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Herpes simplex virus type 2 (HSV-2) and helminth infections are among the most

widespread infectious diseases in sub-Saharan Africa (SSA). Helminths are known

to modulate host immune responses and consequently impact the severity and

outcomes of unrelated diseases, including allergies, autoimmune conditions, and

infectious diseases. In this way, helminths may modulate essential immune

responses against HSV-2 during co-infection and may alter susceptibility to

and pathology of HSV-2. However, the epidemiology of STH/HSV-2 co-

infections is understudied, and whether helminths influence the host immune

response to HSV-2 is not well understood. In this perspective piece, we briefly

examine the current knowledge on helminth immune modulation of important

pathogens that are endemic to SSA, arguing that it is important to explore HSV-2

and helminth co-infections to elucidate potential interactions between HSV-2

and helminths. This is particularly relevant in SSA, where both pathogens are

highly prevalent.
KEYWORDS
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1 Introduction

Sub-Saharan Africa (SSA) bears a disproportionate and overlapping burden of Herpes

simplex virus type 2 (HSV-2) (James et al., 2020) and helminth infections (Hotez and

Kamath, 2009), therefore HSV-2 and helminth co-infections may likely occur. HSV-2, also

known as genital herpes, is among the most common sexually transmitted viral infections
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(STVIs) (World Health Organisation, 2016). Helminths, including

schistosomiasis and soil-transmitted helminthiasis, are common

and widespread parasitic worm infections, particularly in SSA

(Hotez and Kamath, 2009). Immunologically, helminth infections

elicit potent T helper 2 (Th2) and immune modulatory responses,

which dampen opposing T helper 1 (Th1) and T helper 17 (Th17)

immune responses (Mcsorley and Maizels, 2012). In this way,

helminth-induced immune modulatory effects are known to

modulate host immune responses to unrelated pathogens,

including important STVIs such as HIV (Mkhize-Kwitshana

et al., 2011) and human papillomavirus (HPV) (Gravitt et al.,

2015; Omondi et al., 2022). This in turn alters the pathology and

clinical outcomes of important infections. In view of this, helminth

immune modulation may potentially alter HSV-2 pathology and

outcomes in individuals with HSV-2 and helminth co-infections. As

effective host immunity to HSV-2 is primarily mediated by a Th1

response, helminth-induced Th2 and immune modulatory

responses may hypothetically contribute to more severe outcomes

of HSV-2. Nevertheless, there is a significant lack of evidence to

validate this hypothesis. Moreover, despite their overlapping

distribution in SSA, little is known about co-infections between

helminths and HSV-2. Studying the epidemiological and

immunological dynamics of these infections may help identify

potential interactions and novel therapeutic interventions.
2 Method for literature search

A literature search was performed using search engines

including Google Scholar, Google, PubMed, Web of Science and

Science Direct to retrieve studies related to helminths and HSV-2

single and co-infections and their respective host immune

responses. The search terms used included: “helminths”,

“helminths and immune responses”, “HSV-2”, “HSV-2 and

immune responses”, “helminths and HSV-2 co-infection”. In

addition, to retrieve articles related to HSV-2 and/or helminths

and their associations with infectious diseases endemic to SSA, the

following search terms were used: “HSV-2 co-infections”, “HSV-2

and HIV”, “HSV-2 and HPV”, “HSV-2 and cervical cancer”, “HSV-

2, HPV, and cervical cancer”, “helminth co-infections in Africa”,

“helminths and malaria”, “helminths and TB”, “helminths and

HIV”, “helminths and HPV”, “helminths and COVID-19”. The

review focussed on the following article types, published in English:

(i) review articles, (ii) human studies conducted in SSA, and (iii)

experimental studies, where applicable. No year restrictions

were applied.
3 Herpes simplex virus type
2 infections

HSV-2, which causes genital herpes, is a human DNA virus

belonging to the Herpesviridae family and alpha subfamily (Chan

et al., 2011). It is one of the most prevalent STVIs worldwide. An

estimated 23.9 million incident HSV-2 infections were reported

among individuals aged 15 – 49 years worldwide in 2016. Moreover,
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in 2016, the global prevalence was an estimated 13.2%, which

equated to 491.5 million infections (James et al., 2020). There are

significant differences in HSV-2 prevalence between continents,

regions, and countries. Notably, the highest rates of infection are

reported in countries with poor socio-economic conditions and

under-resourced health facilities, particularly countries within SSA.

HSV-2 seroprevalence in SSA is estimated at 33%, which is

considerably higher compared to other global regions, such as

estimated seroprevalences of 7% in Europe and 17% in the

Americas (James et al., 2020). There are also considerable

differences in HSV-2 prevalence between the subregions of SSA.

Higher HSV-2 infection levels were recorded in Eastern Africa and

Southern Africa, followed by Central Africa and Western Africa.

Importantly, in SSA, nearly 50% of women and more than 25% of

men were reportedly infected with HSV-2, demonstrating that

women have a two-fold higher risk of infection (Harfouche

et al., 2021).

HSV-2 transmission occurs via sexual contact with HSV-2-

infected individuals during active viral shedding. The virus

primarily targets the genital mucosa, replicating within

keratinocytes of the genital epithelium. The natural progression of

HSV-2 infection comprises three distinct phases: primary infection,

latent infection, and reactivation. In immunocompetent individuals,

most primary HSV-2 infections are self-limiting and asymptomatic,

or may manifest as mild, non-specific symptoms (Schiffer and

Corey, 2013). Symptomatic genital herpes is characterised by

fever, body aches, lymphadenopathy, and dysuria, which resolve

within 10 to 14 days. In addition, the classic feature of HSV-2

infection, occurring in 10 - 25% of initial infections, are painful

genital vesicles or ulcers, which last approximately 3 weeks (World

Health Organisation, 2016; Mathew Jr. and Sapra, 2024). Primary

infection is followed by the latent phase, where the virus establishes

latency in the sensory neurons and ganglia, leading to lifelong

infection in humans. Cycles between latent and reactivated

infection lead to recurrent symptoms, including genital lesions,

genital ulcer disease, subclinical infections, and asymptomatic viral

shedding (Chan et al., 2011). During reactivation, the virus travels

along sensory nerves to the genital mucocutaneous site, replicates

and forms herpetic lesions (Mathew Jr. and Sapra, 2024).

Symptomatic recurrences typically occur within a year after initial

HSV-2 infection and are less severe than the primary episode. In

rare cases, systemic complications including recurrent meningitis,

hepatitis and pneumonitis can occur during primary or reactivated

infection, particularly in immunocompromised individuals due to

AIDS, organ transplantation or chemotherapy. Although also rare,

neonatal HSV infection occurs following viral transmission during

childbirth and, when untreated, is associated with high mortality

(>80%) and neurological morbidity (Schiffer and Corey, 2013;

Mathew Jr. and Sapra, 2024).

Importantly, HSV-2 infection is characterised by intermittent viral

shedding from the genital mucosa, in both symptomatic and

asymptomatic individuals (World Health Organisation, 2016).

Asymptomatic viral shedding from HSV-2-infected individuals

contributes to the high prevalence of HSV-2. Diagnosis of HSV-2

infection is based on clinical presentation and laboratory detection of

the HSV-2 virus, its viral proteins or genetic material, or HSV-2 specific
frontiersin.org
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antibodies. Several laboratory techniques may be used including: (i)

viral culture from swab or needle aspirations; (ii) serology, such as

enzyme-linked immunosorbent assays (ELISA) and Western blot

assays to detect HSV-2 specific antigens and/or antibodies; (iii) and

molecular-based methods, such as polymerase chain reaction (PCR)

and loop-mediated isothermal amplification (LAMP) to detect the

virus. Each of thesemethods has its benefits and drawbacks (Nath et al.,

2021). However, these laboratory techniques require specialized

equipment and personnel, and are therefore not accessible to a large

proportion of populations, particularly in low- and middle-income

countries (LMICs). LMICs face significant challenges with their

healthcare systems and majority of their populations have limited

access to healthcare facilities, leading to many undiagnosed HSV-2

infections. Moreover, because of its asymptomatic and/or non-specific

clinical presentation, HSV-2 is often undiagnosed, or diagnosis and

proper treatment may be delayed (Mathew Jr. and Sapra, 2024).

Collectively, these factors exacerbate the spread of infection and

increase the likelihood of co-infections with other prevalent pathogens.

Moreover, despite its high prevalence, there are currently no

preventative or curative treatments for HSV-2 infection, and an

effective vaccine is yet to be developed. Currently three approved

classes of drugs are used to alleviate symptoms by targeting viral

DNA replication and suppressing reactivation of HSV-2. These are

acyclic guanosine analogues, acyclic nucleotide analogues, and

pyrophosphate analogues. The common drugs from these classes

include acyclovir, valacyclovir, cidofovir, and foscarnet. Acyclovir is

the gold standard for treatment of HSV infections (Jiang et al.,

2016). Unfortunately, because of its latent nature, HSV-2 causes

lifelong infections and antivirals do not eliminate or prevent viral

shedding. Concerningly, the emergence of antiviral drug resistance

following long-term use and among immunocompromised patients

has been reported, underscoring the urgent need to develop newer

and effective therapeutic strategies (Jiang et al., 2016).
4 Immune responses during HSV-
2 infection

Host immunity against HSV-2 involves components of the

innate and adaptive immune responses that recognise, target, and

lyse virally infected cells (Chan et al., 2011). The innate arm of

immunity is critical as it forms the initial non-specific defence

against HSV-2 infection and stimulates the adaptive immune

response. The adaptive immune response plays an important role

in viral clearance and development of long-term memory (Chan

et al., 2011; Zhu et al., 2014).

The innate immune response is triggered by interaction

between the virus and innate immune cells through pattern

recognition receptors (PRRs), which detect pathogen-associated

molecular patterns (PAMPs), such as viral DNA. The main PRRs,

toll-like receptors (TLRs), occur on innate immune cells, including

mononuclear phagocytes, dendritic cells (DCs), and natural killer

(NK) T cells (Chew et al., 2009; Chan et al., 2011). Specific TLRs,

such as TLR2 (Kurt-Jones et al., 2004), TLR3 (Zhang et al., 2007),

TLR5 (Nazli et al., 2009), and TLR9 (Lund et al., 2006) have been
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Following viral recognition and TLR activation, immune cells

produce type I interferons (IFNs), thus stimulating an antiviral

state through the activation of the RNA-dependent protein kinase

(PKR) pathway via IFN-a1 transgene (Carr et al., 2005). Four main

antigen-presenting cell (APC) subsets, Langerhans cells (LCs),

CD14− lamina propria (LP)-DCs, CD14+ LP-DCs, and

macrophages, have been shown to regulate the antiviral state in

the vaginal mucosa by polarizing CD4+ and/or CD8+ T cells

through the expression of migration receptors (Duluc et al.,

2013). Type I IFNs, mainly IFN-a and IFN-b, also promote an

antiviral state by inhibiting translation and promoting the

degradation of viral mRNA. In addition, type I IFNs support

dendritic cell maturation and IL-15 production, which is needed

for NK cell proliferation and survival. NK cells, in turn, secrete IFN-

g, and induce apoptosis of virally infected cells through the release

of perforin and granzyme B. IFN-g further enhances the anti-HSV-2

innate response by activating inducible nitric oxide synthase

(iNOS). TLRs stimulate the production of proinflammatory

cytokines, including IL-1, IL-6, and TNF-a, which contribute to

the anti-HSV-2 innate immune response (Chan et al., 2011).

The adaptive immune response comprises cell-mediated and

humoral responses. Adaptive immunity is triggered by the innate

immune response, and promotes viral clearance and development

of long-term memory (Zhu et al., 2014). During cell-mediated

immunity, CD4+ T cells are recruited to the infection site and are

activated by MHC class II antigen presentation on APCs. Activated

CD4+ T cells release IFN-g, stimulating epithelial cells to produce

chemokines CXCL9 and CXCL10. A chemokine-driven gradient is

created, which attracts cytotoxic CD8+ T cells to the infection site

and stimulates nitric oxide (NO) release from epithelial cells and

APCs. HSV-2-specific CD8+ T cells release IFN-g and kill infected

cells through perforin and fas-mediated pathways (Chan et al.,

2011). Regulatory T cells (Tregs), which are known to suppress

pathogen-associated immunity and tissue damage, have been found

to play a role in HSV-2 infection. For example, mice depleted of

Tregs, had reduced IFN levels in their draining lymph nodes (dLNs)

and infection sites. In addition, there was delayed migration of NK

cells, DCs, and T cells to infection sites, and increased

proinflammatory chemokine levels in dLNs (Lund et al., 2008).

Lastly, during humoral responses, B cells are recruited to the

infection site and are activated by CD4+ T cells to produce

antibodies, IgA and IgG. However, the roles of B cells and

antibodies remain debatable, given that HSV-2 viral glycoproteins

have been shown to evade antibody-mediated protection [reviewed

in (Chew et al., 2009; Chan et al., 2011; Zhu et al., 2014)].
5 Associations between HSV-2 and
HIV, HPV, and cervical cancer

There are strong biological and epidemiological associations

between HSV-2 and HIV; HSV-2 has been shown to be a key driver

of the HIV epidemic in SSA, by biologically enhancing HIV

acquisition and transmission by almost three-fold (James et al.,
frontiersin.org
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2020; Harfouche et al., 2021). HIV prevalence is highly prevalent in

individuals co-infected with HSV-2 (Looker et al., 2017, 2020).

Moreover, co-infection with HSV-2 has been shown to increase

HIV viral shedding in genital secretions (Todd et al., 2013) and is

associated with accelerated HIV disease progression (Lingappa

et al., 2010; Reynolds et al., 2012). The underlying biological

mechanisms by which HSV-2 increases the risk of HIV infection,

include a compromised genital epithelium barrier, an influx and

increased number of target cells in genital tissue for HIV entry,

decreased innate mucosal immunity, and chronic mucosal

inflammation (Zhu et al., 2014).

Several studies have explored the potential association between

HSV-2 and human papillomavirus (HPV), particularly in terms of

co-infection (Francis et al., 2018; Taku et al., 2021; Uysal et al.,

2022) and the potential risk for cervical cancer development (Smith

et al., 2002; Zhao et al., 2012; Martin Luther et al., 2014; Li andWen,

2017; Yousif Elemam et al., 2018; Zhang et al., 2023).

Studies have shown that HSV-2-infected individuals are more

likely to have concurrent HPV infections; co-infection is reported

more frequently in regions with high prevalences of both viruses,

and particularly among women (Francis et al., 2018; Taku et al.,

2021; Uysal et al., 2022). HSV-2 infection has been associated with

an increased risk of acquiring HPV. Biologically, inflammation and

disruption of genital epithelial barriers caused by HSV-2 genital

ulcers, can facilitate the transmission of other viruses, including

HPV (Sausen et al., 2023).

It is well known that persistent infection with high-risk strains

of HPV, mainly HPV-16 and HPV-18, is the primary cause of

cervical cancer (De Sanjosé et al., 2018). What is less understood,

however, is the role of HSV-2 in cervical carcinogenesis. In 2020,

cervical cancer affected an estimated 604,000 women and accounted

for 342,000 deaths globally. SSA has the highest cervical cancer

incident and mortality rates, and cervical cancer is the leading cause

of cancer-related deaths among women in SSA (Sung et al., 2021).

This highlights that despite the availability of an effective vaccine

against HPV, cervical cancer is still a significant public health

concern, particularly in SSA. Moreover, this suggests that several

other factors may contribute to cervical cancer pathogenesis.

Whether HSV-2 infection alone, or in conjunction with HPV,

impacts the development of cervical cancer remains debatable, with

studies yielding conflicting results (Sausen et al., 2023). However,

there is some evidence to suggest that co-infection with HSV-2 may

increase the risk of HPV-related cervical cancer (Smith et al., 2002;

Zhao et al., 2012; Martin Luther et al., 2014; Li and Wen, 2017;

Yousif Elemam et al., 2018; Zhang et al., 2023). Several mechanisms

by which HSV-2 may contribute to cervical cancer development

have been described: (i) HSV-2-associated genital ulcers may

facilitate HPV entry to the basal layer; (ii) HSV-2 induces an

inflammatory response, which may impair T helper cell mediated

immune responses; (iii) HSV-2 acts directly on host cellular DNA,

and induces the production of nitric oxide, resulting in cellular

DNA damage; (iv) HSV-2 infection accelerates replication of HPV

and its integration of viral DNA sequences; (iv) both HSV-2 or

HPV infections may induce immunological and microbiological

changes, such as dysbiosis of the vaginal microbiota. Such changes

could potentially create a conducive environment for HPV
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persistence, HSV-2 reactivations, and progression to cervical

cancer (Al-Daraji and Smith, 2009; Uysal et al., 2022; Sausen

et al., 2023). Thus, establishing the role of HSV in cervical

carcinogenesis may have important implications for mitigating

the occurrence of cervical cancer. Should HSV-2 contribute to

cervical cancer, then its timely diagnosis and treatment could

become a potential therapeutic avenue to curb the disease.

Apart from the significant burdens of HSV-2, HIV, HPV, and

cervical cancer in SSA, the continent bears a substantial burden of

other infectious diseases, such as tuberculosis (TB), malaria, as well

as neglected tropical diseases (NTDs), such as helminths (Hotez and

Kamath, 2009). Given this geographic overlap of multiple infectious

diseases, the occurrence of concurrent infections is highly likely,

with profound consequences for individual and public health in

SSA. Herein, we hypothesise the potential impact of helminth

immune modulation on HSV-2 pathology in SSA.
6 Helminth infections

Helminths are endemic to SSA and contribute to approximately

85% of the continent’s NTD burden. Helminths are associated with

extreme poverty, causing chronic and insidious infections that

negatively impact child development, pregnancy outcomes and

economic productivity (Hotez and Kamath, 2009). Most

infections are caused by the four major soil transmitted helminths

(STHs) (Ascaris lumbricoides, Trichuris trichiura, Necator

americanus and Ancylostoma duodenale) (World Health

Organisation, 2024b). According to the World Health

Organisation (WHO), approximately 232 million pre-school and

school-aged children residing in theWHOAfrican region are at risk

of infection (World Health Organisation, 2024c). Other vulnerable

groups include women of reproductive age, and adults working on

tea farms and in mines (World Health Organisation, 2024b).

STHs are transmitted via faecal contamination of food and

environmental sources. Individuals become infected with Ascaris

lumbricoides and Trichuris trichiura infections when they ingest

embryonated eggs found in contaminated water or food, and with

hookworms, when infective larvae penetrate the skin. STH have

complex lifecycles, sometimes requiring multiple hosts to

successfully complete their developmental stages, which comprise

larval migration through one or more host tissues, maturation into

adult worms, reproduction, and the excretion of new eggs into the

environment (Bethony et al., 2006). STHs require similar diagnostic

methods and respond to the same treatment. Large-scale efforts to

reduce STH-associated morbidity in at-risk groups residing in

endemic regions, include STH preventative chemotherapy using

the benzimidazole anthelmintics, albendazole (400 mg) and

mebendazole (500 mg) (World Health Organisation, 2024b).

Human schistosomiasis is a parasitic disease caused by

trematodes of the genus Schistosoma. There are two major forms

of disease, intestinal and urogenital schistosomiasis. Three main

species of schistosomes infect human beings, Schistosoma mansoni

and Schistosoma japonicum (intestinal schistosomiasis), and

Schistosoma haematobium (urogenital schistosomiasis) (Colley

et al., 2014). It is estimated that at least 264 million people
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worldwide are infected with Schistosoma spp (World Health

Organisation, 2024a). Schistosomiasis is associated with

significant morbidity and mortality. More than 90% of the

infections occur in Africa, an estimated two thirds of infections

are caused by Schistosoma haematobium (Santos et al., 2021).

Schistosomiasis transmission occurs when infected individuals

contaminate freshwater sources with faeces or urine containing

parasite eggs, which then hatch into larvae (cercariae) in the water.

Infection occurs when larvae, released by aquatic snails, penetrate

the skin during contact with contaminated water. Within the

human host, larvae mature into adult schistosomes and migrate

through the blood vessels. Adult schistosomes pair up and colonise

the blood vessels for many years, where they produce eggs. Some of

these eggs are excreted through faeces or urine, continuing the

parasite’s lifecycle, while others become lodged in the intestines or

liver (Schistosoma mansoni and Schistosoma japonicum), or walls of

the urinary tract and bladder (Schistosoma haematobium)

(Odegaard and Hsieh, 2014; Colley et al., 2014). Moreover, the

embedded eggs induce a chronic, distinct immune-mediated

granulomatous response that has local and systemic pathological

consequences (Colley et al., 2014).

Standard diagnostic methods for schistosomiasis include

detection of viable eggs in urine or stool samples, or tissue

biopsies, using techniques such as microscopy and the Kato-Katz

method. However, these methods suffer from low sensitivity, and

the true burden of schistosomiasis may be underestimated (Colley

et al., 2014). Schistosomiasis control focuses on periodic, large-scale

treatment of at-risk populations with praziquantel, to reduce

morbidity. While praziquantel is safe to administer and effective

against adult schistosomes, poor efficacy against immature

schistosome larvae is reported (Colley et al., 2014).
7 Immune responses during
helminth infections

Helminths and their human hosts have co-evolved over many

centuries; thereby helminth parasites have developed several

mechanisms to ensure their longevity in infected hosts. Typically,

helminth-induced tissue injury stimulates a Th2 host immune

response, which supports wound repair and reduces tissue

inflammation caused by helminths as they migrate through

different host tissues and organs. Initial helminth-induced tissue

injury activates the innate immune response, where the release of

danger associated molecular patterns (DAMPS) stimulate epithelial

cells to release alarmin cytokines [IL-25, IL-33, and thymic stromal

lymphopoietin (TSLP)]. IL-25 and IL-33 stimulate innate cells to

produce Th2-associated cytokines (IL-4, IL-5, and IL-13), while

TSLP suppresses the production of IL-12, a major Th1 cytokine,

and supports dendritic cell maturation (Harris and Loke, 2017;

Rapin and Harris, 2018). The host adaptive immune response to

helminth infection is important for stimulating the development of

Th2 cells and their associated cytokines, helminth expulsion, and

preventing re-infection (Harris and Loke, 2017). Helminth-induced

Th2 responses can downregulate Th1 and Th17 immune responses
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and their associated cytokines, such as IL-12, IFN-g, IL-17, IL-23,
and TNF-a. Moreover, helminths can dampen Th1 and Th2 host

immune responses through the expansion of regulatory cell

populations (FOXP3+ T regulatory and B regulatory cells) and

alternatively activated macrophages (AAMs). Collectively, these

regulatory ce l l populat ions s t imulate the re lease of

immunosuppressive cytokines, IL-10, and tumour growth factor

(TGF-b), thus creating a hyporesponsive or tolerant environment in

the infected host that promotes helminth survival and limits host

tissue damage (Mcsorley and Maizels, 2012).
8 Bystander effects of helminth
immune modulation on
important pathogens

The immune modulatory effects of helminths can influence a

range of unrelated bystander conditions and infections. The

influence of helminth immune modulation on inflammatory

conditions, such as allergies and autoimmune diseases, has been

described. According to the hygiene hypothesis, the absence of

helminths in developed regions, due to improved sanitation and

hygiene, has led to an increase in allergic conditions and

autoimmune diseases, compared to helminth-endemic regions

(Maizels and Mcsorley, 2016). In support, evidence emerging

from Africa, demonstrate decreased prevalence of atopy (Van

Den Biggelaar et al., 2000) and decreased levels of autoreactive

antibodies in helminth-infected individuals (Mutapi et al., 2011).

Helminth immune modulation has been shown to influence

susceptibility to and the clinical course of infectious diseases that are

endemic to SSA, with varying outcomes. Some key examples from

studies conducted in SSA are provided here.

Studies of helminth-malaria co-infection have yielded

conflicting results. Helminth co-infection was associated with a

higher prevalence of non-severe malaria (Plasmodium falciparum

or Plasmodium vivax) (Degarege et al., 2012; Babamale et al., 2018),

and with a higher intensity of Plasmodium falciparum (Babamale

et al., 2018). Moreover, individuals co-infected with STHs and

Plasmodium falciparum had more pronounced malnutrition,

anaemia and lower body weight, suggesting that co-infection with

STHs exacerbates malnutrition, anaemia, low body weight status

(Degarege et al., 2010). STHs are associated with anaemia and

nutritional deficiencies (Stephenson et al., 2000; Mpaka-Mbatha

et al., 2022). STHs may suppress appetite due to gut inflammatory

responses mediated by the infected host. Some STHs (Ascaris

lumbricoides and hookworms) secrete inhibitors of pancreatic

enzymes, which may directly impair host nutrient absorption in

the small intestine (Cappello, 2004). Hookworms colonise the small

intestine, where they feed on blood. High intensity hookworm

infections are associated with iron deficiency anaemia,

particularly in children and women of reproductive age, who are

malnourished or have low iron levels (Loukas et al., 2021).

Helminth immune modulation has also been shown to

influence Mycobacterium tuberculosis. A strong association

between helminth infection and active TB was reported in a
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cohort of Ethiopian patients (Elias et al., 2006), suggesting that

helminth immune modulation impairs host immune responses to

TB. Moreover, in helminth-infected individuals, purified protein

derivative (PPD) and T cell responses were impaired in response to

natural immunisation and bacille Calmette-Guérin (BCG)

vaccination, respectively, but improved following anthelmintic

treatment (Elias et al., 2001). Chronic helminth infection was

associated with reduced BCG efficacy and correlated with

increased levels of TGF-b (Elias et al., 2008).

Sexually transmitted viral infections are highly endemic to SSA.

Given the significant burden of HIV in SSA, many studies have

focussed on helminth-HIV interactions. In this context, a high

prevalence of helminths was reported among HIV-infected

individuals (Mkhize-Kwitshana et al., 2011; Ivan et al., 2013;

Abossie and Petros, 2015). In helminth/HIV co-infected

individuals, CD4+ counts were lower (Adeleke et al., 2015),

immune cells were dysregulated, and HIV viral loads were higher

(Mkhize-Kwitshana et al., 2011). In addition, hookworm infection

was correlated with a higher risk of HPV infection, higher HPV

viral loads, and distinct mixed Type 1/Type 2 immune profiles in

the vaginal tracts of helminth/HPV co-infected women (Gravitt

et al., 2015; Holali Ameyapoh et al., 2021; Omondi et al., 2022).
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Schistosoma haematobium infection, which causes urogenital

schistosomiasis, can profoundly impact reproductive health. In

chronically infected women, vaginal pathology is associated with

itching, bleeding, pain, discharge, genital lesions, genital tumours,

and ectopic pregnancies (Hegertun et al., 2013; Norseth et al., 2014).

In men, urogenital schistosomiasis is associated with pathology of

the seminal vesicles, dysuria, haematuria, pelvic pain, and infertility

(Kayuni et al., 2019; Roure et al., 2024). Importantly, Schistosoma

haematobium is classified as a group 1 carcinogen; the correlation

between urogenital schistosomiasis and bladder cancer has been

previously described (Salem et al., 2011; Khaled, 2013; Ishida and

Hsieh, 2018). Urogenital schistosomiasis is also associated with an

increased risk of HIV infection (Looker et al., 2017), particularly in

women (Kjetland et al., 2006; Ndhlovu et al., 2007; Downs et al.,

2011). Biologically, chronic inflammation and tissue damage caused

by Schistosoma haematobium eggs, enhanced immune activation,

and genital lesions in the female reproductive tract, are thought to

increase the risk of HIV, by increasing viral entry points and the

number of target cells at the infection site. Additionally,

Schistosoma haematobium-associated Th2 immune response may

suppress the Th1 responses needed for effective anti-HIV immunity

(Chetty et al., 2020).
FIGURE 1

Estimated numbers (n) and proportions (%) of STH PC required for pre-SAC and SAC, Status of Schistosomiasis in endemic countries, and HSV-2
infections. STH PC: Soil-transmitted helminths Preventive Chemotherapy [Data presented is the estimated number of Pre-school Aged (Pre-SAC)
and School-Aged Children (SAC) requiring PC for STHs in 2022a; % Proportion = Estimated number of STH PC/Estimated number of Global STH PC
x 100]; Schisto: Status of Schistosomiasis in endemic countries in 2022b; % Proportion = Estimated number of Schistosoma/Estimated number of
Global Schistosoma PC x 100]; HSV-2: Herpes Simplex Virus Type II [Data presented is the estimated number of people within the 15-49 year age
group that were infected with HSV-2 in 2016c; % Proportion = Estimated number of HSV-2/Estimated number of Global HSV-2 x 100, Source of
WHO regions mapd. aSource: Adapted from (World Health Organisation, 2024c). bSource: Adapted from (World Health Organisation, 2024a).
cSource: Adapted from (James et al., 2020). dSource: Adapted from (Our World in Data, 2023).
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When holistically evaluating the effects of helminth immune

modulation, it is important to mention that helminths may have

beneficial effects on concurrent infections. This was reported during

the recent COVID-19 pandemic; helminth co-infection (Hymenolepis

nana, Schistosoma mansoni and Trichuris trichiura) mitigated

COVID-19 severity in patients from Africa (Wolday et al., 2021).

Taken together, it is evident that different factors determine

whether helminths have beneficial or detrimental effects on

concurrent bystander infections. These include the helminth

species, the worm burden, type of concurrent infection/condition,

tissue tropism, and the timing and niche of infection (Schlosser-

Brandenburg et al., 2023).
9 Discussion: potential implications of
helminth immune modulation on
HSV-2

Considering the studies described above, it is plausible that

helminth immune modulation may influence HSV-2 outcomes in

SSA. Given the substantial prevalence and geographic overlap of HSV-

2 and helminths in SSA, it is likely that co-infections occur (Figure 1).

However, no studies have examined the influence of helminth

immune modulation on HSV-2 co-infection in humans. However,

in a very recent murine study, Chetty et al. (2021) demonstrated that

acute, self-limiting infection with Nippostrongylus brasiliensis, a

murine intestinal helminth that is closely related to the human

hookworms, induced a classic Th2 immune response in the female

genital tract (FGT). FGT immune responses to subsequent genital

HSV-2 were impaired, leading to enhanced HSV-2 pathology. This

enhanced pathology was dependent on IL-5 and associated with

increased levels of IL-33, group 2 innate lymphoid cells (ILC2s), and

accumulation of eosinophils in the FGT (Chetty et al., 2021). The exact

mechanisms by whichNippostrongylus brasiliensis influences the FGT,

a site it does not colonise, need to be further explored. It has been

suggested that helminth-derived excretory-secretory products may

play a key role in inducing immune cell trafficking and Th2

responses in uncolonized tissues, such as the FGT (Zarek and Reese,

2021). Importantly, Chetty et al. (2021) demonstrate the systemic

effects of helminth infection on FGT immune responses to HSV-2

infection, which supports previously observed clinical correlations

between STHs and viral infections in vaginal tissue (Gravitt et al.,

2015; Omondi et al., 2022). Thus, their novel findings provide some

insight into how helminths may alter HSV-2 pathology in co-infected

individuals and provides a basis for future human studies. Given that

helminths stimulate Th2 and immune modulatory responses, whereas

protection from HSV-2 requires a Th1 response, we hypothesise that

helminths may compromise host immunity to HSV-2 during co-

infection. This could enhance susceptibility to HSV-2, promote viral

persistence and pathology, and impair responses to HSV-2 treatment.

Therefore, helminth-HSV-2 co-infections could have significant

consequences for sexual and reproductive health, such as increased

risk of acquiring other sexually transmitted infections, infertility, and

cancer progression (Chetty et al., 2020). The ensuing negative impact
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on inadequately resourced healthcare systems in SSA would be

substantial. Furthermore, it may be necessary to consider how

helminth immune modulation may impact HSV-2 treatment

efficacy; this factor may need to be considered when designing

appropriate treatment strategies and potential HSV-2 vaccines. We

argue that helminth/HSV-2 co-infections are grossly understudied,

therefore their potential impact on public health is underestimated. To

address this gap, we believe that human studies exploring helminth/

HSV-2 co-infections in SSA are warranted. Moreover, we believe that

evaluating and managing these infections using holistic and integrated

approaches may advance the WHO 2030 Sustainable Development

Goals aimed at eliminating NTDs and sexually transmitted infections

(World Health Organisation, 2022a, 2022).
10 Concluding remarks

HSV-2 and helminth co-infections may commonly occur in SSA.

However, their potential interactions are grossly understudied and

poorly understood. There is a significant paucity of data on HSV-2

and helminth co-infections, and whether helminth immune

modulation influences HSV-2 pathology is unclear. We assert that

epidemiological and immunological studies on HSV-2 and helminth

co-infections are needed to fully understand the interplay between

these pathogens. Moreover, evidence from such studies could prove

relevant as they may inform the therapeutic management of HSV-2

and helminths in co-endemic regions such as SSA.
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