 

Finally, there are some limitations to this study. First, to 
ensure more precise nodule contours, we directly used the 
nodule ROI masks provided by the LIDC-IDRI dataset 
during the ROI segmentation phase, which may not fully 
correspond to clinical practice procedures. Second, this 
study was retrospective, and all data were obtained from 
the LIDC-IDRI dataset, which may have introduced 
a bias in the distribution of different types of nodules 
compared to actual clinical conditions. Therefore, we need 
additional real-world samples for more in-depth research. 
Additionally, the imaging data in the LIDC-IDRI dataset 
come from different devices, introducing variability and 
randomness into the dataset. Although we have mitigated 
bias as much as possible through standardization and 
resampling methods, standardized imaging remains an issue 
to address in future research. In future studies, we plan to 
collaborate with various medical institutions to obtain real-
world samples based on standardized imaging to enhance 
the dataset’s diversity and the model’s clinical applicability. 
Meanwhile, we will adopt a semi-automatic approach for 
ROI mask segmentation to improve the study’s clinical 
realism.

Conclusions

In summary, the combination of CT radiomics and 
ensemble learning for diversity weighting provides a new, 
non-invasive, and efficient way for the diagnosis of lung 
diseases. In this study, we used this technique to successfully 
distinguish benign and malignant lung nodules and further 
accurately classified six different lung nodule types. And, of 
course, as they develop, they can be applied to many more 
areas than disease research.
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