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Background: Mitral regurgitation (MR) is the most common form of valvular heart disease (VHD), 
and the accurate assessment of MR severity is critical for clinical management. However, the quantitative 
assessment of MR is intricate and time-consuming, posing challenges for physicians in ensuring the precision 
of the results. Thus, our objective was to create an automated and reproducible artificial intelligence (AI) 
system. This study aimed to assist physicians in grading MR severity using color Doppler echocardiograms 
through the implementation of a fully convolutional neural network (FCN).
Methods: A retrospective cohort was established comprising 433 patients diagnosed with MR based on 
clinical criteria. Following screening, 269 patients met the inclusion criteria for the study. In total, 4,104 
frames from apical 4-chamber view color Doppler flow images constituted the training and validation set, 
while 1,060 frames comprised the test set. Using the FCN, the MR flow convergence region was captured 
and segmented. The algorithm also estimated the parameter radius, which was employed to compute the 
effective regurgitant orifice area (EROA) and regurgitant volume (RV) based on the proximal isovelocity 
surface area. These measurements were subsequently graded following the 2017 American Society of 
Echocardiography (ASE) guidelines. The segmentation and grading performance of the model were assessed. 
Additionally, the diagnostic performance of the AI model was compared to that of ultrasound physicians with 
varying years of experience.
Results: In groups I, II, III, and IV, the rates of correctly identifying the radius were 0.56, 0.83, 0.86, and 
0.89, while the grading accuracy was 0.95, 0.89, 0.88, and 0.91, respectively. Regarding patients with MR of 
different etiologies, the grading accuracy for the functional MR and degenerative MR groups was 0.82 and 
0.90, respectively. Using Carpentier classification of MR as the criterion, the accuracy for groups I, II, and 
IIIb was 0.80, 0.90, and 0.83, respectively. 
Conclusions: The model showed commendable performance, streamlining the clinical diagnostic process 
and enhancing the precision and stability of quantitative MR assessment.

Keywords: Mitral regurgitation (MR); fully convolutional neural network (FCN); color Doppler 

echocardiography; mitral regurgitation grading (MR grading)
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Introduction

Mitral regurgitation (MR) is the most common valvular 
heart disease (VHD) (1). The National Heart, Lung, and 
Blood Institute (NHLBI) reported that the prevalence of 
MR in the overall population is approximately 1.7%, and 
increases with age, reaching up to 9.3% in individuals aged 
over 75 years (1). Goel et al. reported that the population 
prevalence of mild (grade I), moderate (grade II), moderate-
to-severe (grade III), and severe (grade IV) MR was 19.2%, 
1.6%, 0.3%, and 0.2%, respectively (2). Patients with mild 
MR can be asymptomatic for a long time and have a better 
prognosis than patients with more severe MR. Conversely, 
patients with severe MR may experience pulmonary 
hypertension, atrial fibrillation, heart failure, and even 
death (3). When determining treatment strategies, both the 
2021 European Society of Cardiology and 2020 American 
College of Cardiology and American Heart Association 
guidelines for VHD management (4,5) emphasize the 
significance of the precise grading of MR. Therefore, the 
precise evaluation of MR severity is essential for diagnosis, 
treatment, and prognosis.

As a pivotal tool in the diagnosis and assessment of MR, 
transthoracic echocardiography (TTE) offers the advantages 
of being non-invasive, radiation free, cost effective, and 
easy to perform. In the quantitative assessment of valvular 
regurgitation via TTE, three principal methodologies are 
employed: pulsed wave Doppler quantification; volumetric 
quantification; and the proximal isovelocity surface area 
(PISA) method (6). Of these three methods, the PISA 
method is the most frequently used (6). With advancements 
in technology and society, the number of demands for 
echocardiogram has increased significantly, but the number 
of standardized trained ultrasound physicians is limited, and 
the deficiencies in the MR assessment process persist. These 
challenges include the process of dealing with multiple 
ultrasound sections, numerous parameters for analysis, 
difficulty in making comprehensive judgments involving 
qualitative, semi-quantitative, and quantitative parameters, 
as well as the poor reproducibility of crucial quantitative 
parameters like the measurement of the effective regurgitant 
orifice area (EROA) and regurgitant volume (RV) using 
the PISA method. These challenges hamper the ability of 

clinicians to obtain accurate echocardiogram assessment 
results in a timely manner. Consequently, enhancing the 
accuracy and efficiency of MR grading is an urgent clinical 
issue. Any improvements in this area would be beneficial 
for patients diagnosed with MR, and could alleviate the 
workload of ultrasound physicians, and guide clinical 
diagnosis and treatment.

Recently, convolutional neural network (CNN) 
technology has experienced rapid development and has been 
extensively applied in the medical field, demonstrating high 
sensitivity and specificity (7-9). Predominant applications 
in echocardiography practice include image recognition 
and segmentation,  image qual i ty assessment,  the 
measurement of left ventricular volume and function, and 
disease diagnosis (10-13). These applications contribute to 
enhancing diagnostic efficiency, accuracy, and consistency. 
Artificial intelligence (AI) also has numerous applications in 
the diagnosis of MR. Edwards et al. developed a machine-
learning model that uses echocardiographic videos and 
images for view classification and MR detection, which 
achieved high accuracy (14). Similarly, Kwon et al. developed 
an AI algorithm that effectively detects MR through 
electrocardiograms (15). Further, advancements have been 
made in diagnostics based on heart sounds. For instance, the 
support vector machine system proposed by Maglogiannis 
et al. and the maximum likelihood binary splitting 
method proposed by Safara et al. have both achieved high 
accuracy in classifying cardiac valvular diseases (16,17). 
These developments indicate the potential and promising 
future of AI in the diagnosis of cardiac valvular diseases. 
Nevertheless, previous AI-assisted automated evaluations 
in echocardiography-based MR studies have primarily 
relied on image features, single parameters, or non-
quantitative parameters. Consequently, further research 
needs to be conducted to explore the application of CNNs 
in the automatic measurement of quantitative assessment 
parameters in MR echocardiography.

Based on the above, this study formulated and evaluated 
a CNN framework for the automated analysis of color 
Doppler echocardiograms and the quantification of MR 
severity grading parameters. We present this article in 
accordance with the TRIPOD+AI reporting checklist 
(available at https://qims.amegroups.com/article/
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Figure 1 Flow chart for data selection, showing patient selection for training, validation, and testing. MR, mitral regurgitation.
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view/10.21037/qims-24-735/rc).

Methods

Study population

This study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by the Ethics Committee of Renmin Hospital 
of Wuhan University (No. WDRY2023-K186), and the 
requirement of individual consent for this retrospective 
analysis was waived. This study, which undertook an in-
depth analysis of the model’s application in a specific 
population, was conducted exclusively in secondary care 
settings. A total of 433 patients with MR from Renmin 
Hospital of Wuhan University from August 2021 to June 
2024 were identified for inclusion in the study. After 
excluding cases with compromised image quality—16 with 
motion artifacts or acoustic shadows, 43 with inadequate 
frame rates, resolution, or inappropriate Nyquist limits, 
12 featuring multiple jets of regurgitation, and 20 with 
indistinct hemispherical contours—along with 73 cases 
with incomplete images, the study ultimately included 269 
patients. A total of 5,164 frames from apical 4-chamber 
color Doppler flow imaging of mitral valve (A4C-MV-
CDFI) PISA flow convergence images were screened. 
Of these, 4,104 frames from 148 patients were used for 
training and validation purposes. Moreover, to assess the 
accuracy of “r” detection, 1,060 frames were selected from 
the remaining 121 cases in the test set. Additionally, one 

frame was manually chosen from each case in the test set to 
evaluate grading accuracy (Figure 1).

Echocardiography

Eight experienced Asian ultrasound physicians (three males 
and five females, aged between 30 and 55 years), each 
with more than 10 years of experience and comprehensive 
specialized training, acquired all the echocardiograms in the 
study. All the echocardiographic images of the MR patients 
were obtained using EPIQ 7C (Philips Medical Systems, 
Best, The Netherlands) and portable CX50 (Philips Medical 
Systems, Best, The Netherlands) color Doppler ultrasound 
diagnostic machines. Each case involves the storage of four 
to six segments of dynamic images, with each segment 
containing three to five cardiac cycles. Color Doppler and 
continuous wave (CW) Doppler echocardiography were 
obtained in TTE apical 4-chamber (A4C) views. Images 
were stored and downloaded in the standard Digital 
Imaging and Communications in Medicine (DICOM) 
format. The echocardiographic images were reviewed for 
each case using Philips DICOM viewer software (version 
3.0).

For this study, the EROA and RV were chosen as the 
quantitative assessment parameters. A crucial step involved 
measuring the regurgitant orifice radius (r) using the 
PISA method. The PISA method computation relies on 
the principles of hydrodynamics. The regurgitant blood 
flow, traversing a narrow regurgitant orifice, generates an 

https://qims.amegroups.com/article/view/10.21037/qims-24-735/rc
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accelerated hemispherical blood flow region characterized 
by an escalating flow velocity and a diminishing surface 
area. A color flip transpires when the blood flow velocity 
surpasses the Nyquist limit. In accordance with the 
continuity equation, the counterflow rate through the 
counterflow port equals the counterflow rate through any 
isovelocity spherical surface. Consequently, the flow rate 
through the regurgitant orifice (2πr2 × Va) can be computed 
to derive the EROA and RV. Simultaneously, manual 
measurements are taken of the maximum regurgitant 
velocity (Vmax) and the velocity-time integral (VTI) 
at the valve orifice using CW Doppler spectroscopy. 
Subsequently, the EROA and RV were calculated using 
the equations EROA = 2πr2 × Va / Vmax and RV = EROA 
× VTI, respectively. The PISA methods are applicable 
across different sociodemographic groups, ensuring the 
comparability of the data and the fairness of the results.

Videos were selected for inclusion in the study if they 
at least met the following inclusion criteria: (I) the A4C 
color Doppler MR was fully included in the color sampling 
frame, and the three parts of the MR jet (i.e., the flow 
convergence, vena contracta, and regurgitant jet) were 
clear; and (II) the transducer frequency was appropriate, the 
color gain was optimized just below the clutter noise level, 
and the baseline of Nyquist limit was reasonably adjusted 
at 30–40 cm/s for PISA. These videos were reviewed frame 
by frame, and if a frame met the inclusion criteria, it was 
exported to a specific folder and numbered. Following 
the recommendations in the 2017 American Society of 
Echocardiography (ASE) guidelines (6), the severity-related 
indicators of MR, including the EROA and RV, were 
measured and categorized into the following four grades 
by the experienced ultrasound physicians: grade I, grade II, 
grade III, and grade IV.

Establishment and validation of the model

Image pre-processing
The LabelMe software (version 3.10, developed by MIT, 
Cambridge, MA, USA) was employed to annotate the 
region of interest, specifically the left ventricle lateral color 
region during systolic A4C-MV-CDFI in the MR images. 
Subsequently, the labeled files were input into an automated 
analysis network architecture to identify the region of blood 
flow convergence. The pre-processing measures included 
resizing the images to 512 pixels while maintaining the 
aspect ratio. Additionally, standardization, normalization, 
and random horizontal flipping techniques were employed. 

These steps adjusted the data distribution and increased 
data diversity, thereby enhancing the performance and 
stability of the model.

Model training
In this study, the Deeplabv3+ fully convolutional neural 
network (FCN) model (Figure 2), a special type of 
CNN, was employed to identify the region of blood flow 
convergence at the MR mitral orifice. An overview of the 
proposed model is provided in Figure 3.

The K-means algorithm was applied to cluster the pixel 
points and color them according to the label value. This 
created a masked image. The pixel points were sorted 
according to their red, green, blue values, and the number 
of yellow pixel points in each row were counted, from top 
to bottom, and left to right. The highest point and the 
position with the fewest yellow pixels in the middle of the 
image was identified. This region refers to the features 
of the regurgitation convergence region that the model 
recognized. After multiple training sessions, our model 
accurately captured the image features of the regurgitation 
convergence region, and labeled the region to obtain the 
parameters necessary for quantitative MR evaluation. 
During the training process, each iteration used a batch size 
of four samples, with a total of 40,000 parameter updates. 
The parameter updates were performed using the stochastic 
gradient descent algorithm, with a momentum of 0.9 
applied to accelerate convergence. To prevent overfitting, 
weight decay regularization was employed. The learning 
rate was adjusted using a polynomial decay strategy with 
an initial learning rate of 0.01, a final learning rate of 0, 
and a power of 0.9. For the classification task, the cross-
entropy loss function was used to evaluate prediction errors, 
ensuring the accuracy and stability of the model.

Hardware specifications
This study was conducted using a computer equipped with 
the Linux Ubuntu 18.04.5 LTS operating system (developed 
by Canonical Ltd., London, UK) and an NVIDIA GeForce 
RTX 3090 (24GB) GPU (Graphics Processing Unit, 
developed by NVIDIA Corporation, Santa Clara, CA, 
USA). The construction, training, and image processing of 
the model primarily relied on paddlepaddle-gpu (version 
2.4.2, developed by Baidu, Inc., Beijing, China) and 
paddleseg (version 2.8.0, developed by Baidu, Inc., Beijing, 
China). Data organization, analysis, and visualization were 
performed using pandas (version 1.3.5, developed by the 
Pandas Development Team), numpy (version 1.21.6), and 
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Figure 3 Detailed description of model architecture. The patients’ A4C-MV-CDFI data were used to quantify metric-associated lesion 
severity through pre-processing, contour extraction, and key point detection. The red dots and lines mark the areas of interest in the original 
image; the red horizontal lines represent the upper and lower bounds of the model output radius. A4C-MV-CDFI, apical 4-chamber color 
Doppler flow imaging of the mitral valve; EROA, effective regurgitant orifice area; RV, regurgitant volume; VTI, velocity-time integral.

Figure 2 The network structure of the DeepLabv3+ neural network model. MR, mitral regurgitation; ERO, effective regurgitant orifice; 
DCNN, deep convolutional neural network; ASPP, atrous spatial pyramid pooling; Conv, convolution; A4C-MV-CDFI, apical 4-chamber 
color Doppler flow imaging of the mitral valve. 

opencv (version 4.5.5.64, developed by OpenCV.org).

Evaluation of the model

The data analysis was conducted using SPSS software 

(version 26.0, developed by IBM Corporation, Armonk, NY, 
USA). The continuous variables are presented as the mean 
± standard deviation (SD), median (interquartile range), 
count, or percentage. To evaluate the ability of the model 
to identify the regurgitant radius, manual evaluation was 
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used to determine the accuracy and non-detection rates for 
the test set. To avoid subjective bias, a double-blind method 
was employed in the assessment process. The evaluators 
remained completely blind to the personal information of 
the subjects during the outcome evaluation.

The overall performance of the AI model for MR 
grading was validated using accuracy, precision, recall, F1 
score, a confusion matrix, and a Bland-Altman analysis. 
The Bland-Altman analysis was employed to compare 
the assessments of MR regurgitation severity by a highly 
experienced physician (Physician A), a less experienced 
physician (Physician B), and the FCN model.

Results

Baseline clinical and echocardiographic characteristics of 
the MR patients

In the training/validation dataset, the mean age of the MR 
patients was 66.3 years, 54.2% were male, and 55.6%, 
12.3%, 42.5%, 16.6%, and 35.8% had coronary artery 
disease, myocardial infarction, hypertension, diabetes 
mellitus, and atrial fibrillation, respectively. In the test 
dataset, the mean age of the MR patients was 64.8 years, 
65.8% were male, and 58.0%, 11.7%, 40.4%, 17.1%, and 
33.3% had coronary artery disease, myocardial infarction, 
hypertension, diabetes mellitus and atrial fibrillation, 
respectively. The median of the left atrial anteroposterior 
diameter (LAD) and left ventricular end-diastolic diameter 
(LVEDD) were increased in the two datasets. The test 
dataset exhibited a lower left ventricular ejection fraction 
(LVEF) than the training/validation dataset. In the training/
validation set, there were 31 cases of Grade I (708 frames), 
38 of Grade II (1,281 frames), 36 of Grade III (1,005 
frames), and 43 of Grade IV (1,110 frames). In the test set, 
there were 19 cases of Grade I (137 frames), 25 of Grade II 
(230 frames), 30 of Grade III (343 frames), and 47 of Grade 
IV (350 frames) (Table 1).

In the test dataset, 87 cases (797 frames) were classified 
as functional mitral regurgitation (FMR), while 34 cases (263 
frames) were classified as degenerative mitral regurgitation 
(DMR). Using the Carpentier classification system as a 
standard, 58 cases (531 frames) were categorized as Type I, 
34 cases (263 frames) as Type II, and 29 cases (266 frames) 
as Type IIIb.

Performance of model in flow convergence radius 
identification

Following model training, a visualization technique 
was used to visualize the learning process of the model  
(Figure 4). The green area in the overlayed image 
revealed the regions that the model prioritized to identify 
regurgitation convergence zones.

In the test dataset, the rates of correctly identified 
images for Grades I to IV were 0.56, 0.83, 0.86, and 0.89, 
respectively. Conversely, the rates of incorrectly identified 

Table 1 Baseline clinical and echocardiographic characteristics of 
the MR patients 

Characteristic Training/validation Testing

Age (years) 66.3±10.1 64.8±12.3

Males (%) 54.2 65.8

Comorbidities (%)

Coronary heart disease 55.6 58.0

Myocardial infarction 12.3 11.7

Hypertension 42.5 40.4

Diabetes 16.6 17.1

Atrial fibrillation 35.8 33.3

Echocardiography

LAD (mm) 47 (43–51) 48 (44–52)

LVEDD (mm) 56 (48–60) 59 (53–62)

LVEF (%) 53 (38–56) 47 (40–56)

MR cases, n (frames)

Grade I 31 (708) 19 (137)

Grade II 38 (1,281) 25 (230)

Grade III 36 (1,005) 30 (343)

Grade IV 43 (1,110) 47 (350)

Data are presented as the mean ± standard deviation, 
median (interquartile range), count, or percentage. MR, mitral 
regurgitation; LAD, left atrium anteroposterior diameter; LVEDD, 
left ventricular end-diastolic diameter; LVEF, left ventricular 
ejection fraction.
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images for these grades were 0.26, 0.13, 0.09, and 0.08, 
respectively. Additionally, the rates of unidentified images 
were 0.18, 0.04, 0.06, and 0.03 for each corresponding grade 
(Figure 5). The accuracy of 0.56 for Grade I may be related 
to mild MR, for which the regurgitant area is limited, which 
poses challenges for radius recognition.

In the test dataset, the FMR group had a correctly 
identified rate of 0.86, while the DMR group achieved a 
rate of 0.92. The corresponding unidentified rates were 0.09 

for FMR and 0.04 for DMR. The correctly identified rates 
for Type I, Type II, and Type IIIb were 0.84, 0.92, and 0.82, 
respectively, while the unidentified rates were 0.10, 0.04, 
and 0.12, respectively.

Ability of model to evaluate MR severity 

In the test set, with reference to the grading results of 
the experienced physicians, the mean values for accuracy, 
precision, recall, and F1 score were approximately 0.91, 
0.81, 0.83, and 0.81, respectively (Table 2). Figure 6 presents 
the confusion matrix for the grading results, illustrating 
that the majority of errors predominantly occurred between 
adjacent severity levels. Notably, in the internal test dataset, 
the predictive accuracy for Grades I and IV was higher than 
that for Grades II and III.

In the classification of MR etiology, the accuracy 
rates for the FMR and DMR groups were 0.82 and 0.90, 
respectively. In the Carpentier classification of MR, the 
accuracy rates for groups I, II, and IIIb were 0.80, 0.90, and 
0.83, respectively. 

Comparison of the performance of the physicians and AI 
model

Figure 7 shows the comparative results of the quantitative 
measurements for grading the severity of MR, specifically 
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Figure 5 Performance of radius identification between groups on 
the testing data.

Figure 4 Visualization of the fully convolutional network model. MR, mitral regurgitation.
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the EROA and RV indices, between the FCN model and 
ultrasound physicians with varying years of experience. 
The mean difference obtained from the Bland-Altman 
analysis of the FCN model compared to the more 
experienced physicians (Group B) was slightly higher than 
that obtained from the analysis with the less experienced 
physicians (Group A). However, the range within ±1.96 
SD for the comparison between the FCN model and 
the more experienced physicians (Group B) was notably 
less, indicating a reduced dispersion of measurement 
discrepancies. Further, the data points predominantly 
clustered near the mean difference line, which showed that 
the predictive accuracy of the model approached that of the 
physicians with greater experience.

Discussion

In  th i s  s tudy,  we  deve loped and tes ted  an  FCN 
framework for the automatic analysis of color Doppler 
echocardiograms. This framework was designed to 
quantify the severity grading parameters of MR by 

leveraging the advanced capabilities of deep-learning 
algorithms to enhance diagnostic accuracy and efficiency. 
The FCN model was trained using a substantial dataset 
of echocardiographic images depicting cases of MR with 
varying degrees of severity. By automating the process of 
MR severity assessment, the framework aimed to reduce 
the inherent human errors and subjective variability present 
in traditional echocardiographic interpretations. The 
preliminary results showed that our FCN model achieved 
high accuracy and reliability in classifying the severity of 
MR. This approach not only simplifies the workflow of 
echocardiographic examinations but also serves as a valuable 
addition to the application of AI in cardiovascular imaging.

The PISA method is currently the most commonly used 
quantitative technique for assessing the degree of MR and 
plays a crucial role in determining treatment strategies and 
prognostic outcomes for patients (18-20). The challenge 
with the PISA method lies in accurately identifying the 
regurgitant radius on color Doppler images, which heavily 
depends on the skill of the ultrasound physician and is 
subject to significant interobserver variability. Additionally, 
the isovelocity surface area is calculated from the radius, 
resulting in errors that are magnified exponentially. 
According to the 2017 ASE guidelines (6), the values of 
the EROA and RV among Grades I to IV are very close, 
particularly for the EROA, where the difference between 
the grades is only 0.1 cm2, with values of <0.2, 0.20–0.29, 
0.30–0.39 and >0.4 cm2, respectively. This minimal variance 
can lead to measurement instability and directly affect 
clinical decision making, especially in determining whether 
a patient meets the criteria for transcatheter edge-to-edge 
repair or requires surgical valve replacement.

Previous studies have used AI to assess the severity of 
MR and have achieved some success. Yang et al. (12) used 
deep-learning algorithms to grade the severity of VHD 
based on automatic sectional classification and VHD 
diagnosis. These algorithms are capable of segmenting 

Table 2 Predicted outcomes of mitral regurgitation severity 

Grade Accuracy Precision Recall F1 score

Grade I 0.95 0.81 0.89 0.85

Grade II 0.89 0.71 0.80 0.75

Grade III 0.88 0.75 0.80 0.77

Grade IV 0.91 0.95 0.81 0.87

Mean 0.91 0.81 0.83 0.81
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Figure 6 The confusion matrix of the grading results of MR using 
the testing data. MR, mitral regurgitation.
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Figure 7 Comparisons of the quantitative metrics derived from the FCN algorithm, physician A, and physician B based on Bland-Altman 
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key frames in color Doppler videos and quantifying semi-
quantitative parameters related to MR severity, such as 
the MR jet area/left atrium (LA) area. Their capability in 
assessing MR severity was comparable to that of highly 
experienced ultrasound physicians. Additional research (21) 
introduced new image descriptors to better capture image 
features, selecting predictors such as the MR jet length/
LA length, MR jet length, LA width, LA area, MR jet area 
and MR jet area/LA area, among which the MR jet length 
showed superior performance with an area under the curve 
of 0.953. Another study (22) employed CNN algorithms to 
assess MR severity, and achieved a classification accuracy of 
90%, 87%, 81%, and 91% for Grades I to IV, respectively. 
Further, self-supervised learning algorithms based on two-
dimensional images have also shown high sensitivity in 

grading MR severity. These algorithms can automatically 
identify the frame with the largest regurgitant area and 
generate relevant parameters for assessing MR severity, 
thereby eliminating the variability of manual interpretation 
in clinical practice; however, they do not incorporate color 
Doppler image information (23). In more recent research, 
Tang et al. introduced a breakthrough approach called 
PISA-net, a fully automatic MR quantification method 
that includes processes such as cardiac cycle detection via 
electrocardiogram, Doppler spectrum segmentation, PISA 
radius segmentation based on M-mode echocardiography, 
and MR quantification. This method demonstrated a high 
Pearson correlation of up to 0.994 in measuring the RV 
and EROA, underscoring its potential and prospects for 
application in clinical MR diagnostics (24).
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Compared to previous studies, this study introduced an 
innovative FCN model, which is the first to automatically 
assess the severity of MR using color Doppler images 
in conjunction with the PISA method. This model 
automatically and precisely measures the convergence 
radius, subsequently calculating the EROA and RV, and 
classifying the severity of MR in accordance with clinical 
guidelines. Additionally, the model includes two mutually 
validating parameters, which enhances the reliability of 
the assessment. The accuracy of this model in MR grading 
was comparable to that of experienced physicians. The 
algorithm not only improved the reproducibility and 
accuracy of diagnoses but also enhanced the comparability 
and interpretability of the results. This model can provide 
significant support for clinical decision making and patient 
management, and will contribute to the advancement of 
personalized medicine and precision therapy.

In the test results, the unidentified rate was higher for 
Grade I than for other grades. This is likely because the 
small regurgitant area in the color Doppler images of the 
Grade I MR patients made it difficult to identify the presence 
of MR. The accuracy rates for Grades II and  III were 
slightly lower than those for Grades I and IV. This is likely 
because a small error of 1 mm near the threshold levels for 
Grade II and III MR could lead to changes in classification. 
Thus, MR classification should be combined with other 
indicators for comprehensive analysis. The accuracy of the 
FCN model-based PISA method in predicting the severity 
of patients with DMR and Carpentier Type II MR was 
higher than that of other groups for several reasons. First, 
for the same degree of MR, the PISA of FMR cases was 
significantly smaller than that of DMR cases, and the FCN 
model more easily recognized a larger convergence radius. 
Therefore, the smaller PISA radius in FMR cases might be 
more prone to measurement errors compared to the larger 
PISA radius in DMR cases. Additionally, the regurgitant 
orifices in DMR cases are mostly circular, while those in 
FMR cases are often non-circular or even elliptical, and 
circular regurgitant orifices and hemispherical PISA may 
be easier to identify. Further, the insufficient number of 
cases in the test set might have led to errors in the results; 
thus, further studies with increased sample sizes need to be 
conducted. The findings of this study only indicate that the 
FCN model can effectively measure the PISA in FMR and 
DMR cases.

The current FCN model still requires further validation 
and testing; however, there is reason to believe that it 
can serve as a supportive tool for ultrasound physicians 

in interpreting MR images, particularly for those in 
economically underdeveloped regions or with limited 
experience. In addition to enhancing the diagnostic 
accuracy, it would also reduce the workload of physicians, 
especially in high-pressure clinical environments. 
Additionally, the deployment of this technology could 
serve as a critical component of quality control, ensuring 
adherence to the highest standards in the diagnostic process 
of MR. By analyzing a large volume of TTE data, the FCN 
system can identify potential grading anomalies, thereby 
prompting medical personnel to re-evaluate these specific 
cases. This contributes to the scientific rigor of MR grading 
assessments and improves the overall quality of medical 
services. At the same time, it must be recognized that deep-
learning technologies cannot completely replace ultrasound 
physicians, especially in complex and critical diagnostic 
processes. Experienced ultrasound physicians rely not only 
on the images themselves but also integrate the overall 
clinical context of the patient, including medical history, 
symptoms, and results from other diagnostic tests. This 
comprehensive clinical judgment capability is currently 
difficult for deep-learning models to fully replicate.

Looking ahead, AI-based quantitative assessment 
technologies for MR are expected to expand to other types 
of VHD, particularly regurgitative disorders such as aortic 
valve regurgitation, tricuspid regurgitation, and pulmonary 
valve regurgitation. However, before these technologies 
can be widely adopted, they must be validated through 
diverse real-world clinical trials to verify their accuracy and 
efficiency to ensure that these methods will function stably 
and effectively in various clinical settings. In summary, 
deep-learning technologies should be viewed as powerful 
tools to enhance, but not replace, the diagnostic capabilities 
of physicians. These technologies should be used under the 
supervision of experienced medical professionals to improve 
healthcare efficiency and quality, while also ensuring that 
the highest commitment to patient safety and welfare is 
maintained. This collaborative model not only maximizes 
the potential of deep-learning technologies but also ensures 
that human doctors’ expertise and care remain at the core of 
complex medical decision making.

This study had several limitations. First, our model 
excluded cases with poor quality images, which could 
lead to reduced performance when applied in real-world 
scenarios. Second, as mentioned above, the guidelines 
indicate that the assessment of MR severity should 
integrate multiple parameters. Our model incorporated 
two quantitative parameters; however, the inclusion of 
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more quantitative parameters could enhance the accuracy 
of grading, especially when two parameters do not align 
in their MR severity classification. Further, this was 
an initial study of a MR quantification model based on 
echocardiography; however, in the future, we plan to 
introduce automatic recognition of the MR regurgitation 
spectrum and the automatic selection of frames to fully 
automate the assessment process. Additional sensitivity 
analyses should be conducted to evaluate the potential 
impact of changes in the geometric assumptions about the 
regurgitant convergence area on model outputs, which we 
consider an important part of our future research plans. In 
this study, some data points appeared outside the ±1.96 SD 
consistency limits. The presence of outliers suggests that, 
theoretically, the model may have demonstrated excellent 
predictive accuracy, but its performance in practice might 
be limited by the representativeness and diversity of the 
training data. Therefore, this underscores the importance 
of the continuous monitoring and evaluation of AI model 
performance, especially before models are widely deployed 
in clinical practice.

Conclusions

In this study, an FCN model was developed for the 
quantitative assessment of MR severity. The model 
demonstrated good performance, proving that the 
automated assessment of MR severity is feasible and 
effective. This model could assist clinicians in decision-
making and enhance the accuracy of ultrasound physicians’ 
assessments.
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