Table 3. Delong test, NRI, and IDI results of eight machine learning models based on the same test dataset (n=155).
Model1 | Model2 | Z for Delong | P for Delong | NRI | Z for NRI | P for NRI | IDI | Z for IDI | P for IDI |
---|---|---|---|---|---|---|---|---|---|
Naive Bayes | Logistic regression | −0.751 | 0.453 | −0.033 | −0.467 | 0.640 | −0.057 | −0.816 | 0.415 |
Naive Bayes | K-nearest neighbor | −0.777 | 0.437 | −0.002 | −0.034 | 0.973 | −0.007 | −0.114 | 0.909 |
Naive Bayes | Random forest | −0.386 | 0.699 | −0.021 | −0.316 | 0.752 | −0.044 | −0.658 | 0.511 |
Naive Bayes | Decision tree | 2.114 | 0.035 | 0.122 | 1.606 | 0.108 | 0.079 | 1.203 | 0.229 |
Naive Bayes | Gradient boosting tree | 0.800 | 0.424 | 0.059 | 0.789 | 0.430 | 0.040 | 0.594 | 0.553 |
Naive Bayes | Support vector machine | −0.675 | 0.500 | 0.842 | 5.496 | <0.001 | −0.019 | −0.318 | 0.750 |
Naive Bayes | Multilayer perceptron | 0.911 | 0.362 | 0.213 | 2.244 | 0.025 | 0.103 | 1.505 | 0.132 |
Logistic regression | K-nearest neighbor | −0.108 | 0.914 | 0.030 | 0.346 | 0.729 | 0.050 | 0.663 | 0.507 |
Logistic regression | Random forest | 0.507 | 0.612 | 0.011 | 0.200 | 0.841 | 0.014 | 0.211 | 0.833 |
Logistic regression | Decision tree | 2.688 | 0.007 | 0.155 | 1.666 | 0.096 | 0.136 | 1.832 | 0.067 |
Logistic regression | Gradient boosting tree | 1.601 | 0.109 | 0.092 | 1.282 | 0.200 | 0.098 | 1.395 | 0.163 |
Logistic regression | Support vector machine | 0.162 | 0.871 | 0.874 | 5.893 | <0.001 | 0.038 | 0.559 | 0.576 |
Logistic regression | Multilayer perceptron | 1.444 | 0.149 | 0.246 | 2.775 | 0.006 | 0.160 | 2.101 | 0.036 |
K-nearest neighbor | Random forest | 0.606 | 0.545 | −0.019 | −0.225 | 0.822 | −0.037 | −0.503 | 0.615 |
K-nearest neighbor | Decision tree | 2.944 | 0.003 | 0.124 | 1.842 | 0.065 | 0.086 | 1.377 | 0.169 |
K-nearest neighbor | Gradient boosting tree | 1.583 | 0.113 | 0.061 | 0.766 | 0.444 | 0.047 | 0.694 | 0.488 |
K-nearest neighbor | Support vector machine | 0.260 | 0.795 | 0.844 | 5.559 | <0.001 | −0.012 | −0.197 | 0.844 |
K-nearest neighbor | Multilayer perceptron | 1.755 | 0.079 | 0.216 | 2.033 | 0.042 | 0.110 | 1.579 | 0.114 |
Random forest | Decision tree | 2.756 | 0.006 | 0.143 | 1.548 | 0.122 | 0.123 | 1.680 | 0.093 |
Random forest | Gradient boosting tree | 1.628 | 0.104 | 0.080 | 1.121 | 0.262 | 0.084 | 1.206 | 0.228 |
Random forest | Support vector machine | −0.425 | 0.671 | 0.863 | 5.802 | <0.001 | 0.024 | 0.359 | 0.720 |
Random forest | Multilayer perceptron | 1.148 | 0.251 | 0.235 | 2.673 | 0.008 | 0.146 | 1.952 | 0.051 |
Decision tree | Gradient boosting tree | −1.388 | 0.165 | −0.063 | −0.708 | 0.479 | −0.039 | −0.583 | 0.560 |
Decision tree | Support vector machine | −2.696 | 0.007 | 0.720 | 4.981 | <0.001 | −0.099 | −1.516 | 0.130 |
Decision tree | Multilayer perceptron | −0.946 | 0.344 | 0.091 | 0.829 | 0.407 | 0.023 | 0.357 | 0.721 |
Gradient boosting tree | Support vector machine | −1.554 | 0.120 | 0.783 | 5.338 | <0.001 | −0.060 | −0.910 | 0.363 |
Gradient boosting tree | Multilayer perceptron | 0.249 | 0.804 | 0.154 | 1.525 | 0.127 | 0.062 | 0.872 | 0.383 |
Support vector machine | Multilayer perceptron | 1.458 | 0.145 | −0.629 | −4.759 | <0.001 | 0.122 | 1.748 | 0.080 |
NRI, net reclassification improvement; IDI, integrated discrimination improvement.