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Abstract

Summary: In viral genomic research and surveillance, inter-sample contamination can affect variant detection, analysis of within-host evolution,
outbreak reconstruction, and detection of superinfections and recombination events. While sample barcoding methods exist to track inter-
sample contamination, they are not always used and can only detect contamination in the experimental pipeline from the point they are added.
The underlying genomic information in a sample, however, carries information about inter-sample contamination occurring at any stage. Here,
we present Polyphonia, a tool for detecting inter-sample contamination directly from deep sequencing data without the need for additional con-
trols, using intrahost variant frequencies. We apply Polyphonia to 1102 SARS-CoV-2 samples sequenced at the Broad Institute and already
tracked using molecular barcoding for comparison.
Availability and implementation: Polyphonia is available as a standalone Docker image and is also included as part of viral-ngs, available in
Dockstore. Full documentation, source code, and instructions for use are available at https://github.com/broadinstitute/polyphonia.

1 Introduction

Inter-sample contamination can occur through many means,
including processing errors or sample aerosolization.
Amplicon sequencing is especially vulnerable due to the high
number of amplicon copies produced in each PCR cycle.
Ramifications of inter-sample contamination can be signifi-
cant: it can alter minor alleles more commonly or consensus-
level alleles at the extreme, potentially affecting analysis of
viral variants, superinfections, recombination events, within-
host evolution, and transmission and outbreak reconstruction.

Inter-sample contamination can be tracked experimentally
by barcoding samples with spike-ins such as synthetic DNA
spike-ins (SDSIs) (Lagerborg et al. 2022) or External RNA
Control Consortium (ERCC) RNA standard spike-ins (Jiang
et al. 2011, Matranga et al. 2014). SDSIs are short (�200
bases) DNA spike-ins added during amplicon sequencing.
ERCCs are longer (hundreds to thousands of bases) RNA
spike-ins added during metagenomic sequencing and frag-
mented alongside sample RNA. Both are designed to be used
qualitatively.

In practice, spike-ins cannot be used to detect contamina-
tion that occurred prior to their addition; they also cannot be
used in retrospect if not added. Viral genomic information,
on the other hand, tracks samples from collection through se-
quencing without alterations to the sequencing pipeline or
additional controls. Existing tools to detect contamination in
genomic data include Squeegee (Liu et al. 2022), decontam
(Davis et al. 2018), and DeconSeq (Schmieder and Edwards
2011); these tools do not, however, identify same-species in-
ter-sample contamination. Existing tools to specifically infer
same-species inter-sample contamination from genomic data
alone include, for human genomic data, ART-DeCo (Fi�evet
et al. 2019) and ContEst within GATK (Cibulskis et al.
2011), which detect unexpected allelic ratios and are not ap-
plicable to viruses; and, for viral metagenomic data, Cont-ID
(Rollin et al. 2023), which requires an external control which
must be included in sequencing; no broadly applicable,
computational-only tool for viruses exists.
Here, we present Polyphonia, a tool for detecting inter-

sample contamination between samples of the same target or-
ganism using deep sequencing data (SARS-CoV-2 deep
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sequencing data from a plate of samples from patients with
COVID-19, e.g.). We compare Polyphonia to spike-ins in
1102 COVID-19 samples generated at the Broad Institute in
a high-throughput sequencing setting with rigorous quality-
control practices. These samples were already tracked with
SDSIs or ERCC spike-ins, allowing a comparison measure of
inter-sample contamination detection.

2 Implementation

Pairs of samples are compared to detect potential inter-
sample contamination in which a contaminating sample’s
consensus genome appears in the minor alleles of a contami-
nated sample (Fig. 1A). For example, Sample A is marked as
putatively contaminating neighboring Sample B because
Sample A’s consensus alleles appear as minor alleles in
Sample B at genome-defining positions where the consensus
genomes of Sample A and Sample B differ (Fig. 1B). In con-
trast, Sample D shows no evidence of contamination by
neighboring Sample C: Sample D does not contain the

consensus alleles of Sample C as minor alleles at genome-
defining positions (Fig. 1C).
If plate maps are provided, each sample is compared to

samples in neighboring wells, its row, its column, or the full
plate; otherwise, all samples are compared. By default, only
positions with read depth ≥100 and samples with 95% of the
genome covered at read depth ≥100 are included. By default,
contamination must be detected in all genome-defining posi-
tions, of which there must be at least three. These cut-offs
produced the highest concordance with spike-ins in
this dataset.
The outputs are plate visualizations and a table describing

putative inter-sample contamination.

3 Methods

3.1 Sample collection, sequencing, and
computational processing
Eighty-five 96-well plate batches of nasopharyngeal or nasal
samples from patients positive for COVID-19 were collected
between April 2020 and June 2021, then barcoded with

Figure 1. Inter-sample contamination detection by Polyphonia. (A) All samples are compared pairwise to identify putative contaminating and
contaminated samples. Sample A is flagged as contaminating Sample B if Sample A’s consensus alleles appear as minor alleles in Sample B at genome-
defining positions where their consensus genomes differ. (B) Contamination by Sample A was detected in Sample B. Alleles and allele frequencies at
genome-defining positions are shown. Sample B consensus-level alleles are indicated above; Sample A consensus-level alleles, identical to Sample B
minor alleles, are indicated below. Median contaminating allele frequency is indicated by a dashed line. (C) No putative contamination by Sample C was
detected in Sample D. Figure is as in B. (D) Results of validating Polyphonia against spike-ins in 1102 COVID-19 samples. (E) Minimum read depth
required to detect contamination at all genome-defining positions, thereby enabling detection by Polyphonia with default parameters, in 95% of 1000
iterations. The four instances of contamination not detected by Polyphonia with ≥1 genome-defining positions are shown by circles. (F) Minimum read
depths needed to detect contamination and observed minimum read depths at genome-defining positions in the five instances of contamination not
detected by Polyphonia.
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ERCC spike-ins (Jiang et al. 2011, Matranga et al. 2014) and
sequenced using metagenomic sequencing as described in
Lemieux et al. (2021), and Tomkins-Tinch et al. (2021) (24
batches, 1600 samples), or barcoded with SDSIs (Lagerborg
et al. 2022) and sequenced using amplicon sequencing as de-
scribed in Petros et al. (2022), Siddle et al. (2022), and
Turbett et al. (2023) (61 batches, 5116 samples)
(Supplementary data). Samples were processed at the Broad
Institute and include but are not limited to those described in
Lemieux et al. (2021), Tomkins-Tinch et al. (2021), Petros
et al. (2022), Siddle et al. (2022), and Turbett et al. (2023).
Each batch contained 24–92 clinical samples (median 91,
mean 79). All sequenced samples were processed in viral-ngs
(Park 2015, https://viral-pipelines.readthedocs.io) on Terra
as described in Lemieux et al. (2021), Tomkins-Tinch et al.
(2021), Petros et al. (2022), Siddle et al. (2022), and Turbett
et al. (2023). Allele frequencies were calculated using LoFreq
call v2.1.5 (Wilm et al. 2012) in the isnvs_lofreq workflow in
viral-ngs (Park 2015) by dividing allele read counts (DP4) by
read depths (DP).

3.2 Sample filtering
Six thousand seven hundred and sixteen samples were filtered
to those with ≥95% of the genome (≥26 913 bases of
NC_045512.2) covered to read depth ≥100 (3350 samples)
and with neither of the top two spike-ins appearing as one of
the top two spike-ins in ≥3% of samples and the expected
spike-in appearing with ≥1000 reads as one of the two high-
est read count spike-ins (2306 samples). After filtering, 1102
samples remained.

3.3 Identification of contamination events
Samples were processed with Polyphonia in viral-ngs on Terra
with masking of positions with potential sequencing errors
(265 positions) as described in De Maio (2020) (https://virolog
ical.org/t/masking-strategies-for-sars-cov-2-alignments/480)
and otherwise default settings.

Putative contamination events called by spike-ins were de-
fined as instances where ≥2% of spike-in reads were attrib-
uted to the spike-in with the highest read count other than
the expected spike-in.

Only putative contamination events involving neighboring
wells (above, below, left, right, or diagonal) were examined.

The following samples are described: Sample A: USA/MA-
MASPHL-00091/2020; B: USA/MA-MASPHL-00098/2020;
C: USA/MA-MGH-00437/2020; D: USA/MA-MGH-00444/
2020; E: USA/MA-Broad_CRSP-01315/2021; F: USA/MA-
Broad_CRSP-01323/2021; G: USA/RI-CDCBI-RIDOH_0
1534/2021; H: USA/RI-CDCBI-RIDOH_01535/2021; I:
USA/CT-CDCBI-CRSP_01382/2021; J: USA/VT-CDCBI-
CRSP_01374/2021; K: USA/MA-MASPHL-00025/2020; L:
USA/MA-MASPHL-00024/2020; M: USA/MA-MASPHL-
00117/2020; N: USA/MA-MASPHL-00116/2020.

4 Results: comparing Polyphonia and spike-ins
in SARS-CoV-2 clinical samples

Both Polyphonia and spike-ins were used to trace inter-sam-
ple contamination in 1102 COVID-19 clinical samples.
Samples were either processed with amplicon sequencing and
spiked with SDSIs (Lagerborg et al. 2022) or processed with
metagenomic sequencing and spiked with ERCC spike-ins
(Jiang et al. 2011, Matranga et al. 2014). Six putative inter-

sample contamination events involving neighboring wells
were detected by spike-ins and two were detected by
Polyphonia, with one detected by both (Fig. 1D).
One putative inter-sample contamination event was

detected by both ERCC spike-ins and Polyphonia (Fig. 1B):
the consensus genome of contaminant Sample A matched five
minor alleles in contaminated Sample B with otherwise iden-
tical consensus genomes. Polyphonia estimated 7.8% con-
tamination volume (median contaminating allele frequency at
genome-defining positions, range 7.4%–9.4%).
Contamination was detected by ERCC spike-ins with an esti-
mated 17.8% contamination volume (proportion spike-in
reads in Sample B attributed to the spike-in added to
Sample A).
Polyphonia detected one putative inter-sample contamina-

tion event not identified by SDSI spike-ins. Contamination by
Sample E was detected in Sample F. Sample F contained 21
base-substitution minor alleles and one deletion, all appear-
ing at consensus level in Sample E; their consensus genomes
were otherwise identical. Median contaminating allele fre-
quency in Sample F was 4.7% (3.2%–12.0%). Superinfection
was unlikely, as neither genome had other exact matches
(100% identity and 100% coverage or no mutations) in a
MegaBLAST search against the NCBI Betacoronavirus data-
base (accessed 31 January 2024) or in a SARS-CoV-2 UShER
(Turakhia et al. 2021) tree (accessed 1 February 2024).
Resequencing Sample F from the point of collection could
distinguish contamination and superinfection.
Five putative inter-sample contamination events were

detected by spike-ins but not by Polyphonia. In one, ERCC
spike-in values suggest that Sample M contaminated Sample
N with estimated 24.6% contamination volume. However,
their two genomes were identical, making detection of con-
tamination by Polyphonia impossible. In the other four con-
tamination events not detected by Polyphonia, some genome-
defining positions had heterozygosity consistent with con-
tamination while other genome-defining positions had no
heterozygosity: in these cases, it is possible that with higher
read depth, Polyphonia would have identified these contami-
nation events. In the first of these four contamination events,
Sample H had heterozygosity compatible with contamination
by Sample G in 17 of 25 genome-defining positions; the other
eight positions had no heterozygosity. Including positions
without heterozygosity (contaminating allele frequency 0%),
median contaminating allele frequency was 1.7% (0%–

16.5%), compared with contaminating SDSI spike-in fre-
quency 7.7%. In a similar case, SDSI spike-in values suggest
that samples I and J contaminated each other, with estimated
contamination volume 46.0% in one direction (J to I) and
48.0% in the other (I to J). Of 44 genome-defining positions,
eight had heterozygosity in Sample I consistent with contami-
nation by Sample J, with median contaminating allele fre-
quency 0% (0%–1.0%), while 16 had heterozygosity in
Sample J consistent with contamination by Sample I, with
median contaminating allele frequency 0% (0%–0.6%); the
remaining genome-defining positions had no heterozygosity.
Finally, Sample K was detected to have contaminated Sample
L with 16.0% contaminating ERCC spike-in frequency. Of
eight genome-defining positions, two showed evidence of
contamination by K in L.
To examine the four contamination events between non-

identical genomes detected by spike-ins but not by
Polyphonia, we identified the minimum read depth needed
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for Polyphonia to detect contamination (for all genome-de-
fining positions to contain at least one contaminating read) in
95% of 1000 simulations (Fig. 1E). In three of the four con-
tamination events, the minimum read depth at genome-defin-
ing positions was less than that needed (Fig. 1E and F). In the
fourth, the detected contaminating allele read counts at ge-
nome-defining positions were 4, 0, 0, 0, 2, 0, 0, and 0 and the
mean frequency of contaminating alleles was 0.0067%—low
enough for stochastic effects and low enough to have minimal
practical impact on downstream analyses.

5 Discussion

We describe Polyphonia, a method to detect inter-sample
contamination using viral deep sequencing data. A sample is
marked as putatively contaminated by another sample if the
contaminating sample’s consensus genome appears in the mi-
nor alleles of the contaminated sample at positions where the
two consensus genomes differ.

Across 1102 COVID-19 samples, Polyphonia identified
two putative inter-sample contamination events, one con-
firmed by spike-ins and one likely occurring before spike-in
addition, demonstrating the utility of Polyphonia in the com-
mon instance when quality measures are not available and
even as a supplement to them. Using spike-ins, we were able
to trace five additional contamination events not identified
by Polyphonia, including one in which the genomes were
identical, precluding detection by Polyphonia, and four with
low-frequency contamination that we hypothesize would be
detected by Polyphonia with higher read depth.

In general, Polyphonia will not detect inter-sample contam-
ination if it is at consensus level; if the contaminant and con-
taminating genomes are identical or, with default settings,
have fewer than three differences; if either sample has less
than the minimum required genome coverage; or if genome-
defining positions are not covered in sufficient read depth.
Polyphonia also requires that all samples contain the same
target organism: SARS-CoV-2, e.g. in a plate of samples from
patients with COVID-19. Polyphonia is not suitable, e.g. for
detecting inter-sample contamination between complex
wastewater sequences or samples from patients with symp-
toms of unknown etiology. Spike-ins fill all these gaps in
functionality: unlike Polyphonia, spike-ins allow detection of
inter-sample contamination independent of the identity, qual-
ity, or diversity of the sequenced genomes. On the other
hand, assuming that allele frequencies are constant through-
out the sample preparation and sequencing process,
Polyphonia follows a sample across its full lifetime, allowing
detection of inter-sample contamination when spike-ins are
absent. To take full advantage of their respective strengths,
we recommend a two-pronged approach, with spike-ins and
Polyphonia complementing each other.

Polyphonia joins a universe of contamination detection
tools. If one were interested in detecting contamination from
reagents or lab environments, one might use Squeegee (Liu
et al. 2022), decontam (Davis et al. 2018), or DeconSeq
(Schmieder and Edwards 2011), while if one were interested
in detecting inter-sample contamination in human genomic
data, one might use ART-DeCo (Fi�evet et al. 2019) or
ContEst within GATK (Cibulskis et al. 2011). If one needed
to detect inter-sample contamination in viral genomic se-
quencing data and had not yet processed the samples, and
had the resources to do additional processing, we recommend

the addition of SDSIs (Lagerborg et al. 2022) for amplicon se-
quencing or ERCC spike-ins (Jiang et al. 2011, Matranga
et al. 2014) for metagenomic sequencing, as well the alien ex-
ternal control used for Cont-ID (Rollin et al. 2023). If the se-
quencing batch is of the same target organism (a plate of
samples from COVID-19 patients, e.g.), we recommend then
applying Polyphonia to the resultant viral genome sequencing
data, whether or not other tools were used, especially as
Polyphonia can capture inter-sample contamination from be-
fore the addition of spike-ins. Indeed, in situations where
spike-ins and the Cont-ID alien external control were not
added or inter-sample contamination occurred before sample
processing, Polyphonia is the only available tool.

Supplementary data

Supplementary data are available at Bioinformatics online.
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