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Background: Current protocols endorse biopsies for men with Prostate Imaging-Reporting and Data 
System (PI-RADS v2.1) scores ≥3. However, the subjective nature of PI-RADS can lead to increased 
false positives and unnecessary biopsies. Synthetic magnetic resonance imaging (MRI), which quantifies 
multiple relaxation parameters, and apparent diffusion coefficient (ADC), which is the most commonly 
used quantitative metric, have not yet been combined with a predictive tool. This study aimed to develop 
and validate novel nomograms using multiparametric MRI, including synthetic MRI, to forecast the risk of 
prostate cancer (PCa) and clinically significant prostate cancer (csPCa), and to assess the potential of these 
nomograms to reduce unnecessary biopsies in PI-RADS ≥3 cases.
Methods: Between August 2020 and August 2022, 323 patients suspected of PCa were enrolled from two 
centers (cohort 1: 243; cohort 2: 80). All participants underwent multiparametric MRI, including synthetic 
MRI, before targeted biopsy. Univariable and multivariable logistic regression identified risk factors for PCa 
and csPCa. Internal validation was conducted using bootstrap resampling, and nomogram performance was 
evaluated through receiver operating characteristic (ROC) curve analysis, calibration plots, and decision 
curve analysis (DCA). External validation was performed with cohort 2 data. The impact of the nomograms 
on biopsy decisions was measured by the avoidance rate and the risk of missed diagnoses.
Results: The predictive nomogram for PCa incorporated four risk factors: age, quantitative transverse 
relaxation time (T2 value) from synthetic MRI, ADC value, and PI-RADS score. The csPCa nomogram 
included age, ADC value, and PI-RADS score. The nomograms showed high diagnostic accuracy with the 
area under the curves (AUCs) of 0.916 [95% confidence interval (CI): 0.901–0.974] and 0.947 (95% CI: 
0.900–0.994) for PCa prediction in training and external datasets, and 0.884 (95% CI: 0.840–0.928) and 0.935 
(95% CI: 0.871–0.998) for csPCa. Calibration curves confirmed the accuracy of predictions. DCA indicated 
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Introduction

Globally, prostate cancer (PCa) becomes the second leading 
cause of death among men (1). With the widespread 
use of prostate specific antigen (PSA) screening, PCa is 
being detected at an earlier and more localized stage (2). 
However, it has also led to lots of unnecessary prostate 
biopsies and the unwanted post-biopsy complications 
due to the the low specificity of PSA (3). Multiparametric 
magnetic resonance imaging (MRI) has become an essential 
component of the diagnostic pathway for PCa. The clinical 
application of multiparametric MRI has improved the 
diagnosis of PCa and clinically significant prostate cancer 
(csPCa) (4). The Prostate Imaging Reporting and Data 
System (PI-RADS) was developed to standardize the 
acquisition and interpretation of multiparametric MRI 
images (5). Current guidelines recommend biopsies for 
men with a moderate (PI-RADS 3) to high likelihood 
(PI-RADS 4/5) of developing PCa (6-8) so as to curb the 
excessive biopsies. However, the clinical implementation 
of this strategy is hindered by moderate interreader and 
intercenter reproducibility, which can result in increased 
false-positive rates and unnecessary prostate biopsy (9-11). 
The integration of additional laboratory indices, clinical 
factors, or quantitative multiparametric MRI metrics may 
help address these limitations and identify patients who can 
safely avoid biopsies.

Synthetic MRI is an emerging technique that synthesizes 
magnetic resonance images at arbitrary contrast after the 
actual MRI scan, which can provide absolute quantification 
of longitudinal relaxation time (T1), transverse relaxation 
time (T2), and proton density (PD) maps simultaneously 
in a single scan within a short examination time. These 

quantitative values represent the intrinsic magnetic 
properties of the tissue and are independent of the MRI 
scanner or scanning parameters at a given field strength (12).  
This technique has shown excellent correlation with 
conventional mapping technique with no inferiority of 
image quality compared with that of conventional contrast-
weighted images (12). Previous studies have demonstrated 
the feasibility of synthetic MRI in the diagnosis of breast 
cancer (13,14), bladder cancer (15) and some neurological 
diseases (16,17). In the field of PCa research, the diagnostic 
value of synthetic MRI has been affirmed for the evaluation 
of tumor activity in primary PCa as well as bone metastases 
of PCa. Both T1 and T2 values are the useful parameters 
in differentiating PCa from other benign lesions that 
can be easily confused with PCa in clinical practice (12). 
Additionally, the apparent diffusion coefficient (ADC) 
that derived from diffusion weighted imaging (DWI), is 
a common quantitative metric that has shown substantial 
ability in the detection of PCa.

Nomograms offer a unique capability of converting 
complex regression equations into visual  graphs. 
Nomograms are known for their intuitive and user-friendly 
nature, making it increasingly popular and applicable in 
medical research and clinical practice (18). This study 
was conducted with the aim of developing and externally 
validating nomograms that integrate synthetic MRI and 
ADC metrics, thereby enhancing the identification 
of PCa and csPCa in men with PI-RADS ≥3 lesions. 
Furthermore, biopsy avoidance strategies based on the 
nomogram were proposed, and their efficacy in reducing 
unnecessary biopsies was evaluated. We present this 
article in accordance with the TRIPOD reporting 

that the nomograms possessed significant net benefit. For PCa detection, biopsy strategy combining our 
nomogram reduced biopsy procedures by 20.2% and 13.8% in the training and external cohorts, respectively, 
with a PCa miss rate of 4.5% for both cohorts. The csPCa-targeted biopsy strategy also provided clinical 
benefits, with biopsy avoidance rates of 20.2% and 10.0%, and csPCa miss rates of 4.8% and 1.7% for PI-
RADS ≥3 patients in the two cohorts.
Conclusions: The nomograms integrating multiparametric MRI and synthetic MRI are highly effective in 
predicting PCa and csPCa, concurrently, reducing unnecessary biopsies for patients with PI-RADS ≥3 lesion.

Keywords: Multiparametric magnetic resonance imaging (multiparametric MRI); synthetic resonance imaging 

(synthetic MRI); prostate cancer (PCa); nomogram; prostate biopsy

Submitted May 29, 2024. Accepted for publication Aug 29, 2024. Published online Oct 11, 2024.

doi: 10.21037/qims-24-1072

View this article at: https://dx.doi.org/10.21037/qims-24-1072



Chen et al. Novel nomograms for optimizing prostate biopsy strategy8198

© AME Publishing Company.   Quant Imaging Med Surg 2024;14(12):8196-8210 | https://dx.doi.org/10.21037/qims-24-1072

checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-24-1072/rc).

Methods

Study populations

From August 2020 to August 2022, men suspected of PCa 
(elevated PSA level, suspicious digital rectal examination 
findings, or suspicious lesions on ultrasound examination) 
from two medical centres (Institution 1: The First 
Affiliated Hospital of Sun Yat-Sen University; Institution 
2: Sun Yat-sen University Cancer Center) were referred 
for further evaluation. Patients who underwent prostate 
multiparametric MRI and synthetic MRI before prostate 
biopsy or radical prostatectomy without a prior diagnosis of 
PCa were included. The exclusion criteria were as follows: 
(I) lack of pathological results; (II) ongoing or previous 
medication for any PCa; (III) unavailable or incomplete 
clinical/imaging data; (IV) insufficient image quality with 
severe artefacts; and (V) lesions with PI-RADS ≤2. A 

flowchart of patient selection is detailed in Figure 1. The 
retrospective study was mainly designed and developed in 
The First Affiliated Hospital of Sun Yat-Sen University and 
ethical approval was obtained from the Ethics Committee 
of The First Affiliated Hospital of Sun Yat-Sen University 
(2023; approval No. 094). Both participating medical 
centres were informed and agreed with the study. Study 
participants provided written informed consent. The study 
was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013). 

Imaging acquisition

All MRI examinations were performed using a 3.0 T MRI 
scanner (Signa Pioneer, GE, IL, USA) equipped with a 
32-channel coil. The conventional multiparametric MRI 
protocols included the following sequence: (I) axial T1-
weighted imaging (T1WI); (II) axial, coronal, sagittal T2-
weighted imaging (T2WI); and (III) axial DWI images 
(b values of 50, 1,000 and 1,500 s/mm2). ADC maps 

Figure 1 Flow chart of patient selection. PCa, prostate cancer; MRI, magnetic resonance imaging; PI-RADS, Prostate Imaging Reporting 
and Data System.

Men with a clinical suspicion of PCa underwent multiparametric MRI + synthetic 
MRI between Aug. 2020 and Aug. 2022

Institution 1
The First Affiliated Hospital, Sun 

Yat-Sen University (n=294)

Training cohort (n=243) External validation cohort (n=80)

Institution 2
Sun Yat-sen University Cancer 

Center (n=127)

Exclusion criteria:
(I)	 men unable to give informed consent 

(Institution 1: 4; Institution 2: 2);
II)	 lack of pathological results (Institution 1: 

6; Institution 2: 3);
(III)	 ongoing medication for any prostatic 

condition (Institution 1: 4; Institution 2: 8);
(IV)	 previous prostatic surgery (Institution 1: 

8; Institution 2: 11);
(V)	 clinical/imaging data incomplete 

(Institution 1: 2; Institution 2: 4); 
(VI)	 Insufficient image quality or severe 

artifacts (Institution 1: 3; Institution 2: 2);
(VII)	 lesions with PI-RADS ≤2 (Institution 1: 

24; Institution 2: 17)
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were automatically generated from the DWI images (b 
values of 50 and 1,000 sec/mm2) on the scanner console. 
(IV) Dynamic contrast-enhanced imaging. Synthetic 
MRI was performed using a multidynamic multiecho 
(MDME) sequence. The quantitative parametric maps 
(T1, T2, and PD maps) were generated using vendor-
provided offline postprocessing software (SyMRI7.2; 
Synthetic MR, Linköping, Sweden). The scanners and scan 
parameters remained consistent in the two centres. Detailed 
information about the aforementioned imaging sequences is 
presented in Table S1.

Image analysis

For all patients, prior to targeted biopsies, two experienced 
radiologists (Y.G. and J.L. with 30 and 15 years of 
experience in prostate MRI, respectively) independently 
interpreted the multiparametric MRI findings according to 
the PI-RADS guidelines (version 2.1), and a PI-RADS score 
was assigned to the cancer-suspicious lesion. Discrepancies 
between readings were solved through consensus.

For synthetic MRI, the volume of interest (VOI) of the 
whole tumour was manually delineated independently by 
two radiologists (Y.C. and W.C. with 4 years and 2 years 
of experience in prostate imaging, respectively) who were 
blinded to the clinical information and pathological results 
on the synthetic T2WI. The delineation was then replicated 
at the corresponding locations on the T1 and PD maps. For 
the ADC value, a free-hand VOI was drawn on the ADC 
map along the border of the whole tumour. Susceptibility 
artefacts, areas of haemorrhage and adjacent nonneoplastic 
structures were avoided. The average T1, T2, PD, and 
ADC values were automatically calculated in the VOI for 
each participant. The average values of the two radiologists 
were used for analysis. All radiologists were blinded to 
the pathological result but not the lesion location on MRI 
images. VOI drawing was conducted using ITK-SNAP 
software (version 2.2.0; www.itksnap.org).

Histopathologic analysis and correlation with MRI

For patients who underwent radical prostatectomy, 
postoperative pathological results were considered to be 
the reference standard; otherwise, the results of prostate 
biopsy were adopted. The biopsy procedure was performed 
at each centre by experienced urologists with at least five 
years of prostate biopsy experience (>300 cases of prostate 
biopsy each). All patients underwent transperineal or 

transrectal ultrasound-guided cognitive target biopsies. 
At least 2 target cores were obtained in the suspicious 
areas. Then, all specimens were reviewed at the two 
medical centres, according to the International Society 
of Urological Pathology (ISUP) grading standards, 
by seasoned uropathologists who were blinded to the 
clinical information and imaging results of the patients. 
The pathological type of lesion was recorded as cancer, 
prostatitis, benign prostatic hyperplasia (BPH), or benign 
prostate tissue. For PCa, the highest ISUP grade group for 
each lesion was also documented. PCa referred to lesion 
with ISUP grade group ≥1, and csPCa was defined as ISUP 
grade group ≥2 (19).

The index lesion was defined as the lesion with the 
highest PI-RADS score. If more than one lesion had the 
same PI-RADS score, then the largest lesion was selected. 
To realize the radiologic-pathologic matching of lesions, 
for patients who underwent prostate biopsy, the final 
histopathologic diagnosis was determined by correlating 
the lesion location on MRI images with the location 
descriptions on the cognitively targeted core pathology 
reports. For patients who underwent radical prostatectomy, 
pathological confirmation was determined by mapping 
lesion annotations from histopathologic slices onto the 
prostate MRI scans.

Statistical analysis

The Kolmogorov-Smirnov or Shapiro-Wilk test and 
Levene’s test were performed to evaluate the normality 
and homoscedasticity of continuous data, respectively. 
Continuous data were expressed as the mean ± standard 
deviation or median (first quartile, third quartile) and were 
compared with Student’s t-test or the Mann-Whitney U 
test depending on the distribution and homoscedasticity of 
the data. Categorical variables were described as numbers 
(rates), and the Chi-squared test was used for comparisons 
between different groups. The enrolled patients from The 
First Affiliated Hospital of Sun Yat-Sen University were 
assigned to training cohort and patients from Sun Yat-sen 
University Cancer Center were allocated to the external 
validation dataset. A boot strapping method with 1,000 
replications was used for internal validation. Univariate and 
multivariate logistic regression were conducted based on 
data from the training cohort to identify independent risk 
factors for PCa and csPCa, which were then incorporated 
into the final nomograms. Performance evaluation for 
the nomogram included discrimination, calibration, and 

https://cdn.amegroups.cn/static/public/QIMS-24-1072-Supplementary.pdf
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clinical utility in all three cohorts. Discriminatory ability 
was measured with receiver operating characteristic (ROC) 
curve analysis and the generating area under the curve 
(AUC). Model calibration was visually assessed by using 
calibration curves and quantitatively evaluated by the 
Hosmer-Lemeshow test, with a P value greater than 0.05 
considered satisfactory. Clinical utility was assessed via 
decision curve analysis (DCA). 

Based on the ROC curve of the developed nomograms, a 
cut-off value with a positive likelihood ratio (LR+) ≥10 and 
specificity ≥95% was designated as the boundary value of 
the high-risk threshold, and a cut-off value with a negative 
likelihood ratio (LR−) ≤0.1 and sensitivity ≥95% was 
defined as the low-risk threshold. The above criteria were 
then applied to the novel biopsy strategies, then the biopsy 
avoidance rate, PCa missed rate as well as csPCa missed rate 
were calculated to assess their potential impact on biopsy 
decisions. The unnecessary biopsy avoidance rate in men 
with PI-RADS category 3 lesions was also calculated.

Interrater variability of T1, T2, PD, and ADC value 
measurement were assessed using the intraclass correlation 
coefficient (ICC), which was classified as excellent (≥0.80), 
good (0.60–0.79), fair (0.40–0.59), and poor (<0.40). 
Statistical analyses were conducted using statistical software, 
including SPSS (v.26.0, IBM), MedCalc (v.12.7; www.
medcalc.org), and R (v.4.1.1. http://www.r-project.org/). A 
two-sided P<0.05 was considered statistically significant.

Results

Patient characteristics

A total of 243 patients from The First Affiliated Hospital 
of Sun Yat-Sen University and 80 patients from Sun Yat-
sen University Cancer Center were included. Among these 
men, 184 underwent biopsy, and 139 underwent radical 
prostatectomy. The prevalence of PCa and csPCa was 
73.3% (178 out of 243 patients) and 68.3% (166 out of  
243 patients) in the training cohort and 82.5% (66 out of  
80 patients) and 73.8% (59 out of 80 patients) in the 
external validation cohort, respectively. All patient data, 
including demographic, clinical and imaging features, from 
the two institutions are presented in Table 1.

Interreader reliability

The interreader reliabilities were good-to-excellent for T1, 
T2, PD and ADC in the two cohorts. The ICCs for the 

aforementioned parameters are summarized in Table S2.

Nomogram establishment

In the training cohort, older age, higher total prostate-
specific antigen (tPSA) and higher free prostate-specific 
antigen (fPSA) were observed in patients with PCa or 
csPCa. On the other hand, PCa or csPCa lesions possessed 
lower ADC, T1, T2 and PD values (Figure 2). Details 
of the comparison between PCa and non-PCa, clinically 
insignificant disease and csPCa in the training cohort are 
presented in Tables 2,3.

Independent risk factors for PCa and csPCa were 
explored by univariable and multivariable binary logistic 
regression analyses (Tables 4,5). In univariate regression 
analysis, age, fPSA, PI-RADS score, T1, T2, PD and 
ADC value showed statistical significance between PCa 
and noncancerous lesions. These factors were further 
incorporated into the multivariate logistic regression 
analysis. Finally, age, T2, ADC and PI-RADS score were 
identified as independent risk predictors of PCa, and a 
nomogram was developed based on these coefficients  
(Figure 3). As displayed in Figure 3 and Figure 4, for a 
73-year-old representative participant with a PI-RADS 4 
lesion (ADC value of 818.48×10−6 mm2/s and T2 value of 
73.95 ms), the possibility of PCa was 0.953. Meanwhile, age, 
ADC and PI-RADS score were screened out to establish 
the nomogram for predicting csPCa (Figure 5).

Verification of the nomogram.

ROC curve analysis was used to evaluate the discrimination 
capacity of the established nomograms. Our models 
exhibited significant performance in detecting PCa and 
csPCa, with AUCs of 0.916 [95% confidence interval 
(CI): 0.877–0.956] and 0.884 (95% CI: 0.840–0.928), 
respectively, in the training cohort (Figure 3, Figure S1). 
For internal validation, with the method of using 1,000 
bootstrap resamples, our models still displayed good 
discrimination, with AUCs of 0.912 (95% CI: 0.900–0.918) 
for PCa and 0.880 (95% CI: 0.867–0.887) for csPCa. In the 
external validation cohort, the AUCs of the nomogram for 
predicting PCa and csPCa were 0.947 (95% CI: 0.900–
0.994) and 0.935 (95% CI: 0.871–0.998), respectively 
(Figure 5, Figure S1). Calibration curves (Figures 3,5, 
Figure S1) exhibited good concordance between the 
predicted probability and actual observation, which reflected 
the repeatability and reliability of our nomograms. In 

http://www.r-project.org/
https://cdn.amegroups.cn/static/public/QIMS-24-1072-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-24-1072-Supplementary.pdf
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addition, the Hosmer-Lemeshow test also demonstrated 
that the predictive nomograms were well calibrated, 
with P values of 0.427 and 0.481 for predicting PCa and 
0.730 and 0.554 for predicting csPCa in the training and 
external validation cohorts, respectively. The DCA curves 
confirmed the good clinical applicability of the nomogram 
(Figures 3,5, Figure S1).

For the prediction of PCa, predictive values of 0.415 
and 0.944 were defined as the boundary thresholds of low 
risk and high risk, respectively. A novel biopsy strategy was 
proposed based on the above criteria (Figure 3). For patients 
with PI-RADS ≥3 lesions, biopsy was not recommended 
when patients were at low risk of PCa (predictive value 

<0.415). A total of 20.2% (49/243) and 13.8% (11/80) of 
biopsies could be avoided with this strategy in the training 
and external validation cohorts, respectively. Meanwhile, 
the PCa missing rates were 4.5% (8/178) and 4.5% (3/66), 
respectively. Moreover, in patients with PI-RADS category 
3 lesions, 63.3% (38/60) and 34.8% (8/23) of unnecessary 
biopsies could be avoided in the two cohorts.

Similarly, a biopsy strategy combining the nomogram was 
proposed for the prediction of csPCa, with risk thresholds 
of 0.308 and 0.905 (Figure 5). Based on this strategy, if 
biopsy was not performed in patients with a low risk of 
csPCa (predictive value 0.308), then 20.2% (49/243) and 
10.0% (8/80) of biopsies could be avoided in the training 

Table 1 Patient characteristics of the training cohort and external validation cohort

Variables Training cohort (n=243) External validation cohort (n=80) P value

Age (years) 70.00 (65.00, 76.00) 69.50 (64.00, 75.25) 0.685

tPSA (ng/mL) 14.47 (8.48, 32.50) 21.44 (12.68, 70.21) 0.001*

fPSA (ng/mL) 1.95 (1.29, 3.78) 2.83 (1.46, 6.65) 0.039*

f/t PSA 0.13 (0.10, 0.19) 0.10 (0.07, 0.16) 0.004*

Pathologic specimen type 0.527

Surgical specimen 107 (44.0) 32 (40.0)

Biopsy specimen 136 (56.0) 48 (60.0)

Pathological results 0.146

No cancer 65 (26.7) 14 (17.5)

Gleason score 6 12 (4.9) 7 (8.8)

Gleason score ≥7 166 (68.3) 59 (73.8)

Lesion location 0.604

PZ 168 (69.1) 57 (73.1)

TZ and AFS 75 (30.9) 23 (28.8)

ADC (10 mm/s) 913.05 (809.99, 1,063.30) 921.82 (802.52, 1,161.55) 0.449

T1 (msec) 1,292.64 (1,214.20, 1,380.03) 1,269.98 (1,189.08, 1,378.11) 0.657

T2 (msec) 84.02 (78.15, 91.12) 86.43 (79.11, 94.15) 0.16

PD (pu) 81.54 (79.94, 82.76) 79.42 (77.06, 81.45) <0.001*

PI-RADS  0.763

PI-RADS 3 60 (24.7) 23 (28.8)

PI-RADS 4 59 (24.3) 19 (23.8)

PI-RADS 5 124 (51.0) 38 (47.5)

Data were expressed as median (first quartile, third quartile) or number (percentage). *, statistically significant. tPSA, total prostate-specific 
antigen; fPSA, free prostate-specific antigen; f/t PSA, free/total prostate-specific antigen ratio; PZ, peripheral zone; TZ, transition zone; 
AFS, anterior fibromuscular stroma; ADC, apparent diffusion coefficient; T1, longitudinal relaxation time; T2, transverse relaxation time; 
PD, proton density; PI-RADS, Prostate Imaging-Reporting and Data System.

https://cdn.amegroups.cn/static/public/QIMS-24-1072-Supplementary.pdf
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and external validation cohorts, with csPCa missing rates 
of 4.8% (8/166) and 1.7% (1/59), respectively. In addition, 
65.0% (39/60) and 30.4% (7/23) of unnecessary biopsies 
could be reduced in patients with PI-RADS category  
3 lesions.

Discussion

In the current study, the capacity of quantitative parameters 

derived from multiparametric MRI and synthetic MRI in 
predicting the risk of PCa and csPCa was investigated. Our 
findings showed that the T1, T2, PD and ADC values were 
significantly lower in PCa and csPCa. Four independent risk 
factors for PCa were identified and incorporated into the 
nomogram development for PCa prediction, including PI-
RADS score, ADC, T2, and age. In addition, a nomogram 
for csPCa prediction was also constructed based on the 
independent predictors of the PI-RADS score, ADC, and 

Figure 2 Box-and-whisker plots of (A) T1, (B) T2, (C) PD, and (D) ADC measurements for PCa and non-PCa. T1, longitudinal relaxation 
time; T2, transverse relaxation time; PD, proton density; ADC, apparent diffusion coefficient; PCa, prostate cancer.

Table 2 Characteristics of patient with and without PCa in the training cohort 

Variables Non-PCa (n=65) PCa (n=178) P value

Age (years) 67.00 (59.00, 71.00) 71.00 (67.00, 77.00) <0.001*

tPSA (ng/mL) 11.32 (7.76, 16.72) 16.23 (9.29, 39.48) <0.001*

fPSA (ng/mL) 1.66 (1.07, 2.36) 2.06 (1.36, 4.82) 0.001*

f/t PSA 0.14 (0.11, 0.22) 0.13 (0.10, 0.17) 0.203

ADC (×10−6 mm2/s) 1,111.03 (974.89, 1,350.59) 857.06 (773.51, 961.95) <0.001*

T1 (msec) 1,353.87 (1,236.63, 1,563.08) 1,263.37 (1,206.96, 1,340.17) <0.001*

T2 (msec) 93.28 (83.91, 101.70) 81.48 (77.01, 87.37) <0.001*

PD (pu) 82.59 (81.29, 83.94) 81.02 (79.71, 82.50) <0.001*

PI-RADS <0.001*

PI-RADS 3 45 (69.2) 15 (8.4)

PI-RADS 4 13 (20.0) 46 (25.8)

PI-RADS 5 7 (10.8) 117 (65.7)

Data were expressed as median (first quartile, third quartile) or number (percentage). *, statistically significant. PCa, prostate cancer; tPSA, 
total prostate-specific antigen; fPSA, free prostate-specific antigen; f/t PSA, free/total prostate-specific antigen ratio; ADC, apparent 
diffusion coefficient; T1, longitudinal relaxation time; T2, transverse relaxation time; PD, proton density; PI-RADS, Prostate Imaging-
Reporting and Data System.
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Table 3 Comparison of variables between clinically insignificant disease and csPCa in the training cohort 

Variables Clinically insignificant disease (n=77) Clinically significant prostate cancer (n=166) P value

Age (years) 67.00 (61.00, 72.00) 71.00 (67.00, 77.00) <0.001*

tPSA (ng/mL) 11.60 (8.00, 16.65) 16.45 (9.35, 45.77) <0.001*

fPSA (ng/mL) 1.68 (1.11, 2.36) 2.06 (1.36, 5.42) 0.001*

f/t PSA 0.14 (0.11, 0.22) 0.13 (0.09, 0.17) 0.073

ADC (×10−6 mm2/s) 1,090.51 (957.03, 1,281.97) 847.79 (763.80, 955.25) <0.001*

T1 (msec) 1,338.75 (1,232.11, 1,523.24) 1,270.34 (1,206.08, 1,340.17) <0.001*

T2 (msec) 91.12 (81.30, 100.43) 81.41 (76.91, 87.13) <0.001*

PD (pu) 82.56 (80.79, 83.54) 81.02 (79.70, 82.50) <0.001*

PI-RADS <0.001*

PI-RADS 3 47 (61.0) 13 (7.8)

PI-RADS 4 17 (22.1) 42 (25.3)

PI-RADS 5 13 (16.9) 111 (66.9)

Data were expressed as median (first quartile, third quartile) or number (percentage). *, statistically significant. csPCa, clinically significant 
prostate cancer; tPSA, total prostate-specific antigen; fPSA, free prostate-specific antigen; f/t PSA, free/total prostate-specific antigen 
ratio; ADC, apparent diffusion coefficient; T1, longitudinal relaxation time; T2, transverse relaxation time; PD, proton density; PI-RADS, 
Prostate Imaging-Reporting and Data System.

Table 4 Univariable and multivariable logistic regression analysis of risk factors for PCa in the training cohort 

Variables
Univariable analysis Multivariate analysis

Odds ratio (95% CI) P value Odds ratio (95% CI) P value

Age (years) 1.079 (1.042–1.120) <0.001* 1.067 (1.009–1.135) 0.029*

tPSA (ng/mL) 1.020 (1.007–1.040) 0.020* 0.998 (0.988–1.018) 0.694

fPSA (ng/mL) 1.204 (1.063–1.443) 0.020* 1.099 (0.961–1.490) 0.483

f/t PSA 0.300 (0.015–6.531) 0.431

ADC (×10−6 mm2/s) 0.993 (0.991–0.995) <0.001* 0.997 (0.994–1.000) 0.037*

T1 (msec) 0.995 (0.9923–0.997) <0.001* 1.003 (0.999–1.007) 0.179

T2 (msec) 0.907 (0.877–0.935) <0.001* 0.931 (0.872–0.985) 0.021*

PD (pu) 0.785 (0.691–0.882) 0.001* 0.901 (0.736–1.098) 0.302

PI-RADS 

PI-RADS 3 – –

PI-RADS 4 10.616 (4.675–25.711) <0.001* 9.579 (3.492–28.945) <0.001*

PI-RADS 5 50.143 (20.313–141.180) <0.001* 20.139 (6.743–68.442) <0.001*

*, statistically significant. PCa, prostate cancer; CI, confidence interval; tPSA, total prostate-specific antigen; fPSA, free prostate-specific 
antigen; f/t PSA, free/total prostate-specific antigen ratio; ADC, apparent diffusion coefficient; T1, longitudinal relaxation time; T2, 
transverse relaxation time; PD, proton density; PI-RADS, Prostate Imaging-Reporting and Data System.
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age. The high clinical application value of the nomograms 
was affirmed by the AUC, calibration curves and decision 
curve.

Current guidelines suggest that lesions with PI-RADS 
≥3 have an intermediate to high probability of being PCa, 
and biopsies are recommended (6). Nonetheless, a previous 
multicentre randomized controlled study reported that the 
negative rates of transperineal targeted biopsy for patients 
with PI-RADS 3, PI-RADS 4 and 5 were 67%, 31% and 
6%, respectively (20). Consistently, 68.7%, 19.2% and 4.3% 
of biopsies of PI-RADS 3, 4 and 5 lesions, respectively, 
were negative in our study. Such potential false-positive 
biopsy results of PI-RADS ≥3 lesions may lead urologists 
to suspect that the biopsy fails to target the actual lesion 
and may also induce anxiety in patients. Several previous 
studies attempted to reduce the adverse impacts of personal 
subjectivity on the PI-RADS score by adding extra objective 
and precise clinical indicators (21-24). Zhou et al. (23) 
combined PI-RADS and the prostate health index (PHI) 
to establish a nomogram for PCa detection, which showed 
satisfactory performance, with AUCs of 0.902 and 0.869 
in the training and validation cohorts, respectively. The 
study of Deniffel et al. (24) demonstrated that the number 
of unnecessary prostate biopsies can be safely reduced with 

the joint model of PI-RADS and prostate specific antigen 
density (PSAD). However, diseases such as urinary tract 
infection or the therapeutic procedure of urinary catheter 
placement might influence the level of these PSA-related 
indices and thus may affect the diagnosis of PCa.

As the basic intrinsic properties of MRI physics, 
quantitative T1, T2, and PD values obtained from synthetic 
MRI can provide us information about tissue composition, 
such as macromolecule concentration and tissue water 
content, and they would not be influenced by MRI scanners 
or scanning parameters at a given field strength (15). Several 
studies have demonstrated the utility of T1, T2 and PD 
mapping in the quantitative evaluation of PCa (12,25,26). 
In our study, we incorporated the objective and quantitative 
parameters derived from synthetic MRI and ADC mapping. 
The results indicated that the T1, T2 and PD values of 
PCa were lower than those in noncancer tissue, as were 
those of csPCa compared to clinically insignificant diseases. 
In addition, the T2 value was an independent risk factor 
for PCa. T2 values are regarded as biomarkers to reflect 
the amount of water content, cell density, and tissue 
composition. According to the literature (26), low T2 
values in PCa might be attributed to the loss of glandular 
architecture and its corresponding secretory function. 

Table 5 Univariable and multivariable logistic regression analysis of risk factors for csPCa in the training cohort 

Variables
Univariable analysis Multivariate analysis

Odds ratio (95% CI) P value Odds ratio (95% CI) P value

Age (years) 1.075 (1.039–1.114) <0.001* 1.052 (1.002–1.108) 0.047*

tPSA (ng/mL) 1.024 (1.010–1.045) 0.006* 1.001 (0.990–1.030) 0.908

fPSA (ng/mL) 1.217 (1.077–1.443) 0.010* 1.094 (0.940–1.416) 0.456

f/t PSA 0.158 (0.009–2.862) 0.207

ADC (×10−6 mm2/s) 0.993 (0.991–0.995) <0.001* 0.997 (0.994–0.999) 0.016*

T1 (msec) 0.995 (0.9923–0.997) <0.001* 1.002 (0.998–1.006) 0.278

T2 (msec) 0.920 (0.892–0.946) <0.001* 0.956 (0.904–1.005) 0.092

PD (pu) 0.802 (0.711–0.895) <0.001* 0.898 (0.747–1.0717) 0.237

PI-RADS 

PI-RADS 3 – –

PI-RADS 4 8.932 (3.985–21.250) <0.001* 6.469 (2.518–17.659) <0.001*

PI-RADS 5 30.870 (13.799–74.732) <0.001* 10.179 (3.861–28.673) <0.001*

*, statistically significant. csPCa, clinically significant prostate cancer; CI, confidence interval; tPSA, total prostate-specific antigen; fPSA, 
free prostate-specific antigen; f/t PSA, free/total prostate-specific antigen ratio; ADC, apparent diffusion coefficient; T1, longitudinal 
relaxation time; T2, transverse relaxation time; PD, proton density; PI-RADS, Prostate Imaging-Reporting and Data System.
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Figure 3 Nomogram for the detection of PCa and performance evaluation in the training cohort. (A) Nomogram; (B) biopsy strategy 
combining the nomogram; (C) receiver operating characteristic curve; (D) calibration curve; (E) decision curve. Instructions: the value for 
each factor (age, T2 value, ADC value, PI-RADS score) corresponds to the point vertically above the below scale. The values are added 
together to determine the total points, which then correspond to the estimated risk of PCa shown on the scale at the bottom. PCa, prostate 
cancer; ADC, apparent diffusion coefficient; T2, transverse relaxation time; PI-RADS, Prostate Imaging Reporting and Data System; MRI, 
magnetic resonance imaging; GS, Gleason score; AUC, area under the curve; CI, confidence interval.

Lower ADC in cancer is a well-documented phenomenon 
related to diminished water self-diffusivity. Our study also 
demonstrated a lower ADC value in PCa as well as csPCa, 
and ADC was found to be an independent predictor of 
either PCa or csPCa. The possible explanation for this 
finding might be attributed to the increase in cellular 
density in PCa and csPCa, which reduces the extracellular 
space and restricts the movement of water protons (27).

We then constructed a nomogram for predicting PCa 
based on the selected independent predictive factors, 
including PI-RADS score, T2, ADC and age. Although 
several nomograms for PCa diagnosis were established 
incorporating PI-RADS, ADC and other clinical risk 
factors, the combination with the T2 value has not yet 
been constructed (23,28-30). The nomogram in this study 

showed good diagnostic accuracy for the diagnosis of PCa 
in all the training and external validation cohorts, with 
AUCs of 0.916 and 0.947, respectively. The calibration 
curves and decision curves for the two cohorts demonstrated 
that the established nomogram was reliable for clinical 
application. Nonetheless, although significant differences 
were found between csPCa and clinically insignificant 
diseases with regard to the quantitative parameters obtained 
from synthetic MRI, none of the synthetic MRI-derived 
indices were found to be independent predictors of csPCa. 
In the study by Yu et al. (26), T2 was a significant univariate 
predictor for differentiating between histologically proven 
high- or intermediate-grade tumours and low-grade 
tumours, and the combination of ADC and T2 produced an 
AUC of 0.830. However, the study results of Panda et al. (25)  
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indicated that T1 but not T2 was an independent risk 
factor. Such discrepancies among studies might be due to 
disparities in the included populations, which indicates the 
need for further investigation with larger samples.

It is worth mentioning that we proposed a novel biopsy 
strategy based on the predicted value generated from 
the nomograms, with the aim of reducing unnecessary 
biopsies. When focusing specifically on detecting all 
pathological grades of PCa, prostate biopsy was not 
recommended when the predicted value was lower than 
0.415 in patients with PI-RADS ≥3 lesions. By applying 
this criterion, 20.2% and 13.8% of biopsies can be avoided 
in the training and external validation cohorts, with a 
low risk of missing PCa (4.5% and 4.5%, respectively). 
In addition, PI-RADS 3 has always been considered an 
imaging grey zone for PCa. The most troubling hurdle 
of the current biopsy decision strategies based on PI-

RADS is the different PCa detection rate in PI-RADS 3 
lesions. With our biopsy strategy, 63.3% and 34.8% of 
unnecessary biopsies could be avoided for men with PI-
RADS category 3 lesions in the two cohorts, which might 
partly help to address problems that plague clinicians. 
Our biopsy strategy does not require much additional scan 
time or intravenous contrast. The biopsy strategy focusing 
on detecting csPCa (with a low-risk threshold of 0.308) 
also showed clinical benefit, with biopsy avoidance rates of 
20.2% and 10.0% and corresponding csPCa miss rates of 
4.8% and 1.7% for patients with PI-RADS ≥3 lesions in 
the training and external validation cohorts, respectively. 
Apart  from that,  the nomograms have addit ional 
advantages of being intuitive and user-friendly, which may 
assist urologists in making better biopsy decisions.

There are some limitations in this study. First, the 
ISUP grade group of PCa was determined either by biopsy 

Figure 4 Multiparametric MRI and synthetic MRI images of a 73-year-old representative participant. (A-C) Synthetic MRI-derived T1, 
T2 and PD maps; (D) axial T2-weighted image; (E) ADC map; (F) pathological image (H&E, ×200 magnification). A PI-RADS 4 lesion 
was located in the left transition zone (arrows), with the ADC value of 818.48×10−6 mm2/s and T2 value of 73.95 ms. According to the 
nomogram, the possibility of PCa diagnosis was 0.953. Final pathological diagnosis confirmed it to be PCa with Gleason score 3+4. MRI, 
magnetic resonance imaging; T1, longitudinal relaxation time; T2, transverse relaxation time; PD, proton density; ADC, apparent diffusion 
coefficient; H&E, hematoxylin-eosin staining; PI-RADS, Prostate Imaging Reporting and Data System; PCa, prostate cancer.
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or surgery specimens, and the biopsy results have the 
possibility of under- or overestimating the Gleason score 
in comparison to the surgical results. Second, significant 
differences were found between the two institutions with 
regard to tPSA, fPSA, f/t PSA, and PD value on account 
of the bicentric population variation. Fortunately, the 
parameters mentioned above were not included in the 
nomogram construction. Third, although eligible patients 
for this study were recruited from two medical centres, the 
sample size of this study was relatively small. Multicentre 
evaluation with a larger sample for the established 
nomograms is still needed in future studies.

Conclusions

The nomograms incorporating parameters derived from 

multiparametric MRI and synthetic MRI could efficiently 
predict the risk of PCa and csPCa. An effective biopsy 
strategy combining the developed nomogram can assist in 
reducing the number of unnecessary biopsies in patients 
with PI-RADS ≥3 lesions.
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