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Cytokine profiling reveals
HLA-linked Th2 and Th17 driven
immune activation in pemphigus
vulgaris patients and genetically
susceptible healthy controls
Rebekah R. Schwartz, Kristina Seiffert-Sinha
and Animesh A. Sinha*

Department of Dermatology, University at Buffalo Jacobs School of Medicine and Biomedical
Sciences, Buffalo, NY, United States
Introduction: Cytokines and chemokines direct the inflammatory response and

may serve as markers of immune dysregulation in Pemphigus vulgaris (PV), an

autoimmune blistering skin disorder. Previous studies on limited numbers of

patients and cytokine profiles in PV have produced equivocal results regarding

the role these mediators play in disease.

Methods: In this study, we interrogated serum samples from 116 PV patients and

29 healthy controls by multiplexed bead array assays across a comprehensive set

of cytokines and chemokines covering several functional categories, including

IL-1a, IL-1b, IL-2, IL-4, IL-5, IL-6, IL-8, IL-9, IL-10, IL-12, IL-13, IL-15, IL-17, IL-21,
IL-22, IL-23, TNFa, IFNg, MCP-1, and Eotaxin.

Results: We found that patients with PV generally display an activated cytokine

and chemokine immune response compared to controls, but also show

remarkable interindividual heterogeneity in terms of cytokine levels, with a

limited activation of different T helper cell pathways in different patients.

Surprisingly, we also found that healthy individuals that carry the PV

susceptibility alleles HLA DR4 (DRB1*0402) and/or DR6 (DQB1*0503) (HLA-

matched controls) show an upregulation of cytokine and chemokine levels

that are on par with those seen in PV patients for certain pro-inflammatory,

Th2, and Th17mediators and IL-8, while healthy controls that did not carry the PV

susceptibility alleles (HLA-unmatched controls) express significantly lower levels

of these cytokines and chemokines.

Discussion:Our data suggest the existence of a limited immune activation linked

to the presence of key PV associated HLA alleles regardless of disease status.

Interestingly, the cytokines IL-10 and IL-15 were found to be significantly

downregulated in the HLA-matched control group, suggesting the presence of

a possible counter-regulatory function in genetically susceptible but disease-

free individuals.
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1 Introduction

Pemphigus vulgaris (PV) is a potentially life-threatening

autoimmune blistering skin disorder characterized by a well-

defined humoral response directed against specific desmosomal

proteins involved in cell-cell adhesion and maintenance of

epidermal integrity. The hallmark for autoimmunity in PV is the

presence of autoantibodies specific for desmoglein (Dsg)-3, and in

some cases Dsg-1, both in serum and in lesional skin. The

“desmoglein compensation hypothesis” posits that lesion

morphology (mucosal vs. mucocutaneous) can be explained by

autoantibody patterns (anti-Dsg3 only vs. a combination of anti-

Dsg3 and anti-Dsg1, respectively) (1), however, the validity of this

theory has been challenged recently (2). While the target organ

damage is ultimately mediated by autoantibodies, it is generally

accepted that B cell activation requires the participation of T helper

cells necessary for immunoglobulin (Ig) production and class

switching. T cell recognition of Dsg3 and/or Dsg1 epitopes appears

to be the first step in the disease initiation, leading to B-cell activation

and production of Dsg3/1 specific immunoreactants (3–6).

The importance of T cell involvement in disease pathogenesis is

underscored by the strong genetic association of PV to the HLA

DR4 (DRB1*0402) and DR6 (DQB1*0503) haplotypes (7, 8). T cells

play a role in the inception and maturation of the humoral immune

response, thus bridging the association of PV with MHC and

generation of autoantibodies (9). Of course, these haplotypes are

also found in healthy individuals. In fact, the vast majority of

healthy individuals who express HLA DR4 (DRB1*0402) or DR6

(DQB1*0503) gene sequences do not progress to a disease state.

Why healthy individuals who carry these disease risk elements

remain healthy remains a mystery.

While the coordination and regulation of the autoimmune

response in PV has not been fully elucidated, cytokines and

chemokines are likely to orchestrate the interplay between cellular

and humoral responses. Cytokines act as mediators for disease

activation and maintenance in autoimmune disorders, but also

operate as initiators of disease remission and induction of the

tolerogenic state (10). Produced by, and acting on various cellular

components of the immune cascade, they participate in both

effector and regulatory pathways (10).

Limited attempts have been made to define cytokine and

chemokine expression patterns in PV. Apart from a recent

publication (11), previous studies typically examined only a

handful of cytokines in small sample sizes using disparate

methods to quantify cytokine concentrations. Thus, perhaps

unsurprisingly, reported results are equivocal. In fact, many

cytokines in PV were found to be upregulated in one study, only

to be shown to have no significant change or even to be

downregulated in another (3, 12–59). Table 1 shows a

comprehensive literature review of previous serum cytokine

studies, particularly which studies show an elevation, decrease, or

no significant change in PV patients versus healthy controls, as well

as how this data compares to new findings from this study that will

be discussed in detail below. Across studies, heterogeneity amongst

patients and control subjects in terms of disease phase, clinical

phenotype, gender, HLA-association, and treatment may have
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contributed to ambivalent results, factors that are particularly

difficult to account for in small sample sizes.

To overcome these challenges, we conducted an extensive

analysis of serum cytokines/chemokines in PV, both in terms of

the range of soluble mediators studied and the number of patient

and control samples analyzed. We comprehensively compared

multiple serum cytokines in defined clinical categories of PV.

Unlike previous studies, we further explored the contribution of

HLA haplotype to the cytokine milieu in both patients and controls

to pinpoint the role of cytokines in genetically susceptible, but

disease-free subjects. We utilized a multiplex bead array platform to

evaluate the expression of 20 cytokines and chemokines categorized

by function: 1) pro-inflammatory (IL-1a, IL-1b, IL-6, and TNFa),
2) Th1 (IFNg, IL-2, IL-12), 3) Th2 (IL-4, IL-5, IL-13), 4) Th9 (IL-9),
5) Th17/Th22 (IL-17, IL-21, IL-22, IL-23), 6) Treg (IL-10), 7) NK

cell (IL-15), and 8) chemokines (IL-8, MCP-1, Eotaxin) in 130

serum samples obtained from 116 PV patients in different phases of

disease activity and remission, along with 15 healthy control

subjects that carried the PV-associated HLA alleles DRB1*0402

and/or DQB1*0503 (termed here as HLA-matched controls) and 14

healthy control subjects that did not carry the known PV-associated

HLA alleles (HLA-unmatched controls).
2 Materials and methods

2.1 Patient population and demographics

The patients included in this study were recruited from the

Dermatology outpatient clinics at Weill-Cornell Medical College

(IRB 0998-398), Michigan State University (IRB 05-1034), and the

University at Buffalo (IRB 456887), and annual meetings of

International Pemphigus and Pemphigoid Foundation (IPPF).

Institutional review boards at each of the participating institutions

reviewed and approved this study.

After obtaining written informed consent, researchers acquired

detailed demographic and clinical information from patients and

control subjects. Subsequently, venous blood samples were drawn

and each patient’s serum was separated by centrifugation and stored

at minus 80°C until use.

The diagnosis of PV was based on established clinical,

histopathologic, and/or serologic criteria. Healthy controls did not

have a diagnosis or history of PV. All study procedures were identical

between healthy controls and PV patients. We included 130 serum

samples from 116 patients in different phases of disease (active and

remittent) and varying degrees of therapy and 29 samples from 29

control subjects, of which 15 were HLA-matched controls (i.e.

carriers of the HLA-susceptibility alleles DRB1*0402 and/or

DQB1*0503) [MCR] and 14 were HLA-unmatched controls (i.e.

non-carriers of PV susceptibility HLA alleles) [UMCR]. The

demographic data for our study population is summarized in Table 2.

We used consensus guidelines developed by the International

Pemphigus Committee (60) to determine disease activity in PV

patients. Briefly, patients were considered to be active if they had 3

or more non-transient lesions (lasting more than one week) and/or

extension of existing lesions. Patients were considered to be
frontiersin.org
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remittent if they had no new or established lesions for at least

2 months.

We assigned a therapy status to each patient based on consensus

guidelines (60). Patients receiving > 10mg/day of prednisone, IVIg,

cyclosporine, dapsone, rituximab, other biologic agents, and/or
Frontiers in Immunology 03
other adjuvant therapies at full therapeutic doses were defined as

“more than minimal” therapy. “Minimal” therapy was defined by

prednisone doses of ≤ 10mg/day and/or minimal adjuvant therapy

as defined in (60) for at least 2 months. “Off” therapy was reserved

for patients that were not receiving any systemic therapy.
TABLE 1 Review of literature findings regarding serum cytokine levels in PV patients compared to controls.

Cytokine Number of Studies
Showing Increased in PV

Number of Studies
Showing No Change
in PV

Number of Studies
Showing Decreased
in PV

Our Findings

Inc in PV
vs. all

Inc in
PV
vs. MCR

Inc in PV
vs.
UMCR

CCL-11 - - 1 (27) Not analyzed

Eotaxin - 1 (11) - No change

IFNa - 1 (11) - Not analyzed

IFNg 7 (11, 20, 24, 26, 27, 29–31) 4 (13, 21, 37, 41) 3 (14, 25, 38) No change

IL-1a 7 (18, 32–37) 4 (11, 13, 19, 43) - X

IL-1b 8 (11, 16, 32–37) 4 (13, 19, 27, 43) 1 (22) X

IL-2 3 (11, 16, 24) 6 (13, 19, 21, 27, 41, 44) 3 (25, 31, 38) X X X

IL-4 8 (14, 24, 25, 29, 38–42) 6 (11, 13, 21, 27, 44, 55) 1 (31) X

IL-5 1 (11) 5 (13, 16, 21, 24, 27) - X X X

IL-6 10 (13, 21, 22, 26, 30, 36–38, 43, 44) 8 (11, 16, 19, 20, 41, 51, 56, 57) - X

IL-7 1 (16) 1 (13) - Not analyzed

IL-8 3 (16, 20, 26) 3 (11, 13, 27) - X

IL-9 - 2 (11, 27) - X X X

IL-10 9 (11, 19, 25, 30, 39–42, 45) 5 (13, 18, 20, 21, 27) 1 (31) X X

IL-12 3 (11, 21, 30) 3 (13, 27, 37) - No change

IL-13 1 (11) 1 (24) - X

IL-15 1 (46) 1 (11) - X X

IL-17 5 (17, 19, 27, 30, 47) 1 (21) 1 (56) No change

IL-17A 3 (11, 12, 48) 2 (16, 20) - No change

IL-18 1 (11) - - Not analyzed

IL-21 1 (49, 59) 2 (11, 16) 1 (55) X

IL-22 1 (11) - 1 (22) X X X

IL-23 2 (27, 50) 2 (11, 19) 1 (56) X X

IL-27 1 (51) - - Not analyzed

IL-31 - - 1 (11) Not analyzed

IL-33 1 (52) - - Not analyzed

IL-36 1 (48) - - Not analyzed

IP-10 - - 2 (11, 27) Not analyzed

MCP-1 - 1 (11) 1 No change

TGF-b 2 (12, 18) 4 (13, 17, 27, 41) 3 (30, 56, 58) Not analyzed

TNFa 13 (11, 13, 18, 23, 32, 33, 35–37, 44,
51, 53, 54)

3 (19, 20, 43) - X

TNFb - 1 (11) - Not analyzed
f
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2.2 HLA-typing

High resolution HLA-typing of patients and controls was done

at Rogosin Institute (New York, NY) and the Tissue Typing

Laboratory at Michigan State University (East Lansing, MI). HLA

Class II alleles, DRB1 and DQB1, were amplified using sequence

specific primers as previously described (61). Patients and controls

that expressed the HLA associated alleles (homozygous or

heterozygous) were classified as “HLA-positive” or HLA+. Those

without were classified as “HLA-negative” or HLA-.
2.3 Multiplex bead assay

Patient and control serum samples were distributed amongst

two panels of customized Millipore Multiplex 96-well plates (EMD

Millipore, Saint Charles, MO). The first panel included: IL-1a, IL-
1b, IL-2, IL-4, IL-5, IL-6, IL-8, IL-9, IL-10, IL-12, IL-13, IL-15,
TNFa, IFNg, MCP-1, and Eotaxin, and the second panel included

the Th17 cytokines IL-17, IL-21, IL-22, and IL-23. An aliquot of 50

µl from each PV patient or control serum was added to each well

aside internal control samples of known concentrations. Samples

were run in duplicates. Standards were serially diluted 1:3 to
Frontiers in Immunology 04
generate a nine-point standard curve. Analyte capture was carried

out according to manufacturer’s instructions. Cytokine

concentrations (pg/mL) were measured using the Luminex 200

system with xPONENT version 3.1 software and assessed using

BeadView Analysis software. Raw values are compared to standard

curves for each cytokine. Cytokines are considered 0 or

undetectable when falling within the lower nonlinear portion of

the standard curve. We report raw values (pg/mL) as our standard

curves do not provide cutoffs for positivity. In addition, we used

unbiased hierarchical clustering using Euclidean distance with

Morpheus software (https://software.broadinstitute.org/morpheus)

to identify any grouping or patterns in cytokine levels.
2.4 Statistical analysis

For certain analyses, PV samples were subclassified according to

major clinical parameters of interest and further placed in

subgroups established by clinical criteria (in parentheses), i.e.

disease phase (active or remission), therapy status (off or minimal

or more than minimal), clinical phenotype (mucosal or

mucocutaneous), and gender (male or female). Control patients

were separated into HLA-matched and HLA-unmatched groups.

Statistical analysis was conducted between clinical subgroups

including PV vs. all controls, HLA-matched controls vs. HLA-

unmatched controls, and within the PV group between disease

activity (active vs. remittent), gender (male vs. female), morphology

(mucocutaneous vs. mucosal), and therapy (off therapy vs. minimal

therapy, minimal therapy vs. greater than minimal therapy, and

greater than minimal therapy vs. off therapy).

Groups were compared by a heteroscedastic T-test. A p-value ≤

0.05 indicated that the difference between the means, m1 and m2, of
the populations from which data1 and data2, respectively, were

sampled is significantly differently from Dm=0. The null hypothesis,
Dm=0, was rejected when p-value < 0.05.
3 Results

3.1 Cytokines in PV patients show wide
variability and heterogeneity, but are
pathway specific and generally elevated
compared to healthy controls

We examined 20 cytokines/chemokines in 116 PV patients and

29 healthy controls. For each of the cytokines analyzed, we observed

large interindividual differences among serum concentrations

ranging from 0 pg/mL (undetectable) to high values such as

~73,000 pg/mL for IL-23, for example. This wide variation was

particularly pronounced in the patient population. Interestingly, we

saw a remarkable heterogeneity among patients in terms of which

cytokines were elevated and also observed that among a given

patient cytokine values were typically elevated across just one or two

specific pathways, but not for all cytokines analyzed. In order to

identify any patterns of cytokine responses (i.e. whether cytokines

are regulated in groups), we used an unbiased hierarchical
TABLE 2 Demographic data and HLA association.

PV
patients

HLA-
matched
Controls

HLA-
Unmatched
Controls

Total number of samples 130 15 14

Total number of subjects 116 15 14

Average Age in
years [range] 56 [17-85] 51 [22-81] 51 [28-77]***

Female (n) 96 10 8

Male (n) 34 5 6

Female: Male ratio 2.82 2.00 1.33

Active 55 N/A N/A

Remission 75 N/A N/A

HLA positive* 98 15 0

HLA negative** 12 0 14

Active Disease 55 N/A N/A

Remission 75 N/A N/A

Mucosal Phenotype 48**** N/A N/A

Mucocutaneous Phenotype 75**** N/A N/A

Off Therapy 40 N/A N/A

Minimal Therapy 34 N/A N/A

More than
Minimal Therapy 56 N/A N/A
*HLA-positive refers to subjects who were positive for the PV associated haplotypes
DRB1*0402 or DQB1*0503. **HLA-negative refers to subjects who were negative for the
PV associated haplotypes. *** One of the HLA-unmatched controls did not provide a date of
birth; this number excludes that control. **** 3 patients had cutaneous only disease and 4 had
unclear phenotype.
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clustering approach. This unbiased clustering approach identified 5

clusters of cytokine responses: (i) Th17: IL17A, IL-21, IL-22, IL-23;

(ii) Th2-dominant: IL-2, IL-4, IL-9, IL-10, IL-13, IL-15; (iii) Th1-

dominant: IL-1a, IL-2, IFNg, IL-5; (iv) generally proinflammatory:

IL-1b, IL6, IL-8 and TNFa; and (v) the chemokines MCP-1 and

eotaxin (Figure 1). Some patients showed an elevation of one or two

T helper cell pathways, while others had high levels of

proinflammatory cytokines in the absence of T helper pathway

cytokines. Conversely, we observed a sizeable number of PV

patients that had undetectable levels for the majority of cytokines,

suggesting that cytokine responses are remarkably patient-specific

and not universally present in all.

Despite this variation among patients, all of the cytokines and

chemokines analyzed had higher mean levels in PV patients

compared to all healthy controls (Table 3A), with IL-2, IL-4, IL-5,

IL-9, IL-10, IL-15, IL-22, and IL-23 reaching statistical significance

(p-value <0.05) (Table 3B), indicating a general immune activation

in patients compared to controls.
3.2 Healthy controls carrying PV-
associated HLA susceptibility alleles exhibit
a heightened cytokine activity within pro-
inflammatory, Th2-, Th17-, and IL-
8 pathways

We noticed some heterogeneity regarding cytokine levels within

the control population similar to what we had observed in the

patient population. To investigate whether cytokines differed based

on HLA association, we divided the control population into those

that expressed the known PV-associated HLA-alleles DRB1*0402

and DQB1*0503 (“HLA-matched controls”, n=15) and those that

did not express any of the known PV associated HLA alleles (“HLA-

unmatched controls”, n=14) and then analyzed which cytokines
Frontiers in Immunology 05
differentiated PV from both control groups or either one of the

control groups alone.

We observed that the higher serum levels of multiple cytokines

persisted in a more limited set of cytokines when compared to

HLA-matched or HLA-unmatched control groups separately. Of

the cytokines that were significantly elevated in PV compared to all

controls, only IL-2, IL-9, and IL-22 displayed significantly higher

mean levels than both HLA-matched controls or HLA-unmatched

controls. IL-5, though not significant, was highly trending towards

significance (Figure 2A and Tables 3A, B).

Another group of cytokines retained or achieved significance

only when patients were compared to “HLA-unmatched” healthy

controls, i.e. those that do not carry PV-associated genetic

susceptibility elements. PV patients had significantly elevated

levels of the Th2 cytokine IL-13, the pro-inflammatory cytokines

IL-1a, IL-1b, IL-6, TNFa and the chemokine IL-8 in this

comparison (Figure 2A and Tables 3A, B). No significant

differences were found between PV patients and “HLA-matched”

controls for these cytokines. “HLA-unmatched” controls expressed

very low levels of several cytokines (IL-1a: 12.01 ± 23.9 pg/mL, IL-

1b: 2.55 ± 5.2 pg/mL, IL-6: 3.12 ± 5.2 pg/mL, TNFa: 10.22 ± 5.8 pg/

mL, IL-8: 142.21 ± 162.9 pg/mL, and IL-13: 7.31 ± 14.1 pg/mL,

respectively), while “HLA-matched” controls expressed levels on

par or greater than those found in PV patients for numerous

cytokines (IL-1a: 41.35 ± 96.6 pg/mL, IL-1b: 26.03 ± 65.7 pg/mL,

IL-6: 115.8 ± 297.9 pg/mL, TNFa: 45.51 ± 85.0 pg/mL, IL-8: 1076.47

± 2587.9 pg/mL, and IL-13: 18.7 ± 44.4 pg/mL, respectively)

(Figure 2A and Tables 3A, B).

These findings are also reflected when looking at cytokine

concentrations in a heatmap format, with highest expression

found in PV patients, followed by HLA-matched controls, with

visibly lower values for HLA-unmatched controls (Figure 2B). Our

data indicate that healthy controls that carry PV-associated HLA

alleles exhibit a limited immunological activation similar to PV
FIGURE 1

Wide variation and patient specificity for cytokine profiles. Z-score transformed data in heatmap format shows all cytokine concentrations for each
PV patient (n=130) simultaneously. Unbiased clustering identifies cytokine subgroups with similar expression levels for individual patients. Examples
for a certain cytokine profile are identified as Th2 only (PV292), Th1 only (PV273), Th17 only (PV269), combined Th1, -2, 17 (PV229) and
proinflammatory pattern (PV185 to 190). Heatmap was created using Morpheus Software. https://software.broadinstitute.org/morpheus.
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TABLE 3 Cytokine/Chemokine levels and group comparison in PV patients and healthy controls.

A

Mean (± SD) (pg/mL) Cytokine/Chemokine Level of Patients & Control Groups

PV
(n=130) ALL Controls (n=29)

HLA-Matched
Controls (n = 15)

HLA-Unmatched
Controls (n=14)

Pro - Inflammatory IL-1a 76.60 (246.4) 27.60 (71.8) 41.35 (96.6) 12.86 (24.5)

IL-1b 20.75 (69.1) 14.69 (48.1) 26.03 (65.6) 2.54 (5.2)

IL-6 86.49 (284.3) 61.40 (218.4) 115.8 (298.0) 3.11 (5.2)

TNF-a 30.32 (48.9) 28.47 (62.9) 45.50 (85.0) 10.22 (5.8)

Th1 IFN-g 63.01 (319.7) 18.26 (36.8) 24.06 (38.6) 12.04 (35.1)

IL-2 4.95 (9.4) 1.64 (3.5) 1.27 (2.9) 2.04 (4.1)

IL-12 61.53 (416.7) 8.21 (30.7) 12.62 (42.4) 3.50 (7.1)

Th2 IL-4 32.52 (67.6) 16.04 (27.5) 15.38 (28.2) 16.75 (27.8)

IL-5 5.26 (22.0) 0.63 (2.0) 1.22 (2.8) 0.00 (0.0)

IL-13 17.51 (36.2) 13.20 (33.3) 18.71 (44.3) 7.31 (14.1)

Th9 IL-9 3.43 (9.2) 0.68 (1.7) 0.51 (1.4) 0.87 (2.0)

Th17 IL-17 5.55 (28.1) 4.28 (10.5) 6.11 (13.2) 2.32 (6.4)

IL-21 4.13 (14.9) 1.76 (3.6) 2.85 (4.6) 0.59 (1.3)

IL-22 105.31 (425.3) 16.15 (45.8) 25.37 (59.2) 6.28 (23.5)

IL-23 1972.93 (9348.6) 220.19 (539.8) 346.00 (706.2) 85.39 (229.8)

Chemokine IL-8 655.03 (1561.2) 625.31 (1893.9) 1076.38 (2587.9) 142.03 (162.8)

Eotaxin 201.74 (108.6) 174.86 (70.9) 160.39 (76.2) 190.37 (63.9)

MCP-1 841.06 (499.2) 839.21 (471.4) 894.13 (583.5) 780.36 (323.7)

NK IL-15 6.65 (11.1) 2.54 (5.0) 1.99 (3.8) 3.13 (6.2)

Regulatory IL-10 17.32 (38.0) 7.44 (17.2) 3.89 (6.7) 11.25 (23.7)
F
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P-values for Group Comparisons

PV vs.
ALL Controls

PV vs. HLA-
Matched Controls

PV vs. HLA-
Unmatched Controls

Matched Controls vs.
Unmatched Controls

Pro - Inflammatory IL-1a 0.056 0.292 0.005** 0.286

IL-1b 0.53 0.773 0.004** 0.189

IL-6 0.600 0.722 0.001** 0.165

TNF-a 0.883 0.511 0.00002*** 0.131

Th1 IFN-g 0.123 0.193 0.087 0.387

IL-2 0.002**3 0.002** 0.042* 0.572

IL-12 0.152 0.202 0.115 0.425

Th2

IL-4 0.037* 0.076 0.106 0.895

IL-5 0.020* 0.052(*) 0.007** 0.108

IL-13 0.539 0.921 0.046* 0.358

Th9 IL-9 0.002** 0.001** 0.009** 0.580

(Continued)
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patients in terms of the pro-inflammatory cytokines IL-1a, IL-1b,
IL-6, TNF-a, the Th2 cytokine IL-13, the Th17 cytokines IL-21 and
IL-23, and the chemokine IL-8.

Interestingly, we observed that mean IL-10 and IL-15

concentrations were lower in both the “HLA-matched” and

“HLA-unmatched” control groups than the levels found in PV

patients (Figure 2A). However, mean IL-10 and IL-15 levels in

“HLA-matched” controls (means: 3.89 ± 3.8 pg/mL and 1.99 ± 6.7

pg/mL, respectively) were found to be even lower than that seen in

“HLA-unmatched” controls (means: 11.25 ± 6.2 pg/mL and 3.13

±23.7 pg/mL, respectively) (Table 3A). In fact, when compared to

PV patients, IL-10 and IL-15 cytokine levels were significantly lower

only in “HLA-matched” controls (p-value: 0.0007 and 0.001,

respectively) but not in unmatched controls (Figure 2 and

Table 3B). The differences noted above raise the intriguing

possibility that the downregulation of these two cytokines may

contribute to mechanisms that protect genetically susceptible

individuals from developing Pemphigus vulgaris.
3.3 PV patients do not differ in cytokine
expression based on their level of disease
activity, apart from a limited number of
pro-inflammatory cytokines which are
elevated in remission

In order to assess the extent to which the level of disease activity

influences serum cytokine levels in PV, we divided patients into

those who were in active disease (n=55) vs remission (n=75)

(Figure 3). Surprisingly, we found no significant differences for

most of the cytokines analyzed, with both the active and remittent

groups continuing to show remarkable heterogeneity of cytokine

levels. Even more surprisingly, TNFa and IL-6 were significantly

higher in remission versus active disease and the pro-inflammatory

cytokine IL-1b and chemokine IL-8 had increased expression in
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remission vs. active disease which trended toward significance

(Figure 3 and Table 4). These data indicate that active disease is

not associated with an across-the-board activated cytokine profile.

If anything, a limited number of pro-inflammatory cytokines

increase as the disease goes into remission. One speculation for

this surprising finding is that a persistent proinflammatory milieu

does not preclude or prevent the critical (and thus far unknown)

factors responsible for limiting lesional activity.

Interestingly, when patients were subdivided by disease

activity and these subgroups were compared individually to

HLA-matched and unmatched controls as done in section 3.1,

the significant differences found for all patients largely remained

(Supplementary Table 1), suggesting again that cytokine

elevations in patients are independent of disease activity. The

only exception was the group of Th17 cytokines which lost most of

the significant differences in the subgroup analysis, likely due to

the low number of patients expression elevated levels of Th17

cytokines to begin with.

A possible confounding factor is that most of our data points are

devised from individual patients, with only a few examples of patients

(n=3) with longitudinal data in both active and remittent phases of

disease. Of those patients sampled in different disease phases, only

one showed considerable cytokine elevation across the board (PV202,

Supplementary Table 2). For this individual in particular, active

disease was generally associated with higher cytokine levels than

remission. For the other two patients, general cytokine concentration

tended to be lower overall with one patient being higher in active

disease and the other in remission (Supplementary Table 2).
3.4 Therapy does not produce appreciable
differences in PV cytokine levels

To evaluate the extent to which therapy influences cytokine

levels, we divided patients into 3 groups: 1) off therapy, 2) on
TABLE 3 Continued

B

P-values for Group Comparisons

PV vs.
ALL Controls

PV vs. HLA-
Matched Controls

PV vs. HLA-
Unmatched Controls

Matched Controls vs.
Unmatched Controls

Th17 IL-17 0.687 0.894 0.285 0.331

IL-21 0.107 0.470 0.010* 0.087

IL-22 0.021* 0.049* 0.010* 0.262

IL-23 0.036* 0.055 0.023* 0.193

Chemokine IL-8 0.938 0.546 0.0005*** 0.184

Eotaxin 0.103 0.072 0.567 0.260

MCP-1 0.985 0.739 0.538 0.519

NK IL-15 0.003** 0.001** 0.079 0.558

Regulatory IL-10 0.035* 0.0005*** 0.406 0.280
* indicates significant value: (*) 0.05< p <0.1, * p<0.05, ** p<0.01, ***p<0.001.
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minimal therapy, and 3) receiving greater than minimal therapy. No

significant differences were found between the various therapy

groups when including the entire data set (data not shown).

Despite the fact that therapy status does not seem to affect
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cytokine expression overall in PV patients, we nevertheless

directly analyzed cytokine levels in active and remittent PV

patients who were completely off therapy (n=11, n=27,

respectively). Only MCP-1 was found to be significantly elevated
FIGURE 2

Cytokine expression profiles in PV patients and controls, both HLA-matched and HLA-unmatched. (A) Dot plots depict cytokine levels in PV patients
and controls (HLA-matched and HLA-unmatched), with each dot representing an individual sample. The horizontal bar in each category represents
the mean. P-values ≤ 0.05 are indicated with *; p-values ≤ 0.005 are indicated with **. (B) Z-score transformed data in heatmap format shows all
cytokine concentrations for each PV patient (n=130) an HLA-matched (n=15) and HLA-unmatched controls (n=14) simultaneously. Cytokines are
listed in order of functional subgroup. Heatmap was created using Morpheus Software. https://software.broadinstitute.org/morpheus.
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in active PV off therapy compared to remittent PV patients off

therapy (p-value 0.0298) (Supplementary Figure 1). Additionally,

when patients were subdivided by therapy and these subgroups

were compared individually to HLA-matched and unmatched
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controls as done in section 3.1, the significant differences found

for all patients vs. the control group largely remained, again

suggesting that cytokine elevations are largely independent of

therapy status (Supplementary Table 3).
FIGURE 3

Cytokine expression profiles by disease activity. Dot plots depict cytokine levels in PV patients in active disease and remission, with each dot
representing an individual sample. Only IL-6 and TNF-a were significantly different between patients with active PV vs. remittent PV. The horizontal
bar in each category represents the mean. P-values ≤ 0.05 are indicated with *.
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3.5 Interleukin 9 and IL-13 distinguish
mucocutaneous PV from mucosal PV

It has been previously suggested that mucocutaneous PV differs

from mucosal PV immunologically (62, 63). In order to assess

whether cytokine levels correlate with disease morphology, we

analyzed 55 patients that were in active disease, 33 of whom had

mucocutaneous lesions, and 20 had mucosal only lesions. Patients

with exclusively cutaneous lesions (n=2) were not included in this

analysis due to limited numbers. We found the only significant

differences between morphological groups to be for Th9 cytokine

IL-9 and the Th2 cytokine IL-13, which were significantly elevated

in those who had active mucocutaneous PV compared to those who

had active mucosal only PV (p-value: 0.035 and 0.022, respectively)

(Figure 4A and Table 5).
3.6 Interleukin-13 and eotaxin expression
distinguish females from males with PV

There is a clear female predominance in PV (64). We analyzed

samples from a total of 96 women and 34 men with PV regardless of

disease activity. For the most part, we did not observe any
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significant differences in cytokine/chemokine levels between men

and women with PV except for IL-13 and eotaxin (Figure 4B). Male

patients had higher mean levels of both IL-13 and eotaxin than

female patients (male: 31.48 ± 53.08 pg/mL, 244.43 ± 123.55 pg/ml,

respectively, and female: 9.91 ± 20.64 pg/mL, 183.79 ± 92.24 pg/ml,

respectively) (p-value: 0.0125 and 0.0059, respectively) (Figure 4B).
4 Discussion

A comprehensive view of the immune mechanisms leading to

tissue damage in Pemphigus vulgaris has not been elucidated.

Although the presence of B cell-produced autoantibodies directed

against specific cell adhesion molecules including Dsg3 and Dsg1

(and perhaps other non-Dsg targets) is critical to lesional

development, T cells are certain to play a central role in the

pathogenesis of disease. While the rules that govern the

coordinated T and B cell response in PV remains unclear,

cytokines and chemokines are likely key modulators of the

effector and regulatory pathways at play in disease.

It is unlikely that changes in a single cytokine is sufficient to cause

the pathological phenomena in any given autoimmune disease (28).

Accumulating literature suggests a model in which the action of
TABLE 4 Cytokine/Chemokine levels and group comparison based on disease activity.

PV active PV remission

p-valueMean (SD) Mean (SD)

Pro-Inflammatory IL-1a 85.40 (310.88) 72.04 (196.14) 0.782

IL-1b 9.26 (20.80) 31.77 (92.63) 0.055

IL-6 31.04 (84.43) 139.47 (379.32) 0.0249*2

TNF-a 20.95 (31.41) 40.12 (59.91) 0.0246*

Th1 IFN-g 66.18 (299.39) 64.98 (352.48) 0.983

IL-2 4.75 (8.18) 5.16 (10.62) 0.807

IL-12 118.74 (635.16) 20.90 (67.44) 0.26

Th2 IL-4 30.05 (55.26) 34.24 (78.89) 0.73

IL-5 6.88 (31.65) 4.36 (11.11) 0.575

IL-13 14.26 (28.41) 20.20 (42.79) 0.359

Th9 IL-9 3.07 (6.13) 3.79 (11.39) 0.652

Th17 IL-17 2.23 (5.46) 8.67 (38.35) 0.176

IL-21 2.46 (7.57) 5.55 (19.29) 0.229

IL-22 58.49 (191.83) 152.79 (560.06) 0.197

IL-23 849.65 (2207.08) 3025.65 (12725.4) 0.17

Chemokine IL-8 411.87 (1175.18) 912.51 (1851.16) 0.071

Eotaxin 205.76 (99.13) 208.08 (117.18) 0.905

MCP-1 786.8 (395.03) 894.20 (575.52) 0.223

NK IL-15 6.99 (10.90) 6.46 (11.56) 0.796

Regulatory IL-10 20.89 (50.43) 14.60 (26.08) 0.404
* indicates significant value: * p<0.05.
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multiple cytokines ultimately promotes immune-mediated tissue

damage (15, 32, 33, 38, 39, 65). A recent study from China found

generally elevated levels of Th1, Th2 and Th17 cytokines in PV

patients (11). However, it remains clear that a more in-depth

knowledge of cytokine profiles in patients is still required for a

better understanding of disease mechanisms, and to facilitate the

discovery of novel targets for future therapies. To address the

mechanisms that underlie the variable and heterogeneous disease

expression in PV, we undertook a non-reductionist strategy to

comprehens ive ly survey g loba l changes in mul t ip le

cytokines/chemokines.

We unexpectedly found that PV patients show a wide variation

of cytokine levels across all cytokines tested with levels ranging from

undetectable to highly elevated for each individual cytokine

regardless of disease phase or therapy status. Interestingly,

patients tended to be either ‘high-expressors’ or ‘low-expressors’

of cytokines with ‘high expressors’ exhibiting high serum cytokine

concentrations across numerous cytokines (albeit not necessarily

all), while ‘low-expressors’ tended to have uniformly lower cytokine

levels. Thus, cytokine expression appears to operate relatively, at
Frontiers in Immunology 11
differing scales dependent on the person. Intriguingly, our data

show that if a patient displays elevated cytokine levels, they typically

span multiple cytokines within a given pathway (e.g. one or two of

the T helper pathways analyzed or generally pro-inflammatory

cytokines), but not the entire set of cytokines analyzed. The

reasons for this remarkable cytokine pathway heterogeneity

among PV patients are intriguing but remain opaque and in need

of further exploration, including the investigation of genetic factors

such as HLA. Nevertheless, our data have implications for

understanding the immunologic basis of clinical heterogeneity,

disease operative mechanisms, and have the potential for guiding

treatment decisions for patients.

Despite these inter-individual differences, our analysis uncovers

a pronounced dysregulation of multiple cytokine immune pathways

in PV compared to healthy controls, namely with elevation of the

Th2 cytokines IL-4 and IL-5, the Th17 cytokines IL-22 and IL-23, as

well as IL-2, IL-9, IL-10 and IL-15. However, a more composite

picture emerges when we divide our healthy control population into

those controls that carry PV-associated HLA-susceptibility alleles

(“HLA-matched”) vs. those that do not (“HLA-unmatched”). It is
FIGURE 4

Cytokine expression profiles by disease morphology and gender. (A) Dot plots depict cytokine levels in PV patients in patients in active disease with
either mucosal or mucocutaneous morphology (A) and female vs. male PV patients regardless of disease status (B), with each dot representing an
individual sample. (A) PV patients with active mucocutaneous lesions have significantly elevated levels of IL-9 and IL-13 compared to the patients
with active mucosal lesions. (B) Males have significantly higher levels of IL-13 and Eotaxin levels than females with PV. Cytokines not showing
significant differences for these comparisons are not shown. The horizontal bar in each category represents the mean. P-values ≤ 0.05 are indicated
with *.
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well established that PV-associated HLA alleles such as DRB1*0402

are necessary for T cells to recognize Dsg3 (40), and that Dsg-

reactive Th2 cells can be detected in patients with PV (5).

Accordingly, PV has been considered a Th2 driven disease (66).

Although disease-free, we found that HLA-matched controls

express the pro-inflammatory cytokines IL-1a, IL-1b, IL-6, and
TNFa, and Th2 cytokine IL-13, and chemokine IL-8 at similar

concentrations to that seen in PV patients. These cytokines,

however, are significantly higher in PV when compared to HLA-

unmatched controls, suggesting that healthy controls carrying the

PV associated HLA-haplotypes have a heightened ability to mount a

pro-inflammatory and Th2 cytokine response similar to PV

patients, while those lacking expression of the PV-associated HLA

alleles do not. These findings echo other work in our lab using

CyTOF technology to interrogate immune cell distribution in PV

patients vs. healthy controls. Using CyTOF, we found an increase in

Th2 cells in PV patients compared to “HLA-unmatched” controls,

while “HLA-matched” controls exhibited similar numbers of Th2

cells to those found in PV patients (manuscript in preparation). Our

CyTOF studies also showed an increase in Th17 cells in PV patients

as compared to HLA-matched controls and HLA-unmatched

controls which is supported by our observation of higher levels of

the Th17 cytokines IL-21, IL-22 and IL-23 in this study. Table 1
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summarizes differences in cytokine concentration between PV

patients and controls that carry PV susceptibility alleles (“HLA-

matched”) and those who do not carry HLA susceptibility alleles

(“HLA-unmatched”).

Looking more broadly at the genetic basis of autoimmune

development, it is striking to note that the pattern of HLA-linked

partial activation of autoimmune-linked pathways is not limited

only to cytokine expression as revealed in this study, but extends to

also gene expression (67), auto-antibody profiles (68), and anti-

oxidant status (69) as revealed in published work from our group.

These parallel patterns across multiple datasets exploring

intersecting biological levels promote a new hypotheses regarding

the immunological currents that either promote or prevent

autoimmune development (67). Specifically, there may be HLA-

independent pathways required for patients to progress to the

disease state in PV, but also protective counter-regulatory

mechanisms in genetically susceptible (HLA-matched) controls,

restraining them from disease despite their genetic susceptibility.

Along these lines, we found that HLA-matched controls had

significantly lower levels of IL-10 and IL-15 than PV patients, while

HLA-unmatched controls did not, setting up the intriguing

hypothesis that the downregulation of these cytokines affords

those healthy people that carry genetic susceptibility a certain
TABLE 5 Cytokine/Chemokine levels and group comparison based on disease phenotype.

Mucosal Mucocutaneous

p-valueMean (SD) Mean (SD)

Pro-Inflammatory IL-1a 123.00 (482.53) 67.79 (152.26) 0.624

IL-1b 13.26 (31.98) 7.02 (10.32) 0.407

IL-6 24.22 (86.12) 29.51 (77.98) 0.823

TNFa 15.06 (15.10) 22.39 (36.36) 0.312

Th1 IFNg 54.32 (239.31) 91.93 (396.17) 0.703

IL-2 2.91 (4.88) 6.15 (9.66) 0.111

IL-12 115.67 (662.03) 66.48 (344.01) 0.677

Th9 IL-9 1.30 (2.00) 4.32 (7.55) 0.035*3

Th17 IL-17 4.1 (8.57) 1.06 (1.71) 0.133

IL-21 3.21 (10.46) 2.02 (5.55) 0.641

IL-22 67.05 (255.86) 36.27 (102.65) 0.612

IL-23 666.35 (1958.5) 870.27 (2332.17) 0.734

Th2 IL-4 17.96 (29.78) 39.20 (66.27) 0.117

IL-5 10.07 (44.23) 5.28 (22.75) 0.656

IL-13 5.32 (9.20) 20.54 (34.76) 0.022*

Chemokine IL-8 628.55 (1631.11) 177.21 (534.23) 0.243

Eotaxin 178.75 (72.22) 209.87 (89.89) 0.172

MCP-1 867.2 (399.84) 737.27 (402.10) 0.259

NK IL-15 4.66 (6.93) 8.82 (12.73) 0.13

Regulatory IL-10 13.09 (20.43) 25.63 (62.99) 0.297
* indicates significant value: * p<0.05.
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protection. IL-10, produced by T regulatory cells (amongst others),

is thought to be a predominantly inhibitory cytokine. It is known to

inhibit production of IFNg, and activation of macrophages, NK

cells, and neutrophils (10, 70). IL-10 plays a critical role in slowing

the progression of autoimmune diseases (70). Nevertheless,

multiple studies found elevated levels of IL-10 in serum, blister

fluid, and supernatants of T cell and B regulatory cell cultures from

PV patients compared to controls (25, 40, 45, 71, 72). Also, recent

studies suggest that IL-10 is ineffective at accomplishing its

downstream regulatory effects in PV (41, 72, 73). Without

reaching its downstream target, IL-10 concentration may increase

because feedback inhibition does not occur. Perhaps this seemingly

contradictory data on IL-10 in PV could be explained by other

immune-promoting functions of IL-10, such as induction of B-cell

maturation, survival, and differentiation, as well as immunoglobulin

production (74–76). Kowalski et al. suggested IL-10 may be higher

in PV due this effect on B-cell production of IgG autoantibodies

(19). Further, IL-10 can inhibit Th1 cytokines, and thus shift Th1/

Th2 balance and promote Th2 cells in the context of PV (25).

Similarly to IL-10, we find that for IL-15, HLA-matched

controls show significantly lower serum levels than PV patients,

while HLA-unmatched controls do not. IL-15, produced by

epithelial cells, fibroblasts, and peripheral blood mononuclear

(monocyte enriched) cells promotes immunoglobulin switching,

memory immunoglobulins, and NK cell differentiation and

proliferation (77, 78). In support of these cytokine data, CyTOF

analysis found that the balance of early vs. late NK cells was shifted

towards late NK cells in PV patients when compared to all controls,

as well as when compared to HLA-matched controls (manuscript in

preparation). Downregulation of IL-15 in matched controls, as

shown in this work, could explain why we also see a shift towards

early NK cells in these same controls when compared to patients.

Also, it is conceivable that a specific downregulation of IL-15 could

lead to a reduction in immunoglobulin switching and memory

immunoglobulin production and thus mediate disease protection in

healthy individuals carrying PV susceptibility alleles.

Surprisingly, we do not see an appreciable difference in cytokine

levels between different phases of disease activity, neither in patients

regardless of therapy status nor when looking at the subgroup

completely off therapy. It is possible that differences between groups

in this study may be obscured by the wide variations in cytokine

levels across patients. Thus, it will be important in future work to

analyze samples taken from patients in a longitudinal study design

to truly appreciate if disease activity is paralleled by changed in

cytokine levels. In our study, we had three patients with longitudinal

samples. Of these three, two exhibited generally higher cytokine

levels in active disease, while one had higher levels in remission.

Follow up studies are needed to include more patients followed

longitudinally across different phases of disease to discern

meaningful differences. Similarly, we observed only minimal

differences based on disease morphology (mucocutaneous vs.

mucosal) and based on sex (male vs. female). Meaningful

differences between these subgroups may again be obscured by

the wide variation of cytokine expression between patients.

Taken together, our study reveals that compared to healthy

controls (regardless of HLA association), PV patients harbor
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elevated cytokine expression levels in generally pro-inflammatory-

and more specifically Th2 and Th17 pathways, albeit at a very

patient-specific, individualized level. This sets up the intriguing

future management paradigm that based on an individual patient’s

cytokine pattern, cytokine-targeted therapies could be aligned to be

maximally effective. Cytokine profiling of individual patients could

be leveraged in the future to personalize treatment plans.

Currently, the mainstay of treatment of autoimmune disease

remains dependent on potent immunosuppressants that inhibit

multiple immune pathways. In 2018, Rituximab was the first

biologic to be FDA-approved for treatment of PV. Rituximab is

now considered first line for treatment of this disease, although

not without side effects. While achieving disease control in a

majority of cases, these treatments also place the patient at risk for

opportunistic infections and untoward side effects. Front runners

of anti-cytokine biologic therapies for various autoimmune

diseases include drugs targeting TNFa, IL-1, IL-6, IL-12/IL-23,
and IL-17 (79). In the past years, several therapies that target

specific cytokines, eg. etanercept (TNFa receptor), adalimumab

(anti-TNFa), ustekinumab (anti-IL-23/IL-12), have been

developed, with many more in the pipeline. To date, there is

limited literature on anti-cytokine therapy in PV. However,

multiple recent case reports show Dupilumab, an inhibitor of

IL-4 and IL-13 to be effective in treating refractory or severe cases

of disease (80–82). Larger studies and clinical trials are necessary

to elucidate the true efficacy of dupilumab in PV, as well as explore

additional anti-cytokine therapies. Our finding of high cytokine

concentrations across one or two T-helper cell pathways may be

relevant to predicting which PV patients are likely responders

to dupilumab.

While this study emphasizes the importance of cytokines in

disease pathogenesis, naturally occurring anti-cytokine

autoantibodies are becoming an increasingly prevalent topic in

autoimmunity. Though anti-cytokine autoantibodies can be found

at low levels in disease-free, healthy subjects, they are found at higher

titers in certain autoimmune diseases and immunodeficiencies (83).

There are limited reports on the presence of these anti-cytokine

autoantibodies in pemphigus and pemphigoid diseases (84, 85).

Interestingly, rituximab has been shown to decrease levels of anti-

IL-8 autoantibodies in rheumatoid arthritis (86). Given the

significance of cytokines in PV pathogenesis, and increasing use of

rituximab in PV, further exploration of anti-cytokine autoantibodies

is warranted.

Our data support the role of the Th2 pathway in PV, while also

lending credence to the increasing literature on the importance of

the Th17 pathway. Thus, multiple cytokine pathways appear to be

operative in the development of PV. However, in any given patient,

not all pathways are simultaneously active; some patients are more

Th2 and/orTh17 dominant, while others lean more towards pro-

inflammatory or Th1 pathways. We propose a paradigm shift in our

understanding of the pathogenesis of PV, specifically that there

seem to be different ways individuals can reach disease, either

through a majority Th2 and Th17 response, a pro-inflammatory

response, or a Th1 response or a combination thereof. The precise

molecular means by which patients are directed to different paths

leading to PV are unknown, but perhaps there is a genetic basis for
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which HLA, especially, might play a role. Future mechanistic

studies are needed to gain insight into disease risk and prognosis.

For now, stratifying patients based on cytokine profiles has the

potential to change our approach to therapy. By matching cytokine

profiles to more targeted anti-cytokine/anti-pathway treatment, we

can envision personalizing care to improve outcomes based on

patients’ specific inflammatory profile.

Overall, our studies shed light on the complexities of critical

cytokine networks impacting PV on a personalized level. This work

can be expected to deepen our understanding of underlying

pathogenetic mechanisms relevant to autoimmunity, help to resolve

the biologic underpinnings of clinical heterogeneity that confound

our ability to prognose and manage patients, and ultimately serve to

advance efforts to align appropriately targeted therapies in select

patients while reducing side effects associated with current

approaches reliant largely on general immunosuppression.
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