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Over recent years, studies on microbiota research and synthetic biology have
explored novel approaches microbial manipulation for therapeutic purposes.
However, fragmented information is available on this aspect with key insights
scattered across various disciplines such as molecular biology, genetics,
bioengineering, and medicine. This review aims to the transformative potential
of synthetic biology in advancing microbiome research and therapies, with
significant implications for healthcare, agriculture, and environmental
sustainability. By merging computer science, engineering, and biology,
synthetic biology allows for precise design and modification of biological
systems via cutting edge technologies like CRISPR/Cas9 gene editing,
metabolic engineering, and synthetic oligonucleotide synthesis, thus paving
the way for targeted treatments such as personalized probiotics and
engineered microorganisms. The review will also highlight the vital role of gut
microbiota in disorders caused by its dysbiosis and suggesting microbiota-based
therapies and innovations such as biosensors for real-time gut healthmonitoring,
non-invasive diagnostic tools, and automated bio foundries for better outcomes.
Moreover, challenges including genetic stability, environmental safety, and robust
regulatory frameworks will be discussed to understand the importance of
ongoing research to ensure safe and effective microbiome interventions.
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1 Introduction

Synthetic biology is a multidisciplinary field that integrates principles from computer
science, engineering, biology, and other domains to design and manipulate biological
systems (Mukherji and Van, 2009; Ruder et al., 2011; Ezzamouri et al., 2021). By applying
engineering concepts, synthetic biology facilitates the creation of novel artificial biological
systems or the redesign of existing ones to perform specific functions. This approach
leverages advanced techniques such as genome editing, particularly CRISPR/Cas9, and
computational modeling (Garner, 2021; Singh et al., 2019; Gardner, 2013). In healthcare, it
enables personalized therapies (Kumar et al., 2018; Yadav and Chauhan, 2022),
development of novel treatments, and enhanced diagnostic tools (Yan et al., 2023;
Yadav and Chauhan, 2022). In agriculture, it offers solutions for increasing crop yields
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(Marik et al., 2024), enhancing stress resilience, and improving
nutrient utilization (Sedeek et al., 2019). Industrial applications
encompass sustainable production of materials, biofuels, and
biochemicals (Shi et al., 2022), while environmental applications
include pollution remediation and biosensor development (Chen
and Silver, 2012; Malaviya et al., 2023).

Synthetic biology offers numerous benefits, but it also encounters
technological, ethical, and regulatory obstacles. Ethical concerns revolve
around the creation of synthetic organisms and the potential for
unintended genetic changes, emphasizing the need for strong
regulatory frameworks to ensure safe application (National
Academies of Sciences, Engineering, and Medicine, 2018). Synthetic
biology in gut microbiome engineering, for example, necessitates a
thorough examination of biosafety standards and ethical frameworks to
avoid unintended ecological or health consequences (Ou and Guo,
2023). While, technological challenges include improving the
predictability and reliability of engineered systems and scaling them
for industrial applications (Wang et al., 2013). Synthetic biology can also
be harnessed to engineer probiotics that target infectious agents,
produce therapeutic compounds (Chauhan, 2023), or modify gut
microbiota (Yadav et al., 2023) to improve outcomes in diseases
such as inflammatory bowel disease and metabolic disorders (Mimee
et al., 2018; Zhou et al., 2020). As such, microbial communities,
engineered through synthetic biology, may replicate natural
ecosystems, facilitating the study of microbial interactions and host-
microbiota dynamics (Mejía-Caballero et al., 2021). Thus, the
intersection of synthetic biology and microbiome research presents
significant opportunities for advancing biotechnology (Kumar and
Chauhan, 2021; Yadav and Chauhan, 2022), environmental
sustainability, and healthcare. Furthermore, modified microbes can
serve as biosensors for ecological monitoring and diagnostic
purposes (Paczesny et al., 2020; Sharma et al., 2023).

The human microbiota, primarily composed of bacteria residing
in the gut, skin, and mucosal surfaces (Yadav M. and Chauhan N. S.,
2024), play a crucial role in digestion, metabolism, immune
regulation, and neurological functions (Belkaid and Segre, 2014;
Kumar and Chauhan, 2022). Dysbiosis, characterized by an
imbalance in microbiota composition, has been linked to various
diseases, including neurodevelopmental disorders, diabetes,
inflammatory bowel disease, and obesity (Hou et al., 2022; Yadav
P. and Chauhan N. S., 2024). Understanding the interactions
between microbiota and host is essential for the development of

microbiome-based therapeutics (Yadav and Chauhan, 2022), such
as prebiotics and probiotics, aimed at restoring microbial balance
and enhancing health (Hemarajata and Versalovic, 2013; Zhou et al.,
2024; Hitch et al., 2022). Major challenges and prospects
highlighting the necessity for continued technological, ethical,
and regulatory hurdles while advancing microbiota-based
therapeutics are also discussed for better insight on the microbiome.

2 Synthetic biology tools

Synthetic biology combines science and engineering principles
to develop novel biological systems, utilizing advanced technologies
such as CRISPR, TALENs and ZFNs as summarized in Table 1
(Jeong et al., 2023). This multidisciplinary approach enables precise
manipulation of organisms, facilitating innovative applications
across medicine, agriculture, and environmental science. As the
field progresses, it holds significant potential to address critical
global challenges. For instance, in healthcare, synthetic biology
has enabled the rapid development of mRNA vaccines, as seen
during the COVID-19 pandemic, which highlights its potential for
combating emerging infectious diseases (Pfeifer et al., 2023).
Additionally, engineered organisms are being used to produce
new antimicrobial agents to counter antibiotic-resistant
pathogens, a growing global threat (Dana et al., 2016).

2.1 Gene editing tools

Gene editing techniques have ushered in a new era of precision
biology, providing exceptional capabilities for the effective and
accurate modification of genetic sequences across a range of
organisms, from microbes to animals and plants (Chauhan et al.,
2020). These tools empower researchers to modify individual genes,
introduce new genetic sequences, and repressed genes with
unprecedented efficiency and precision (Gaj et al., 2016; Ahmed
et al., 2018). The advent of gene editing technologies has
revolutionized biological research, enabling investigation of gene
function, disease modelling, and potential discovery of novel
therapeutics for rare and common genetic disorders (Li et al., 2020).

CRISPR/Cas9 technology, which was discovered in 2012,
revolutionized genome editing by using a bacterial immune

TABLE 1 Comparison of CRISPR/Cas9, TALENs, and ZFNs in genome editing technologies.

CRISPR/Cas9 TALENs (transcription activator-like
effector nucleases)

ZFNs (zinc finger nucleases)

Mechanism of
action

Cas9 nuclease is guided to DNA loci by
guide RNA

DNA is bound by TALEs, and double-strand breaks are
caused by the FokI nuclease

DNA is bound by zinc finger domains, and
FokI nuclease cleaves

DNA Repair
Pathways

DSBs repaired using NHEJ or HDR DSBs repaired using NHEJ or HDR DSBs modified using NHEJ or HDR

DNA targeting
strategy

RNA-based TALE-derived DNA-binding domains Zinc finger motifs customized for specific
sequences

Applications Gene insertion, modification, multiplexing and
gene knockout

Genome editing in differenet cell types and different
organisms

Precision editing

Uses Trials involving humans, animals, plants and
various therapeutic strategies

Genetic engineering Genetic research, early genetic studies and
therapeutic applications
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system to make precise genetic changes. This genetic manipulation
tool is derived from the adaptive immune system of bacteria like
Streptococcus pyogenes and Escherichia coli that helps defend it
against viral infections and plasmids (Marraffini and Sontheimer,
2008; Doudna and Charpentier, 2014; Rodríguez-Rodríguez et al.,
2019). Flexible design has enabled widespread application across
various experimental models, including plants, laboratory animals,
cell lines, and even human clinical trials (Li et al., 2020). A guide
RNA directs the Cas9 nuclease to particular DNA sites, causing
double-strand breaks (DSBs) that may be repaired by HDR or NHEJ
(Rodríguez-Rodríguez et al., 2019; Chauhan, 2022; Walter and
Engelke, 2002). Because of its simplicity and ability to multiplex,
this approach has been widely used in a variety of experimental
models, including human clinical trials (Li et al., 2020). TALENs
(Transcription Activator-Like Effector Nucleases) are another type
of customizable nucleas that combine DNA-binding regions from
transcription activator-like effectors with a FokI nuclease, providing
greater specificity and lower toxicity than zinc finger nucleases
(ZFNs) (Christian et al., 2010; Gaj et al., 2013). TALENs
(Transcription Activator-Like TALENs) also cause DSBs, which
allow for precise genome alterations in a variety of species. ZFNs,
one of the first designed nucleases, are made up of FokI and zinc
finger DNA-binding domains. They enable targeted gene editing by
inducing DSBs, however their design is more labor-intensive than
CRISPR/Cas9 and TALENs because zinc finger domains must be
customized for each target sequence, limiting their utility regardless
of their precision (Koijam et al., 2024; Paschon et al., 2019).

2.2 DNA assembly and synthesis

DNA assembly, which is required for the production of DNA
molecules, happens both spontaneously and in the laboratory
(Robinson et al., 2018). In natural systems, initiator proteins

attach to replication origins, unwinding DNA and enabling
polymerases to precisely synthesis new strands with the help of
different enzymes (Valenzuela-Amaro et al., 2023). In the lab,
synthetic biology approaches such as Gibson and Golden Gate
Assembly employ particular enzymes to effectively put together
DNA fragments, typically with sequencing and quality checks to
verify correctness, shown in Figure 1 (Alberts, 2002; Chao et al.,
2015). DNA synthesis is classified into two types: biological, which
employs enzymes to duplicate DNAwith high fidelity, and synthetic,
which uses phosphonamidite chemistry to produce bespoke, high-
throughput DNA (Nair and Gonzalez-Angulo, 2015). Synthetic
DNA has many uses in science, medicine and biotechnology
involving CRISPR development, recombinant proteins, genetic
diagnostics and mRNA vaccines (Yadav and Chauhan, 2021;
Lee, 2023).

Gibson Assembly is a DNA assembly technology that effectively
combines numerous DNA fragments in a single reaction using
enzymatic techniques. It uses overlapping sequences processed by
an exonuclease to generate 5′overhangs, which facilitates annealing,
gap filling by DNA polymerase, and sealing by DNA ligase, resulting
in smooth constructions (Semkum et al., 2023; Gibson et al., 2009).
This approach is very useful for gene insertion and genome synthesis
because to its accuracy, albeit careful fragment design and
verification by sequencing are required (Shao and Zhao, 2012;
Thomas et al., 2015; Olszakier and Berlin, 2022). Golden Gate
Assembly, on the other hand, employs Type IIS restriction
enzymes to generate specialized sticky ends that enable the
smooth assembly of many fragments in a single process. It has a
high assembly efficiency rate, frequently exceeding 90%, and is used
for gene insertion and pathway creation (Bird et al., 2022). The
approach necessitates careful creation of DNA fragments containing
recognition sites, as well as rigorous quality control by sequencing
(Marillonnet and Grützner, 2020). Finally, synthetic oligonucleotide
synthesis creates bespoke DNA or RNA sequences via solid-phase

FIGURE 1
Summary of different DNA assemblies and synthesis: (A) Gibson assembly, (B) Golden gate assembly, (C) Synthetic oligonucleotide synthesis.
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chemical synthesis, which involves adding nucleotides to a solid
support. This technique is critical for applications such as PCR
primers and antisense agents because it allows for quick and precise
sequence production, while verification methods such as sequencing
and mass spectrometry ensure product integrity (Chauhan et al.,
2022; Hughes and Ellington, 2017; Tang et al., 2013; Hoose et al.,
2023; Masaki et al., 2022; Ma et al., 2012).

2.3 Promoters and regulatory elements

Promoters are specific DNA regions at the beginning of genes
that allow RNA polymerase and transcription factor binding, so
commencing transcription (Minchin and Busby, 2013). The TATA
box and initiator (Inr) element are key factors within promoters,
whereas upstream elements like as the GC and CAAT boxes govern
transcription rates by interacting with regulatory proteins (Villao-
Uzho et al., 2023; Dao and Spicuglia, 2018). Enhancers are a type of
regulatory element that increases transcriptional activity by looping
DNA, allowing them to interact with promoters even when they are
thousands of base pairs distant (Pennacchio et al., 2013). Insulators
block enhancers from activating adjacent genes, preserving
transcriptional specificity. LCRs help to organize the expression
of gene clusters within certain chromosomal areas (Maurya, 2021;
Mercatelli et al., 2020). Advanced strategies like Hi-C have
demonstrated that genome spatial organization is critical in
promoter-enhancer interactions, stressing the three-dimensional
chromatin structure’s influence on gene regulation (Belton et al.,
2012). Furthermore, epigenetic modifications such as DNA
methylation and histone modifications change gene accessibility
and transcriptional activity without changing the DNA sequence,
resulting in an intricate regulatory system that governs the
expression of genes in response to cellular and environmental
cues as demonstrated in Table 2 (Panigrahi and O’Malley, 2021).

Synthetic promoters, inducible and repressible enzymes,
riboswitches, and ribozymes are effective tools for precisely
regulating genes in molecular biology and biotechnology.
Synthetic promoters are DNA elements constructed to influence
transcription with high efficiency by integrating several cis-
regulatory elements, allowing for targeted gene expression in

response to environmental stimuli like as temperature and
chemicals. They serve important roles in molecular
pharmacology, crop breeding, and metabolic engineering.
Inducible enzymes are controlled by inducers that remove
repressor proteins from operator areas, permitting transcription;
they are widely employed in recombinant DNA technology for
regulated protein synthesis and cost-effective manufacture
(Robinson, 2015). Repressible enzymes, on the other hand, are
regulated by corepressors that attach to repressors and lower
synthesis when end products are adequate, which aids in sectors
such as antibiotic manufacture and agricultural trait management.
Riboswitches, which are found in mRNA 5′UTRs, bind metabolites
and influence gene expression by conformational changes. They
have potential in biosensing and synthetic gene regulation (Kavita
and Breaker, 2023; Yu et al., 2024). Ribozymes, RNAmolecules with
enzymatic activities, have critical roles in RNA processing, gene
therapy, and RNA manipulation, with applications in therapeutic
design and genetic engineering (Vlasova-St. Louis, 2023). Together,
these components increase gene control and allow for novel
applications in diagnostics, medicine, and biotechnology.

2.4 Metabolic engineering tools

Metabolic engineering tools are essential for the optimization
and construction of metabolic pathways aimed at producing
valuable compounds, including pharmaceuticals, biofuels, and
specialty chemicals (Chae et al., 2017). These advancements
enable the development of microbial cell factories capable of
efficiently synthesizing a diverse array of chemicals and materials,
such as biofuels, bulk and fine chemicals, polymers, amino acids,
natural products, and therapeutic agents. Systems metabolic
engineering integrates traditional metabolic engineering with
principles from synthetic biology, systems biology, and
evolutionary engineering, creating a comprehensive approach to
enhance metabolic function and compound production (Ko
et al., 2020).

Pathway engineering focuses on improving and creating
metabolic pathways to increase the synthesis of valuable
chemicals by changing genes to shift metabolic fluxes (Fisher

TABLE 2 Overview of synthetic promoters, inducible/repressible enzymes, and RNA-Based regulatory elements (riboswitches and ribozymes).

Synthetic promoters Inducible and repressible
enzymes

Riboswitches and ribozymes

Definition Engineered promoters that combine cis-regulatory
components

Enzymes regulated by environmental factors
(inducers or corepressors)

RNA elements that control gene expression and carry
out enzymatic reactions

Components Enhancers, silencers, operator and core promotor Inducible: promoter/operator controlled by
inducers

Repressible: repressor/corepressor prevents
transcription

Riboswitches
RNA segments that bind small molecules to regulate

the structure of mRNA
Ribozymes

RNA molecules that catalyze splicing and cleavage

Mechanism Modular design enables precise responses to
stimuli

Inducible: inducer binds the repressor, relieving
inhibition

Repressible: Corepressor activates repressor to
prevent transcription

Riboswitches: Modify mRNA structure to regulate
translation or transcription

Ribozymes catalyze RNA cleavage, splicing, and
modification

Applications Crop breeding, metabolic engineering, molecular
pharmacology, and synthetic biology

Biotechnology (e.g., recombinant protein
production), pharmaceuticals, biosensors

RNA-based treatments, environmental monitoring,
medical diagnostics, and biosensors
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et al., 2014). Enzyme engineering improves enzyme activity and
stability (Malaviya et al., 2023), whereas pathway optimization uses
metabolic flow analysis to increase desired metabolite outputs while
minimizing byproducts (Iwatani et al., 2008; Eriksen et al., 2014).
Computational modeling helps to simulate the consequences of
genetic alterations on pathways, allowing for the creation of more
efficient biofuel and medicinal processes (Alper and Avalos, 2018).
Flux Balance Analysis (FBA) examines and improves metabolic
networks by modeling metabolite flow and optimizing or decreasing
certain metabolic fluxes under restrictions, hence improving
metabolic route design (Rajvanshi and Venkatesh, 2013; Orth
et al., 2010; Sahu et al., 2021). Pathway engineering focuses on
improving and creating metabolic pathways to increase the synthesis
of valuable chemicals by changing genes to shift metabolic fluxes
(Fisher et al., 2014). Enzyme engineering improves enzyme activity
and stability (Malaviya et al., 2023), whereas pathway optimization
uses metabolic flow analysis to increase desired metabolite outputs
while minimizing byproducts (Iwatani et al., 2008; Eriksen et al.,
2014). Computational modeling helps to simulate the consequences
of genetic alterations on pathways, allowing for the creation of more
efficient biofuel and medicinal processes (Alper and Avalos, 2018).
Flux Balance Analysis (FBA) examines and improves metabolic
networks by modeling metabolite flow and optimizing or decreasing
certain metabolic fluxes under restrictions, hence improving
metabolic route design (Rajvanshi and Venkatesh, 2013; Orth
et al., 2010; Sahu et al., 2021).

2.5 Synthetic biology platform

Synthetic biology platforms are specialized infrastructures that
facilitate the development, integration, and application of synthetic
biology techniques, allowing for the creation of new biological
systems and organisms in fields such as agriculture, healthcare,
and environmental sciences (MacDonald and Deans, 2016).
CRISPR/Cas9, synthetic gene circuits, and modular DNA are
among the techniques available for gene editing, genome
assembly, and pathway design on these systems. High-throughput
technologies enable quick screening, DNA synthesis, protein
expression, and metabolic engineering, while sophisticated
computer models help anticipate and optimize gene interactions
and metabolic pathways (Bak et al., 2022; Kwon et al., 2024). These
platforms, equipped with automation and robotics, facilitate both
large-scale manufacturing and small-scale research. They serve as
collaborative hubs that stimulate multidisciplinary innovation and
connect researchers with industry (Brooks and Alper, 2021; Si and
Zhao, 2016).

Biofoundries, design tools, and standardized biological pathways
are transforming synthetic biology by improving automation,
computer modeling, and modular genetic engineering.
Biofoundries improve synthetic biology through automated
processes, robotic systems, and computational tools, allowing for
high-throughput screening and precision biological product
creation (Lee et al., 2023; Tellechea-Luzardo et al., 2022). Gene
editing, cloning, and sequence analysis are supported by design tools
such as Benchling and Geneious, allowing for more efficient and
collaborative research (Bosley et al., 2021; Kearse et al., 2012).
BioBricks are standardized genetic modules that allow for the

smooth integration of genetic components, which is critical for
complex genetic circuits utilized in a variety of applications such as
metabolic engineering and instructional aids (Yamazaki et al., 2017;
Anderson et al., 2010; Radde et al., 2024). These discoveries work
together to expedite synthetic biology, allowing for fast prototyping
and modular assembly of genomic structures. In microbiota
therapies, synthetic biology allows for the engineering of
microbial communities, resulting in tailored medicines for
ailments such as obesity and inflammatory disorders, with tools
such as BioBricks facilitating fast microbial therapy development
(Røkke et al., 2014; Singh J. et al., 2024; Chauhan, 2023).

3 Importance of gut microbiota

The human gut harbors a vast and diverse community of
microbes (Kumar et al., 2015), collectively forming a complex
microbial ecosystem that plays a pivotal role in human health,
summarized in Figure 2. This gut microbiota is increasingly
recognized as a vital organ in its own right, functioning as a
multidirectional axis linking the gut to other organ systems
throughout the body (Yadav et al., 2022a). The predominant
phyla within the typical human gut microbiota are Bacteroidetes
and Firmicutes, which together account for a significant proportion
of the microbial community (Afzaal et al., 2022). In early life, an
infant’s gut microbiota appears somewhat arbitrary, influenced by
factors such as mode of delivery, diet, and environmental exposures.
However, by around 3 years of age, this microbial community begins
to stabilize and more closely resemble that of an adult (Jandhyala,
2015). This maturation process is crucial, as the composition and
diversity of gut microbiota directly influences host health and
disease susceptibility (Rooks and Garrett, 2006; Madhu et al.,
2023). The gut microbiota axis regulates intricate host-microbe
interactions and communicates with various physiological
systems, including neuronal, endocrine, immunological, humoral,
and metabolic pathways (Wang et al., 2017; Chauhan et al., 2018).
For instance, gut microbes can produce metabolites like short-chain
fatty acids (SCFAs), which not only provide energy to colonocytes
but also modulate immune responses and influence brain function
through the gut-brain axis. Furthermore, alterations in gut
microbiota composition have been linked to various health
conditions, including obesity, diabetes, inflammatory bowel
disease (Singh A. et al., 2024), and mental health disorders,
underscoring the importance of this microbial ecosystem in
maintaining overall health and homeostasis (Kumar et al., 2020).
As research continues to uncover the complexities of gut microbiota
interactions, it opens new avenues for therapeutic interventions to
restore microbial balance and improve health outcomes.

3.1 Immune system regulation

The gut microbiota plays a crucial role in efficient functioning of
the immune system as approximately 70% of the body’s immune
cells reside within the gut. This unique arrangement allows the
microbiota to interact closely with immune cells, training and
regulating immune responses to maintain homeostasis and
protect the host from pathogens (Wiertsema et al., 2021).
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Through various mechanisms, the gut microbiota influences
immune cell development and the production of immune-
signaling molecules, including cytokines and chemokines. These
interactions are essential for shaping innate and adaptive immunity,
ultimately affecting the body’s capacity to combat infections and
prevent the onset of autoimmune diseases. For instance, certain
beneficial microbes can stimulate the production of regulatory
T cells, which help maintain immune tolerance and prevent
excessive inflammatory responses. A healthy and diverse
microbiome promotes a balanced immune system, enhancing the
body’s ability to fend off infections and reducing the risk of chronic
diseases. Dysbiosis through disruptions in the composition or
function of the gut microbiota has been linked to various health
conditions, including allergies, inflammatory bowel diseases, and
even metabolic disorders (Maciel-Fiuza et al., 2023). Furthermore,
short-chain fatty acids (SCFAs), synthesized by the gut microbiota
contributes immune modulation leading to an efficient response
against foreign agents. These metabolites enhance the integrity of
the gut barrier, reducing systemic inflammation and supporting
overall immune health. As research continues to elucidate the
complex interplay between gut microbiota and the immune
system, it becomes increasingly clear that maintaining a healthy
microbiome is vital for fostering robust immune function and
promoting long-term health. This understanding opens new
avenues for therapeutic interventions aimed at restoring
microbial balance and enhancing immune resilience.

3.2 Disease prevention

A diverse and balanced gut microbiota is critical in protecting
the host from harmful organisms, promoting overall health. The
human gut is home to many bacteria, primarily non-pathogenic

species, which engage in symbiotic interactions with the host. These
interactions are essential for modulating the immune system
enhancing the host’s defense mechanisms against pathogenic
invasion (Afzaal et al., 2022). The gut microbiota acts as a
dynamic barrier, preventing the colonization of harmful
pathogens through various mechanisms (Yadav et al., 2020b). For
example, beneficial bacteria can outcompete pathogenic bacteria for
nutrients and binding sites, produce antimicrobial substances that
inhibit pathogenic agents, and activate the immune system to
respond effectively. This protective function underscores the
importance of maintaining a healthy microbial ecosystem within
the gut. However, disruptions in microbiota diversity—often caused
by factors such as poor dietary choices, antibiotic use (Ahmed et al.,
2013; Ahmed et al., 2014), and environmental influences—can
significantly impair these protective mechanisms. As such,
dysbiosis has been associated with an increased susceptibility to a
wide range of health issues, including chronic inflammatory
conditions, cardiovascular diseases, and even certain types of
cancer (Hou et al., 2022). For instance, an imbalanced gut
microbiota may lead to an overgrowth of pathogenic bacteria,
resulting in chronic inflammation, which is a known risk factor
for conditions such as inflammatory bowel disease (IBD) and
metabolic syndrome. Additionally, the loss of microbial diversity
can hinder the production of beneficial metabolites like short-chain
fatty acids (SCFAs), which have anti-inflammatory properties and
are vital for maintaining gut health. Research has also indicated that
dysbiosis can influence the progression of diseases like obesity and
diabetes by affecting metabolic pathways and the body’s
inflammatory responses. Furthermore, emerging studies suggest a
potential link between gut microbiota composition and the risk of
certain malignancies, highlighting the intricate connections between
microbial health and systemic disease outcomes (Rasgania
et al., 2024).

FIGURE 2
Role of gut microbiota in digestion and food absorption, immune system modulation, mental health, and the creation of beneficial metabolites.

Frontiers in Bioengineering and Biotechnology frontiersin.org06

Nazir et al. 10.3389/fbioe.2024.1511149

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2024.1511149


3.3 Digestive health

The gut microbiota is essential for digesting complex
carbohydrates and dietary fibers via microbial fermentation that
transforms these indigestible substrates into short-chain fatty acids
(SCFAs) such as acetate, propionate, and butyrate. These fatty acids
are crucial formaintaining gut health, regulating energymetabolism,
and modulating inflammation (den Besten et al., 2013). SCFAs are
also vital for host energy metabolism and as an energy source for
colonic epithelial cells that facilitates overall metabolic homeostasis.
By promoting the absorption of nutrients and influencing lipid
metabolism, SCFAs help maintain a balanced energy state within the
body. Additionally, these fatty acids play a pivotal role in regulating
the immune response, acting as signaling molecules that help
modulate inflammation and protect against inflammatory
disorders. A healthy gut microbiome can significantly reduce the
risk of various digestive disorders, including inflammatory bowel
disease (IBD) and irritable bowel syndrome (IBS) by preventing
dysbiosis and subsequent exacerbation of these conditions (Rowland
et al., 2018; Singh J. et al., 2024). For instance, in IBD, an altered
microbial composition can lead to an inappropriate immune
response to gut microbiota, resulting in chronic inflammation
and damage to the intestinal lining. Similarly, individuals with
IBS often exhibit altered gut microbiota profiles, which can
contribute to symptoms such as bloating, abdominal pain, and
altered bowel habits. Furthermore, SCFAs have been shown to
promote the production of mucus, enhance gut barrier integrity,
and support the growth of beneficial bacteria, all of which are critical
for maintaining gastrointestinal health. They also interact with host
cells through specific receptors, influencing various metabolic and
immune pathways.

3.4 Metabolism and weight management

The gut microbiota plays a crucial role in metabolism,
influencing the body’s ability to extract and store energy from
dietary intake. Variations in microbial composition can
significantly affect weight gain, fat retention, and susceptibility to
metabolic disorders, including obesity and type 2 diabetes (Geng
et al., 2022). In individuals with obesity and related metabolic
diseases, the composition and functionality of the gut
microbiome exhibit distinct alterations. Mechanistic studies have
shown that the gut microbiota impacts the energy balance equation
in two primary ways: it can influence how energy is extracted from
food and modulate host genes responsible for regulating energy
storage and expenditure. A well-balanced microbiome is associated
with healthy metabolic processes and effective weight management
(Valdes et al., 2018). Recently, the concept of the gut-brain axis has
gained attention, highlighting the intricate relationship between gut
microbiota and mental health. This network encompasses not only
anatomical pathways but also humoral, endocrine, metabolic, and
immunological communication routes (Singh A. et al., 2024). The
brain can regulate intestinal functions through several mechanisms,
including the autonomic nervous system, the hypothalamic-
pituitary-adrenal (HPA) axis, and intrinsic nerves within the
gastrointestinal tract (Appleton, 2018). The gut microbiota
influences mood and cognitive function by affecting

inflammation, modulating stress responses, and synthesizing
neurotransmitters. Disruptions in the gut microbiome have been
linked to a variety of mental health issues, including mood disorders,
anxiety, and depression (Clapp et al., 2017). This bidirectional
communication illustrates the significant impact that gut health
can have on brain function and overall wellbeing, underscoring the
importance of maintaining a balanced and diverse gut microbiota
for both metabolic health and mental health.

4 Synthetic biology approaches in
microbiota engineering

Synthetic biology offers innovative tools and methodologies for
engineering the microbiota, paving the way for new therapeutic and
diagnostic applications. This interdisciplinary field allows
researchers to manipulate microbial systems for a variety of
beneficial purposes, including metabolic engineering, genetic
modification, personalized medicine, and biosensing (Lu
et al., 2023).

4.1 Metabolic engineering and biosynthetic
pathway construction

One of the primary applications of synthetic biology in
microbiota engineering is the development of engineered
microorganisms capable of synthesizing valuable metabolites that
are not produced by their wild-type counterparts. This approach has
extensive applications in the production of chemicals, biofuels, food
additives, and pharmaceuticals. By constructing synthetic
biosynthetic pathways, researchers can enable bacteria to produce
essential compounds such as vitamins, hormones, and anti-
inflammatory agents. This strategy is particularly promising for
developing novel probiotics with enhanced health benefits (Nielsen
and Keasling, 2016).

4.2 Microbial genetic engineering and
gene editing

Advancements in gene editing technologies, such as CRISPR-
Cas9, have revolutionized the ability to precisely modify the
genomes of bacteria. This capability allows for the targeted
addition, removal, or alteration of specific genes to enhance
desirable traits or mitigate adverse effects (Arroyo-Olarte et al.,
2021). For example, genetically modified probiotics can be
engineered to produce therapeutic compounds or enzymes that
facilitate the breakdown of harmful toxins, thereby improving gut
health and overall wellbeing (Zhou et al., 2020).

4.3 Personalized probiotics through
synthetic biology

Synthetic biology techniques enable the development of
probiotic strains tailored to individual patient needs. By
customizing these probiotics to specifically address dysbiosis or
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deficiencies within the gut microbiota, researchers can offer more
personalized and effective therapeutic options. This individualized
approach enhances the potential for targeted interventions that align
with each patient’s unique microbiome profile (Bober et al., 2018;
Mugwanda et al., 2023). Personalized probiotics developed through
synthetic biology represent a groundbreaking approach to
enhancing human health by tailoring microbial therapies to
individual microbiome profiles. By leveraging advanced genetic
engineering techniques, these probiotics can be customized to
support specific health needs, optimize gut function, and restore
microbial balance (Yadav et al., 2022b).

4.4 Engineered biosensors and
feedback systems

Engineered microbes can also function as sophisticated
biosensors, capable of detecting specific environmental chemicals
or conditions. These biosensors serve as advanced measurement
tools, offering the ability to identify clinical pathogens such as
bacteria and viruses with high accuracy. Modified
microorganisms can generate observable signals, such as
fluorescence or color changes, in response to environmental
stimuli. This capability enables real-time monitoring of infections
or gut health status, facilitating timely interventions (Castillo-
Henríquez et al., 2020; Saifi et al., 2022).

4.5 Targeted drug delivery systems

Synthetic biology further allows for the design of
microorganisms that can deliver therapeutic compounds to
precise locations within the body, such as the gastrointestinal
tract, demonstrated in Figure 3. These engineered bacteria can be
programmed to release their therapeutic cargo in response to
specific environmental triggers or conditions, thereby enhancing

the accuracy and efficacy of treatments. This targeted delivery
approach has the potential to minimize side effects and maximize
therapeutic outcomes, representing a significant advancement in the
field of microbial therapeutics.

5 Applications of synthetic biology in
microbiota therapeutics

Synthetic biology is transforming microbiota therapeutics by
enabling the design of engineered microbes that can precisely
interact with the host microbiome. Unlike traditional probiotics,
these engineered organisms are tailored to sense, respond to, and
modulate specific conditions within the gut. This approach opens
new avenues for treating diseases linked to microbiome imbalances,
offering targeted interventions that traditional therapies cannot achieve.

5.1 Disease treatment and prevention

Synthetic biology is revolutionizing the treatment and
prevention of various diseases through innovative approaches
that harness the capabilities of engineered microbes. One of the
most promising areas is the use of engineered probiotics to address
gastrointestinal disorders. These probiotics are specifically modified
strains of bacteria that can produce therapeutic compounds,
enhance gut functionality, or deliver anti-inflammatory effects.
For instance, genetically engineered probiotics may synthesize
therapeutic peptides or cytokines that can alleviate symptoms of
conditions like irritable bowel syndrome (IBS) and inflammatory
bowel disease (IBD). By tailoring these probiotics to target specific
pathological conditions, researchers aim to enhance their efficacy
while leveraging the natural health benefits of beneficial microbes.
Studies have shown that modified probiotics can effectively alter the
gut microbiota composition, restoring balance and improving
patient outcomes.

FIGURE 3
Various drug delivery methods, including (A) microbes as drug delivery vehicles, which improve treatment efficacy; (B) targeted delivery of
therapeutics, which directs drugs to specific sites for increased effectiveness and (C) controlled release mechanisms, which allow for the sustained and
gradual release of therapeutics.
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Synthetic microbiota and engineered probiotics offer
encouraging treatment options for autoimmune, metabolic, and
gastrointestinal conditions. Probiotics designed to generate
therapeutic peptides, or anti-inflammatory cytokines have
demonstrated effectiveness in reducing symptoms of
gastrointestinal disorders such as IBD and IBS by reestablishing
the balance of the gut microbiota (Ma et al., 2022; Pesce et al., 2022;
Romero-Luna et al., 2022). For instance, mixed probiotics (NS)
continuously raised the levels of beneficial bacteria, but Lactobacillus
buchneri (SU) had varying impacts on them (Uchiyama-Tanaka,
2014). Additionally, a study conducted on IBS patients showed that
fiber-enriched probiotic milk reduced bloating and discomfort and
dramatically increased the frequency of bowel movements (Choi
et al., 2011). By improving bile acid metabolism and SCFA
generation, synthetic microbiota may help treat metabolic
diseases including diabetes and obesity. This could enhance
glucose metabolism and decrease the buildup of fat (Scheithauer
et al., 2020; Wu et al., 2021). Higher risks of obesity, insulin
resistance, and inflammation are linked to decreased gut
microbial diversity (Crudele et al., 2023). Engineered probiotics
that alter immune responses have the potential to improve
autoimmune disorders like rheumatoid arthritis and multiple
sclerosis (Wang et al., 2024). Probiotics are generally well-
tolerated and do not significantly increase side effects, according
to a study of 80 RCTs that demonstrated the efficacy of gut
microbiota-based therapy in lowering symptoms in autoimmune
illnesses (Zeng et al., 2024).

5.2 Drug delivery systems

Drug delivery systems play a pivotal role in enhancing the efficacy
and safety of therapeutic interventions. These systems employ various
strategies to optimize drug administration, targeting specific areas
within the body while minimizing side effects (Coelho et al., 2010).
Modern approaches in drug delivery encompass controlled-release
formulations that dispense active ingredients at predetermined rates,
alongside targeted delivery systems that direct therapeutic effects to
particular tissues or cells (Khafoor et al., 2023). For instance, liposomal
and nanoparticle-based systems (Yadav et al., 2023) have gained
traction for their ability to encapsulate drugs, protecting them from
degradation and improving absorption by target cells (Ezike et al.,
2023). Moreover, advanced drug delivery technologies feature smart
devices (Yadav et al., 2020a) capable of responding to physiological
changes, such as alterations in pH or temperature, facilitating the release
of drugs under specific conditions. These innovations not only enhance
therapeutic outcomes but also reduce the frequency of administration
and improve patient compliance (Nieuwlaat et al., 2014).

Microorganisms’ innate capacity to locate within certain tissues
and react to environmental cues enhances therapeutic accuracy and
opens up new avenues for drug administration. For instance,
medicinal chemicals can be transported directly to target
locations, such as the gastrointestinal tract, by engineered
bacteria and yeast, enabling localized treatment and minimizing
systemic side effects (Shende and Basarkar, 2019; Santos-Beneit,
2024). Furthermore, certain bacteria can be made to release
medications in response to particular stimuli, such as
temperature or pH, allowing for precise and regulated

administration (Romero-Luna et al., 2022; Ma et al., 2022). By
attaching to disease-specific markers and releasing medications in
response to environmental changes, targeted delivery technologies
like nanoparticles, liposomes, and antibody-conjugated carriers
improve results and reduce off-target effects (Tewabe et al., 2021;
Elumalai et al., 2024). Additionally, by delivering medications at
steady rates over time, controlled release mechanisms—from matrix
systems and reservoir membranes to osmotic pumps and responsive
microencapsulation—improve safety and efficacy, especially in
complex diseases like cancer (Adepu and Ramakrishna, 2021;
Almoshari, 2022). When combined, these strategies offer a
significant improvement in the efficacy and dispersion of
treatments.

5.3 Diagnostic tools

Diagnostic tools in synthetic biology aim to improve the
precision and effectiveness of engineered biological systems by
facilitating the detection, monitoring, and analysis of synthetic
constructs within biological contexts. These innovative
technologies play a crucial role in validating synthetic biology
applications, ensuring safety standards, and enhancing overall
performance (Singh et al., 2019). By providing real-time insights
and reliable data, these diagnostic tools are essential for advancing
research and clinical applications in the field.

The diagnosis of gastrointestinal disorders and gut health
monitoring are being revolutionized by biosensors and non-
invasive diagnostic methods. In order to identify inflammation,
dysbiosis, or the presence of pathogens, biosensors tailored to gut
health use wearable technology or engineered microbes to detect
biomarkers or environmental changes in real-time (Singh, Bansal
and Pandey, 2019; Tanniche and Behkam, 2023). For example,
ingestible biosensors can provide real-time insights by directly
measuring gastrointestinal parameters like temperature or
pH (De la Paz et al., 2022). By recognizing microbial DNA/RNA,
advanced biosensors can identify pathogens, aid in illness diagnosis,
and track microbial balance (Gradisteanu-Pircalabioru et al., 2024;
Jeon et al., 2022). Additionally, non-invasive methods like MRI,
ultrasound, and stool and breath studies enable the evaluation of
gastrointestinal health without requiring invasive treatments. While
stool and breath tests provide indicators for diseases including
colorectal cancer, SIBO, and infections like H. pylori, ultrasound
and MRI offer detailed views of internal organs that can diagnose
inflammation and malignancies (Khannous-Lleiffe et al., 2022;
Pham and Beauchamp, 2021). When used in tandem, these
techniques provide useful, real-time data that makes it possible to
control gastrointestinal health precisely and with less invasiveness.

5.4 Personalized medicine

Personalized medicine represents a groundbreaking approach to
healthcare that customizes medical treatments and interventions
based on the unique characteristics of each patient. This paradigm
shift leverages information about an individual’s environment,
genetics, and lifestyle to optimize treatment outcomes, enhance
efficacy, and minimize side effects (Akhondzadeh, 2014).
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Personalizing microbiota-based therapies, genetic, and
metabolic profiling allows for highly tailored approaches to
individual health needs. By analyzing a patient’s unique gut
microbiome through advanced sequencing, healthcare providers
can select specific probiotics or prebiotics to address microbial
imbalances, improving treatment outcomes and minimizing side
effects (Meher et al., 2024; Ji et al., 2023). Genetic profiling reveals
DNA variations and mutations linked to disease susceptibility and
drug response, enabling targeted therapies and optimizing
medication choices (Malone et al., 2020; Hernandez and Blazer,
2006). Meanwhile, metabolic profiling examines metabolites in
bodily fluids to identify metabolic imbalances, offering insights
into conditions like diabetes and cardiovascular disease. This
allows for personalized dietary and lifestyle interventions (Qiu
et al., 2023). Furthermore, customized probiotics designed
around individual gut microbiome composition and health
factors provide a more precise alternative to traditional one-size-
fits-all probiotics, enhancing digestion and overall wellbeing
(Cunningham et al., 2021). Collectively, these personalized
approaches mark a shift towards more effective, patient-specific
healthcare solutions that integrate genetic, metabolic, and
microbiome data.

6 Synthetic biology in the gut
microbiome

Synthetic biology is revolutionizing our understanding and
manipulation of the gut microbiome, providing novel therapeutic
tools to address various health conditions. This field involves
designing and engineering microbial strains with specific functions
to modulate the gut ecosystem, influence metabolic processes, and
improve disease outcomes (Arnold et al., 2023; Yang et al., 2023). By
creating genetically modified microorganisms that can integrate with or
influence the existing microbiota, synthetic biology enables targeted
interventions in the gut environment with unprecedented precision
(Leggieri et al., 2021).

One significant application of synthetic biology in the gut
microbiome is the development of engineered probiotics, which are
genetically modified strains designed to produce therapeutic
compounds directly within the gut (Mendes et al., 2017). For
instance, these probiotics can be programmed to secrete anti-
inflammatory cytokines or other beneficial molecules, offering
potential treatments for conditions like inflammatory bowel disease
(IBD) and irritable bowel syndrome (IBS) (McCarty and Ledesma-
Amaro, 2019). Engineered microbes can also release antimicrobial
peptides or consume harmful metabolites, selectively targeting
pathogenic bacteria while preserving beneficial species, which helps
maintain or restoremicrobial balance (Mugwanda et al., 2023). Another
innovative approach involves creating synthetic microbial communities
that mimic or enhance natural microbiota functions. These synthetic
consortia are carefully designedmicrobial groups engineered to perform
specific tasks, such as enhancing short-chain fatty acid (SCFA)
production, improving immune responses, or regulating metabolic
pathways. Such consortia can potentially support metabolic health
by modulating glucose metabolism and reducing inflammation,
offering new strategies for managing obesity and type 2 diabetes
(van Leeuwen et al., 2023).

Synthetic biology also enables real-time gut health monitoring
through biosensors integrated into engineered microbes. These
biosensor strains are designed to detect and respond to changes
in the gut environment by emitting detectable signals in the presence
of specific biomarkers, such as pH shifts or the presence of certain
metabolites. These biosensors can be ingested and provide valuable
information about gut health, helping clinicians monitor conditions
like dysbiosis or infections without invasive testing (Ngashangva
and Chattopadhyay, 2023; Sánchez-Tirado et al., 2023).

7 Challenges and future perspectives

While synthetic biology in the gut microbiome holds substantial
promise, challenges remain. Ensuring the safety and stability of
engineered organisms within the human body, preventing
unintended interactions with native microbiota, and addressing
regulatory concerns are key areas of ongoing research. Nonetheless,
as technology advances, synthetic biology has the potential to transform
gut microbiome-based therapies, allowing for highly customized,
responsive treatments that address the complexities of individual gut
health. A key challenge in synthetic biology is maintaining the genetic
stability and control of engineered microorganisms, which can lead to
unintended modifications that jeopardize project outcomes (Son et al.,
2021). Effectivemanagement of gene expression and synthetic pathways
is crucial, alongside addressing safety concerns regarding the
environmental release of genetically modified organisms (Mahdizade
Ari et al., 2024).

Looking ahead, advancements in synthetic biology are expected
to enhance microbial engineering. Regulatory frameworks will need
to adapt to address the unique challenges posed by engineered
microbiomes, ensuring safety and efficacy through clear protocols
for monitoring and containment (Yan et al., 2023; Mao et al., 2021;
Kalidasan and Theva, 2021). Innovative techniques, such as
CRISPR-Cas9, will allow for more precise development of
synthetic microorganisms, potentially addressing global
challenges like energy production and environmental degradation
(Thurtle-Schmidt and Lo, 2018). Furthermore, the integration of
systems biology will improve the resilience of synthetic pathways,
while enhanced biosafety features, such as built-in kill switches, will
strengthen containment measures. The rise of personalized
applications, including tailored probiotics, will also be a
significant focus area (Rottinghaus et al., 2022). Collaboration
and open-source platforms will further accelerate advancements
in the field (Koelmel et al., 2016).

8 Conclusion

In conclusion, synthetic biology stands at the forefront of
innovation, harnessing principles from various disciplines to
reshape healthcare, agriculture, industry, and environmental
management. While it holds the promise of transformative
solutions, the field must navigate ethical, regulatory, and
technical hurdles. Progress in microbiota therapeutics exemplifies
this potential, with engineered bacteria creating customized
probiotics and advanced drug delivery systems that enhance
treatment precision and efficacy. As personalized medicine
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continues to evolve, tailoring interventions to individual needs, the
future of synthetic biology is poised to achieve greater accuracy and
safety in addressing complex health challenges, driven by ongoing
advancements and global collaboration.
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