Skip to main content
. 2024 Nov 8;14(12):9258–9275. doi: 10.21037/qims-24-595

Table 3. Delong test, NRI, and IDI results of eight machine learning models based on the same test dataset (n=155).

Model1 Model2 Z for Delong P for Delong NRI Z for NRI P for NRI IDI Z for IDI P for IDI
Naive Bayes Logistic regression −0.751 0.453 −0.033 −0.467 0.640 −0.057 −0.816 0.415
Naive Bayes K-nearest neighbor −0.777 0.437 −0.002 −0.034 0.973 −0.007 −0.114 0.909
Naive Bayes Random forest −0.386 0.699 −0.021 −0.316 0.752 −0.044 −0.658 0.511
Naive Bayes Decision tree 2.114 0.035 0.122 1.606 0.108 0.079 1.203 0.229
Naive Bayes Gradient boosting tree 0.800 0.424 0.059 0.789 0.430 0.040 0.594 0.553
Naive Bayes Support vector machine −0.675 0.500 0.842 5.496 <0.001 −0.019 −0.318 0.750
Naive Bayes Multilayer perceptron 0.911 0.362 0.213 2.244 0.025 0.103 1.505 0.132
Logistic regression K-nearest neighbor −0.108 0.914 0.030 0.346 0.729 0.050 0.663 0.507
Logistic regression Random forest 0.507 0.612 0.011 0.200 0.841 0.014 0.211 0.833
Logistic regression Decision tree 2.688 0.007 0.155 1.666 0.096 0.136 1.832 0.067
Logistic regression Gradient boosting tree 1.601 0.109 0.092 1.282 0.200 0.098 1.395 0.163
Logistic regression Support vector machine 0.162 0.871 0.874 5.893 <0.001 0.038 0.559 0.576
Logistic regression Multilayer perceptron 1.444 0.149 0.246 2.775 0.006 0.160 2.101 0.036
K-nearest neighbor Random forest 0.606 0.545 −0.019 −0.225 0.822 −0.037 −0.503 0.615
K-nearest neighbor Decision tree 2.944 0.003 0.124 1.842 0.065 0.086 1.377 0.169
K-nearest neighbor Gradient boosting tree 1.583 0.113 0.061 0.766 0.444 0.047 0.694 0.488
K-nearest neighbor Support vector machine 0.260 0.795 0.844 5.559 <0.001 −0.012 −0.197 0.844
K-nearest neighbor Multilayer perceptron 1.755 0.079 0.216 2.033 0.042 0.110 1.579 0.114
Random forest Decision tree 2.756 0.006 0.143 1.548 0.122 0.123 1.680 0.093
Random forest Gradient boosting tree 1.628 0.104 0.080 1.121 0.262 0.084 1.206 0.228
Random forest Support vector machine −0.425 0.671 0.863 5.802 <0.001 0.024 0.359 0.720
Random forest Multilayer perceptron 1.148 0.251 0.235 2.673 0.008 0.146 1.952 0.051
Decision tree Gradient boosting tree −1.388 0.165 −0.063 −0.708 0.479 −0.039 −0.583 0.560
Decision tree Support vector machine −2.696 0.007 0.720 4.981 <0.001 −0.099 −1.516 0.130
Decision tree Multilayer perceptron −0.946 0.344 0.091 0.829 0.407 0.023 0.357 0.721
Gradient boosting tree Support vector machine −1.554 0.120 0.783 5.338 <0.001 −0.060 −0.910 0.363
Gradient boosting tree Multilayer perceptron 0.249 0.804 0.154 1.525 0.127 0.062 0.872 0.383
Support vector machine Multilayer perceptron 1.458 0.145 −0.629 −4.759 <0.001 0.122 1.748 0.080

NRI, net reclassification improvement; IDI, integrated discrimination improvement.