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Abstract
Purpose of Review  This review explores the mechanisms through which gestational diabetes mellitus GDM impacts fetal 
kidney development, focusing on epigenetic alterations as mediators of these effects. We examine the influence of GDM on 
nephrogenesis and kidney maturation, exploring how hyperglycemia-induced intrauterine stress can reduce nephron endow-
ment and compromise renal function via dysregulation of normal epigenetic mechanisms.
Recent Findings  In addition to metabolic impacts, emerging evidence suggests that GDM exerts its influence through epige-
netic modifications, including DNA methylation, histone modifications, and non-coding RNA expression, which disrupt gene 
expression patterns critical for kidney development. Recently, specific epigenetic modifications observed in offspring exposed 
to GDM were implicated in aberrant activation or repression of genes essential for kidney development. Key pathways influ-
enced by these epigenetic changes, such as oxidative stress response, inflammatory regulation, and metabolic pathways, are 
discussed to illustrate the broad molecular impact of GDM on renal development. Finally, we consider potential interven-
tion strategies that could mitigate the adverse effects of GDM on kidney development. These include optimizing maternal 
glycemic control, dietary modifications, dietary supplementation, and pharmacological agents targeting epigenetic pathways.
Summary  Through a comprehensive synthesis of current research, this review underscores the importance of early preventive 
strategies to reduce the burden of kidney disease in individuals exposed to GDM and highlights key epigenetic mechanisms 
altered during GDM that impact kidney development.
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Introduction

According to the Department of Health and Human Ser-
vices, obesity is a significant public health issue affecting 
roughly 40% of women of reproductive age [1]. Maternal 
obesity is a modifiable risk factor known to contribute to 
adverse pregnancy outcomes. It carries substantial short-
term and long-term health consequences, negatively impact-
ing a child’s development into adulthood [2–6].

Gestational maternal obesity has been associated with 
both low birth weight (birth weight less than 2,500 g) and 
macrosomia (birth weight greater than 4,000 g). Babies born 
under these conditions have a 50% higher risk of developing 

childhood obesity and a 35% higher risk of premature car-
diovascular death [5, 7, 8].

Mechanistically, obesity leads to changes in the uterine 
environment that alter placenta function and embryonic 
development. Obesity leads to abnormal hormonal responses 
during gestation, such as increased levels of leptin, insu-
lin, and insulin-like growth factor (IGF), which influence 
fetal development. Additionally, obesity may affect nutrient 
availability, altering metabolic signals and the expression of 
genes critical for proper embryonic development. Finally, 
obesity is associated with increased levels of inflammatory 
cytokines and oxidative stress markers, which can disrupt 
normal embryonic development. Notably, while maternal 
obesity affects the development of the entire embryo, certain 
tissues—such as the embryonic kidneys—are particularly 
vulnerable to alterations during pregnancy [6, 8–12].

Obesity is a major risk factor for the development of ges-
tational diabetes mellitus (GDM) [13]. The likelihood of 
developing GDM is two to three times higher in women 
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with obesity compared to those with a healthy weight. GDM 
exposes the developing fetus to altered insulin secretion and 
sensitivity, resulting in high blood glucose levels, which 
disrupt normal fetal metabolism and development and, in 
particular, kidney development [14–16]. GDM is a frequent 
pregnancy complication (on average 14%, range 1 to 25%) 
with significant implications for both maternal and fetal 
health [17]. The variability in the global prevalence of GDM 
appears to be rooted in the reported regional differences. 
Southeast Asia, the Middle East, and North Africa report the 
highest GDM prevalence, while regions such as the Ameri-
cas, Africa, and the Western Pacific show moderate preva-
lence levels. Europe, in contrast, has the lowest GDM rates 
among World Health Organization regions [17–21]. These 
global differences may partly arise from varying diagnostic 
criteria across countries. However, they also likely reflect 
significant disparities in GDM risk among different racial 
and ethnic communities, underscoring the need for culturally 
tailored health interventions or more personalized medicine.

Impact of Maternal Metabolic Adaptations, 
Obesity and GDM on Pregnancy Outcomes 
and Offspring Health

Pregnancy is the physiological condition in which a ferti-
lized egg develops into a fetus inside a woman’s uterus. It 
begins with the implantation of the embryo into the uter-
ine lining and typically lasts around 40 weeks, divided into 
three trimesters. Pregnancy leads to complex physiological, 
hormonal, and metabolic changes in the mother to support 
fetal growth, development, and preparation for childbirth. 
It concludes with the delivery of the baby through vaginal 
birth or cesarean section. Over the course of a healthy preg-
nancy, maternal physiology undergoes significant adapta-
tions to support fetal growth, including critical changes in 
insulin sensitivity tailored to different pregnancy stages. In 
early pregnancy, maternal insulin sensitivity increases, pro-
moting glucose uptake into adipose tissue and preparing for 
the increased energy demands of later pregnancy stages. As 
pregnancy progresses, however, maternal metabolism shifts 
to a state of relative insulin resistance. This transition results 
in modestly elevated maternal blood glucose levels, which 
are readily transported across the placenta to support fetal 
growth. Additionally, insulin resistance stimulates endog-
enous glucose production and mobilizes fat stores, leading to 
higher levels of blood glucose and free fatty acids [22–25].

To maintain proper glucose regulation, maternal pan-
creatic β-cells increase insulin secretion to compensate for 
the reduced tissue sensitivity to insulin. In cases of GDM, 
pancreatic β-cells fail to adequately offset the increased 
insulin resistance, leading to maternal glucose intolerance 
and the onset of GDM. Obesity exacerbates this process by 

inducing insulin resistance and hyperinsulinemia, which 
are thought to be driven by low-grade systemic inflamma-
tion and subclinical endotoxemia [6, 8, 22, 24].

Obesity during pregnancy significantly impacts glucose 
metabolism, causing impaired fasting glucose regulation in 
early pregnancy and a pronounced increase in peripheral 
and hepatic insulin resistance. Consequently, pre-preg-
nancy obesity-related insulin resistance greatly increases 
the risk of developing GDM. Changes in maternal insulin 
sensitivity throughout pregnancy are partly influenced by 
fat mass, which increases in both normal-weight and obese 
women during pregnancy. However, obesity-related insulin 
resistance reduces the effect of insulin on lipolysis, alter-
ing lipid metabolism and leading to a several-fold increase 
in triglyceride and cholesterol levels late in pregnancy [6, 
8, 26].

Almost all obese women display some degree of dys-
lipidemia throughout all stages of pregnancy [5, 8]. This 
suggests that fetuses in obese pregnancies are exposed to 
high levels of free fatty acids at every stage of development. 
This chronic exposure to free fatty acids can exert a lipotoxic 
effect, contributing to inflammation and endothelial dysfunc-
tion. These disruptions lead to altered placental metabolism 
and function, increasing the supply of excess lipids and glu-
cose to the fetus [24, 25, 27].

The combination of nutrient excess, hormonal imbal-
ances, and placental dysfunction creates an adverse in-utero 
environment that may increase the risk of metabolic diseases 
in offspring. These mechanisms underscore the importance 
of managing maternal obesity and metabolic health during 
pregnancy to reduce risks to both the mother and child.

The developing kidney is susceptible to environmen-
tal influences during development. Alterations in kidney 
development due to obesity and GDM can reduce nephron 
endowment, impair renal function, and increase susceptibil-
ity to hypertension, which affects 35% of the world’s popu-
lation, and kidney disease, which impacts roughly 12% of 
the world’s population [16, 28–33]. Studies have suggested 
that the offspring of mothers with GDM may have a higher 
risk of developing congenital anomalies of the kidneys and 
urinary tract (CAKUT) [31, 32, 34–36]. While research 
indicates a potential link, the exact evidence of the direct 
impact of gestational diabetes on kidney development in 
the offspring is still considered limited and requires further 
investigation [37, 38].

GDM is thought to impact kidney development through 
both direct metabolic effects and epigenetic modifica-
tions. Epigenetic changes, such as DNA methylation, his-
tone modifications, and microRNA expression, are crucial 
during fetal development and can respond dynamically 
to maternal hyperglycemia [39–43]. In the context of 
GDM, these changes may modify gene expression and 
disrupt developmental pathways, potentially predisposing 
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offspring to long-term cardio-renal-metabolic disorders 
later in life [31, 43, 44].

This review aims to explore the influence of GDM on 
fetal kidney development. We will summarize current 
knowledge on how GDM affects renal development and 
highlight how epigenetic alterations may contribute to the 
risk of kidney disease in adulthood.

Kidney Development at a Glance

Kidney development, or nephrogenesis, is a complex, mul-
tistage process that begins in early embryonic life and con-
tinues until shortly after birth in some mammals. In humans, 
kidney development begins around gestational week 5 and 
is mostly complete by week 35 of the 40-week gestation 
period. In contrast, in mice, kidney development starts at 
approximately day 10 of gestation and continues postnatally, 
ceasing around day 5 after birth, as their gestation lasts about 
20 days (Fig. 1A) [45–50].

Fig. 1   The dynamic and coordinated process of kidney develop-
ment from early progenitors to the formation of functional nephrons. 
Timeline of embryonic kidney development from embryonic day 8.5 
(E8.5) to postnatal day 4 (P4), showing progressive stages of fetal 
development (A). Schematic representation of nephrogenesis within 
the embryonic kidney. the nephric duct is induced by the adjacent 
metanephric mesenchyme (MM) and invades the MM to form the 
nascent UB. Next, the reciprocal inductive processes continue to form 
the nephrogenic niche. The nephrogenic niche contains early stromal 
cells, nephron progenitor cells (NPC), and the ureteric bud (UB). 
Nephron formation progresses from pretubular aggregates (PTA) to 
renal vesicles (RV), and subsequently to comma-shaped bodies (CSB) 
and S-shaped bodies (SSB), which differentiate into early nephron 

segments, including proximal tubules, glomeruli (Glom), thick 
ascending limbs (TAL), thin descending limbs (TDL), distal tubules, 
and collecting ducts (B). these developmental processes repeat them-
selves in a modular and hierarchal manner until the kidneys are 
formed. The tissue ontogeny of kidney development starts with the 
Intermediate mesoderm (IM), which gives rise to anterior (AIM) 
and posterior intermediate mesoderm (PIM), which differentiate into 
metanephric mesenchyme (MM). MM progresses through cap mes-
enchyme (CM), pretubular aggregate (PTA), renal vesicle (RV), and 
later stages of nephron development. Stroma precursors give rise to 
stromal cell types, vasculature, renin-producing cells, and endothelia. 
The nephric duct forms the ureteric bud (UB), which later gives rise 
to the collecting duct system (C). Created with Biorender.



	 Current Diabetes Reports           (2025) 25:13    13   Page 4 of 17

The kidneys are two bean-shaped organs located in the 
retroperitoneal cavity, with most of their mass slightly below 
T12 vertebrate. The kidney performs essential functions in 
the body, including the elimination of toxic wastes such as 
urea and creatinine, and the reabsorption of essential mol-
ecules such as proteins, sugars, and micronutrients. Addi-
tionally, the kidneys regulate blood volume, blood pressure, 
osmolarity, and pH balance [51].

The kidneys originate from the intermediate mesoderm, 
which forms the pronephros, mesonephros, and metanephros 
in a sequential process. The metanephroi are ultimately the 
functional mature kidneys. Reciprocal signaling from the 
ureteric bud (UB), an outgrowth from the mesonephric duct, 
and the adjacent mesenchymal cells (metanephric mesen-
chyme), mark the beginning of nephrogenesis (Fig. 1B) 
[46]. Three progenitor lineages emerge during nephrogen-
esis: the nephron progenitor cells (NPC) lineage. These cells 
are characterized by the expression of Six2, Cited1, Osr1, 
Sall1 and several other NPC identity genes. The stroma pro-
genitor’s lineage originally shows Foxd1, Lgals, Dcn and 
the expression of several other markers. The ureteric bud 
lineage is characterized by the expression of Ret, Wnt11, 
Wnt9b, and Gfra1. Further, the interaction between the NPC 
and cells from the other two lineages coordinates normal 

kidney development [45, 46]. The UB undergoes branch-
ing morphogenesis, forming a tree-like structure that will 
become the renal collecting system. NPCs differentiate into 
specialized cell types, forming nephrons—the functional 
units of the kidney—through a series of stages (Fig. 1B, 
C). NPCs proliferation and differentiation are governed by 
a complex network of cell types and molecules, for instance, 
the branching UB tips secrete growth factors such as GDNF 
and Wnt proteins that influence NPC fate decisions [45, 
46, 52]. Kidney development is a modular process that 
includes the formation of transitory structures such as the 
pretubular aggregate, the renal vesicle, the comma-shaped 
body, and the S-shaped body. These transitory structures 
further develop into functional nephrons, that comprise 
the glomeruli, proximal and distal tubules, and the loop of 
Henle (Fig. 1C). Key signaling pathways (e.g., Wnt, Notch, 
BMP, GDNF etc.) guide the patterning, segmentation, and 
cell fate within nephrons. The stroma progenitors give rise 
to all stroma-derived cells, the support cells in the mature 
kidney, the vasculature, and the mesangium [53]. Nephron 
formation completes before birth in some mammals, such as 
humans, and after birth in others, like mice, with the number 
of nephrons determined by a balance between NPC prolif-
eration and differentiation rates [45, 46].

Fig. 2   Gestational diabetes mellitus alters fetal epigenetic program-
ming, impacting nephrogenesis. In GDM, elevated levels of glucose, 
hyperinsulinemia, inflammatory cytokines, and altered metabo-
lite levels result in fetal reprogramming. This leads to epigenomic 
changes in the developing kidney, specifically in DNA and histone 
methylation and acetylation. These epigenetic modifications include 
DNA/histone methylation via methyltransferases and histone acety-
lation through histone acetyltransferases (HATs), which affect tran-

scriptional activity and microRNA (miRNA) expression. The altered 
epigenome results in reduced kidney volume, decreased glomerular 
counts, and lower nephron endowment, contributing to increased risk 
for chronic kidney disease in offspring. Abbreviations: GDM, ges-
tational diabetes mellitus; HAT, histone acetyltransferase; miRNA, 
microRNA; SAM, S-adenosyl methionine; RNAPII, RNA polymer-
ase II. Created with Biorender.
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Disruptions in these processes can lead to conditions 
like oligonephropathy (low nephron endowment) at birth 
and congenital anomalies of the kidney and urinary tract 
(CAKUT). Throughout development, a balance of self-
renewal and differentiation of NPCs is required to sustain 
nephron formation. NPCs are gradually depleted as nephro-
genesis progresses, eventually ceasing with the depletion 
of this progenitor Pool at around 35 weeks of gestation in 
humans and roughly postnatal day 5 in mice [32, 50, 54–56].

The newly formed nephrons mature and become vascular-
ized, establishing connections with the glomerular capillar-
ies. This vascular integration is crucial for kidney filtration 
function, enabling the transition to fully functional kidneys 
postnatally. After birth, kidney size and nephron complexity 
increase as the organ adapts to the needs of the organism, 
with nephron enlargement and increased tubule length [45, 
50, 57, 58]. Genetic mutations or adverse environmental fac-
tors (e.g., poor diet during gestation, gestational diabetes, 
drug use, etc.), can affect nephron number and function, 
contributing to kidney-related diseases later in life [51]. 
Importantly, after the developmental periods mentioned ear-
lier, the kidneys no longer retain a pool of progenitor cells. 
This means that any nephrons lost cannot be regenerated. 
Therefore, acquiring and maintaining an adequate number 
of functional nephrons is crucial for preventing hypertension 
and chronic kidney disease (CKD) later in life.

Developmental Origin of Hypertension and Chronic 
Kidney Disease

Identifying the mechanisms regulating mammalian kidney 
development is essential for understanding chronic kidney 
disease (CKD) etiology. In the U.S., around 30 million adults 
(15% of the population) have CKD, with hypertension—a 
major CKD risk factor—impacting roughly 35% of adults 
[33, 59].

In the 1980s and 1990s, the research of Drs. Barker and 
Brenner played a foundational role in understanding the 
developmental origins of kidney disease and have signifi-
cantly influenced the field of nephrology and developmental 
programming.

Barker’s research in the 1980s focused on epidemiologi-
cal studies linking low birth weight to increased risks of 
chronic diseases in adulthood, such as cardiovascular dis-
ease, hypertension, and type 2 diabetes. His hypothesis 
proposed that poor nutrition or other environmental factors 
during pregnancy could “program” the fetus, leading to per-
manent changes in structure, function, and metabolism that 
predispose individuals to diseases later in life [60].

Although Barker’s work primarily focused on cardio-
vascular disease, it became clear that kidney development 
could also be affected by adverse intrauterine environments. 
The concept was expanded to suggest that reduced nephron 

endowment might be an important developmental factor 
leading to CKD and hypertension in adults. This hypothesis 
provided a developmental framework for understanding the 
developmental origins of kidney disease [60–62].

Later, Dr. Brenner proposed that individuals with a 
reduced number of nephrons (whether due to genetic, envi-
ronmental, or developmental factors) are more prone to kid-
ney disease. Brenner’s research highlighted that individuals 
with fewer nephrons had to compensate by hyperfiltration 
(increased workload per nephron), which over time led to 
glomerular hypertension, progressive glomerular damage, 
and chronic kidney disease [63–68].

Brenner’s hypothesis agreed well with Barker’s, as a low 
nephron number could result from a poor fetal environ-
ment. Brenner’s work solidified the link between impaired 
nephrogenesis and later-life susceptibility to hypertension 
and CKD. The understanding of nephron endowment as a 
critical factor shaped research into prenatal influences on 
kidney development, reinforcing the developmental origins 
of kidney disease. Together, the work of Barker and Bren-
ner led to a broader understanding that kidney disease could 
originate in utero, influenced by maternal diet, stress, and 
other factors during pregnancy. This has driven research 
into interventions that might improve maternal-fetal health 
to prevent CKD later in life [64, 65, 67, 69, 70].

Nephron endowment at birth is critical for long-term 
renal and cardiovascular health and is contingent on the 
NPC pool [62, 66, 67, 71]. During development, NPCs face 
variable environmental conditions influenced by, maternal 
diet, the mother’s pathological state, pollutants, and intrinsic 
factors such as their location and spatial interactions within 
the nephrogenic niche [72–75]. Challenges such as gesta-
tional diabetes, premature birth, placental abnormalities, or 
nutritional deficiencies can impose metabolic stress, impact-
ing kidney development [31, 32, 51, 54, 56, 68, 76–78]. To 
overcome environmental changes, NPCs must adapt to the 
evolving milieu surrounding them. Recently, we showed that 
glucose-derived acetyl-CoA is a key factor in maintaining 
the NPC pool. Interestingly, acetyl-CoA is a major substrate 
for epigenetic regulation in cells [79, 80].

Previous research, including ours, has demonstrated that 
an imbalanced diet lacking either macronutrients (Protein, 
carbohydrates) or even micronutrients (vitamin A, E, and 
Iron) and disruption of cell metabolism during gestation can 
negatively impact normal cell metabolism and kidney devel-
opment [51, 74, 81–88]. Unfortunately, not only diet [51, 56] 
and prematurity [89–91] but also metabolic diseases such 
as gestational diabetes [92, 93] can lead to oligonephropa-
thy, which increases the risk of CKD later in life [63, 78]. 
Children born under these conditions have few, sometimes 
no, therapeutic options. Thus, developing new therapeutic 
strategies to improve embryonic development and foster pre-
mature baby development is of utmost clinical relevance.
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Impact of GDM on Fetal Kidney 
Development

The incapacity of maintaining blood pressure control is 
a sign of kidney malfunction. Experimental models show 
that maternal hyperglycemia is linked to several adverse 
renal outcomes in offspring, including a reduced nephron 
count, elevated blood pressure, microalbuminuria, and 
decreased glomerular filtration rate (Fig. 2) [32-94]. In 
humans, GDM descendants show higher mean body mass 
index and systolic and diastolic blood pressure compared 
to non-recorded-GDM descendants at similar ages [95]. 
Furthermore, individuals from mothers who had diabetes 
exhibit reduced renal function compared to those with 
diabetic fathers, suggesting that lower nephron numbers 
may result from exposure to in-utero gestational diabetes 
[96]. Additionally, maternal diabetes is associated with a 
threefold increase in the risk of renal abnormalities, such 
as renal agenesis and dysgenesis [97]. These findings 
highlight the long-term renal impact of GDM on offspring.

A recent study compared 42 children born to diabetic 
mothers with 21 children of non-diabetic mothers. The 
findings revealed that children of diabetic mothers had sig-
nificantly reduced renal cortex volumes and higher albu-
min excretion levels compared to the controls, likely due to 
a reduced nephron count [98]. Conversely, a study by Aisa 
et al. (2019) found that neonates of diabetic mothers who 
maintained strict normoglycemic control showed no dif-
ferences in kidney volume compared to controls. However, 
the offspring of mothers with poor glycemic control had 
significantly lower renal volumes [36], a key risk factor for 
developing CKD later in life.

Mechanistically, GDM exposes the developing fetus to 
elevated glucose levels, which significantly impacts various 
aspects of kidney development [34, 35, 38, 92, 93]. Fetal 
kidneys are highly sensitive to environmental stressors due 
to the complex and timed process of nephrogenesis. Expo-
sure to GDM can impair nephrogenesis, leading to a reduced 
nephron endowment, which is associated with a higher risk 
of kidney disease, hypertension, and metabolic disorders 
later in life (Fig. 2) [36, 38, 92, 93, 99–101]. Studies with 
rodents have shown that GDM-associated hyperglycemia 
disrupts critical processes in kidney development, including 
NPC’s proliferation, differentiation, and apoptosis [92, 93]. 
Notably, high glucose levels may induce oxidative stress in 
NPCs, causing cellular damage and premature exhaustion of 
these progenitors. This exhaustion leads to oligonephropa-
thy, which compromises kidney function and increases the 
risk of hypertension and CKD later in life [34, 35, 38]. GDM 
may potentially alter levels of growth factors like insulin and 
IGF-1, both of which are critical for proper kidney develop-
ment and cell metabolism regulation [102].

A recent study found that a diabetic intrauterine envi-
ronment hinders the differentiation of NPC into nephrons, 
possibly due to its impact on signaling pathways involved 
in proper kidney development, such as Notch and Wnt/β-
catenin [103]. GDM-exposed offspring of rodents exhibit 
smaller kidneys with fewer nephrons, and increased expres-
sion of inflammatory cytokines and markers of fibrosis in the 
kidney tissues [104]. In another study with rodents, GDM 
resulted in a predisposition to high-salt dietary-induced vas-
cular dysfunction and inflammation later in life [105]. Such 
findings suggest that GDM exposure induces a pro-inflam-
matory renal environment, which predisposes the offspring 
to renal dysfunction. In line with these findings, two recent 
studies showed that maternal diabetes dysregulates signaling 
pathways that are required for proper kidney development 
[92, 93]. Therefore, the effects of GDM on healthy kidney 
development involve multiple molecular mechanisms, com-
plicating the design of effective therapies to prevent abnor-
mal kidney development caused by GDM.

Epigenetics, Cell Metabolism, and Kidney 
Development

Epigenetics refers to heritable changes in gene expression 
that do not involve alterations in the DNA sequence itself. 
Cell metabolism plays a key role in linking epigenetic regu-
lation to nephron progenitor cell fate decisions. Epigenetic 
regulation modifies how genes are expressed by altering the 
chromatin structure (the complex of DNA and proteins in the 
nucleus) and by adding or removing chemical modifications 
to DNA and histones (the proteins around which DNA is 
wrapped). These modifications include DNA methylation, 
histone modifications (methylation, acetylation, phospho-
rylation, and other post-translational modifications), and 
interactions with non-coding RNA, which together regulate 
gene expression in response to environmental, developmen-
tal, and cellular signals [31, 106].

Epigenetic changes are crucial in development because 
they link response to environmental cues to cellular behav-
ior, such as fate decisions. Although epigenetic changes can 
be reversible, scientific evidence shows they may play a role 
in diseases like cancer [107–109], metabolic conditions, and 
gestational diabetes [43, 110]. During embryonic develop-
ment, the fetus is especially sensitive to the conditions of 
the intrauterine environment, and maternal habits or existing 
pathologies such as GDM can affect normal cell metabolism 
and both maternal and fetal gene transcription. The reason 
for that is that cell metabolites are either intermediate or 
final byproducts of cellular metabolism, which is influenced 
by dietary habits and physiological and pathological state 
[111–113]. Cell metabolites have been linked to epigenetic 
regulation of gene expression [107, 108, 114–117]. They act 
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as substrates for enzymes that facilitate epigenetic modifica-
tions [117, 118]. These modifications influence chromatin 
accessibility and gene expression within cells. As a result, 
the availability of metabolites provides cells with a direct 
means to react to environmental signals, by controlling gene 
expression and cell behavior [104, 108].

In terms of chromatin accessibility regulation, the two 
major metabolites studied are S-adenosylmethionine (SAM) 
and acetyl-CoA, which are the two primary substrates for 
epigenetic modifications that affect gene transcription 
via post-translational modifications of histone proteins 
and DNA. While SAM serves as a methyl donor, acetyl-
CoA serves as the substrate for the acetylation of histone 
proteins [108, 119]. However, in addition to cell metabolites, 
miRNAs are an important layer of gene transcription 
regulation [120–122].

SAM is synthesized in cells primarily through a reaction 
catalyzed by the enzyme methionine adenosyltransferase 
(MAT). The process relies on methionine and ATP. Methio-
nine is obtained from dietary sources or recycled within the 
cell through the methionine cycle. Since it’s an essential 
amino acid, cells rely on external sources to replenish it 
regularly. Inside the cell, methionine combines with ATP in 
a reaction catalyzed by MAT, forming SAM and releasing 
triphosphate (PPPi). Additionally, the availability of methio-
nine can depend on cellular folate and vitamin B12 levels, 
which are required for the conversion of homocysteine (a 
methionine derivative) back into methionine through the 
methionine cycle. This remethylation process is crucial in 
tissues where methionine may be low, ensuring an adequate 
supply for SAM production [123, 124]. Of note, recent 
work found that methionine supplementation could restore 
nephron endowment in the offspring of mice fed a hypoca-
loric diet [82].

Once formed, SAM can donate its methyl group in vari-
ous reactions, most notably in DNA, RNA, protein, and 
lipid methylation. This methyl donation converts SAM into 
S-adenosylhomocysteine (SAH), which can then be broken 
down into homocysteine, feeding back into the methionine 
cycle. SAM is an essential methyl donor involved in DNA 
methylation, histone modification, and polyamine synthesis. 
Because folate and vitamin B12, play a critical role in SAM 
production and DNA methylation. Deficiencies in these 
compounds due to maternal nutrient restriction can lead to 
altered gene expression and abnormal kidney development. 
However, folate supplementation was shown to partially 
restore global methylation and kidney development [124, 
125]. SAM is the primary methyl donor for enzymes like 
DNA methyltransferases (DNMTs) and histone methyltrans-
ferases (HMTs), which add methyl groups to DNA and his-
tones, respectively, thereby regulating chromatin structure 
and gene activity. In NPCs, precise epigenetic regulation is 
vital for cell identity, differentiation, and proper nephron 

development. Disruptions in SAM-mediated methylation 
can lead to abnormal gene expression and impaired kidney 
development [124, 126].

In 2019, Wanner et al., using a rat model of intrauter-
ine growth restriction demonstrated that postnatal day 1 
pups had kidneys with reduced weight and significant DNA 
hypomethylation compared to controls. This phenotype was 
replicated by deleting the Dnmt1 gene, which encodes main-
tenance DNA methyltransferase 1, in NPC. Mechanistically, 
the resulting decreased nephron count at birth was linked to 
the lower expression of essential nephrogenesis genes [127]. 
These findings highlight DNA methylation’s role in linking 
altered maternal nutrition to renal programming.

Liu et  al. (2020) showed that the polycomb proteins 
EZH1 and EZH2, histone methyltransferases, which add 
repressive histone modifications (e.g., K4me3+/K27me3+) 
are required for maintaining NPC populations, and in their 
ablation, mainly EZH1, leads to depletion of NPCs [128], 
highlighting the importance of methylation processes to 
nephrogenesis.

SAM is also a precursor for polyamine synthesis, essen-
tial organic cations that support cell proliferation, differenti-
ation, and survival, particularly in rapidly dividing cells like 
NPCs [129–131]. SAM contributes to glutathione synthe-
sis, a key antioxidant protecting cells from oxidative stress, 
which can otherwise damage DNA and proteins, impairing 
cellular processes like proliferation and differentiation [129]. 
Beyond DNA and histone methylation, SAM is the substrate 
for the methylation of RNA and proteins, influencing RNA 
stability, translation, and protein function, all crucial for 
NPC development and functionality.

Acetyl-CoA is a metabolite central to energy production, 
anaplerotic reactions, lipid biosynthesis, and regulatory 
acetylation reactions in the cytoplasm and nucleus [132]. In 
NPCs, glycolysis is the main source of acetyl-CoA, and its 
inhibition depletes cap mesenchyme, leading to increased 
NPC differentiation [74]. Outside the mitochondria, in the 
cytosol and nucleus, ATP-citrate lyase (ACLY) breaks down 
the mitochondria-derived citrate to produce acetyl-CoA. 
ACLY reaction is the major source of cytosolic and nuclear 
acetyl-CoA formation [132]. Genetic ablation of Acly in 
NPC results in cap depletion, ectopic Wnt4 activation, and 
reduced nephron numbers at birth. However, supplementing 
with sodium acetate, which produces acetyl-CoA indepen-
dently of ACLY, prevented cap depletion in Acly mutant kid-
neys [133]. Therefore, it is likely that acetyl-CoA is regulat-
ing NPC fate decisions by changing chromatin accessibility.

Equally important to acetylation is the control of the 
deacetylation reactions, which are mediated by Histone 
deacetylases (HDACs). HDAC can deacetylate histone 
tails and close accessible chromatin, thus negatively mod-
ulating transcription. In mice, NPC-specific deletion of 
Hdac1 and Hdac2 led to early postnatal death due to renal 
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hypodysplasia and loss of NPCs. Mechanistically, Hdac1/2 
genetically interacts with regulators of NPC self-renewal 
such as Six2, Osr1, and Sall1. Hdac1/2 can bind to Six2 
enhancer, impacting its expression and NPC renewal. While 
mutant NPCs can form renal vesicles, Hdac1/2 mutant kid-
neys lack nephrons or mature glomeruli. The transcription 
of several genes, such as Lhx1, Dll1, and Hnf1a/4a, normally 
expressed in the renal vesicle, was disrupted by the ablation 
of Hdac1/2. Therefore, the epigenetic regulators Hdac1/2 via 
histone deacetylation reactions impact nephrogenesis [134].

Micro RNAs (miRNAs) are small, non-coding RNAs that 
regulate gene expression at the post-transcriptional level. 
Over recent decades, miRNAs have proven to be stable in 
circulation, showing potential as biomarkers for the diag-
nosis and prognosis of several diseases, including GDM 
[135–138]. They regulate gene expression and play essential 
roles in biological processes such as development, differen-
tiation, apoptosis, oncogenesis, metabolic homeostasis, and 
DNA methylation. Additionally, miRNAs are involved in 
maintaining glucose homeostasis and in the production and 
secretion of insulin [120, 121, 136, 139–141].

The role of micro RNAs in kidney development has been 
recently reviewed [138]. The expression of miRNAs is influ-
enced by diet and plays a crucial role in determining nephron 
numbers by targeting various cellular processes [142]. Con-
ditional ablation of the miRNA processing enzyme Dicer1 
leads to the premature depletion of NPCs, resulting in a radi-
cal reduction in nephron endowment and increased expres-
sion of the pro-apoptotic marker Bim [143, 144]. Interest-
ingly, mice lacking both Dicer1 and Bim show a higher 
nephron count than those lacking Dicer1 alone, suggesting 
that miRNAs regulate NPC survival partly through control 
of Bim expression in the developing kidney [145].

The enzymes DICER and DROSHA are upregulated in 
the placenta of women GDM gestation [146]. However, 
despite upregulation of Dicer and Drosha only a portion of 
the expressed miRNAs were found to be altered in these 
placenta samples of women with GDM [147]. Since most 
miRNAs rely on DICER and DROSHA function for their 
biogenesis, this is unlikely to account for why only certain 
miRNAs are dysregulated in the placenta of individuals with 
GDM. An alternative hypothesis is that elevated glucose lev-
els or other factors associated with the diabetic environment 
may directly influence miRNA expression in the placenta, 
the fetus and other maternal tissues, such as the developing 
kidneys. Therefore, GDM could impact miRNA expression 
differently in different organs or even in the mother vs. fetus.

One of the most studied miRNA species is the let-7 
miRNA. Biogenesis of Let-7 is inhibited by the RNA-bind-
ing protein Lin28b. A recent study found that overexpress-
ing Lin28b in Wilms tumor protein (Wt1)-expressing cells 
during kidney development or suppressing Let-7 prolongs 
Six2 expression and increases glomerular counts. The Let-7 

family appears to regulate the timing of nephrogenic ces-
sation and thus nephron number [148, 149]. However, this 
regulatory loop appears to be more complex since enhanced 
Lin28b expression in Wt1-positive cells results in additional 
fields of nephrogenic mesenchyme, while global Let-7 sup-
pression extends nephrogenesis within the metanephric mes-
enchyme [148]. Interestingly, Let-7 miRNAs are upregulated 
in response to maternal low-protein diet during gestation 
[142], suggesting an adaptive role in response to environ-
mental conditions may be at play when nutrients are scarce.

Epigenetic Modifications Induced 
by Parental Obesity and GDM

The initial studies on fetal programming focused on maternal 
undernutrition [60, 65]. However, animal and clinical studies 
soon showed that overnutrition can lead to epigenetically 
mediated alterations in various physiological homeostatic 
regulatory systems and is linked to increased cardiometa-
bolic risk in offspring [4, 5, 150]. In fact, the correlation 
between birth weight and later-life risk of type 2 diabetes 
[150], and hypertension [151, 152] does not appear to be 
linear, but rather U-shaped. Thus, both low and high birth 
weights, above normal standards, seem to be major risk fac-
tors for metabolic diseases.

Genetics can influence body composition, but epigenetics 
also contributes to the phenotype significantly. The predicted 
genetic contribution to obesity and high body mass index is 
still unclear. Initial estimate attempts based on twin stud-
ies predicted genetic contribution to the obese body com-
position to range between 40 and 70% [153]. Later, more 
accurate estimates indicate that genetic contributions range 
from 30 to 40% as determining factors for high body mass 
[153, 154].

Recent evidence suggests a mechanistic link between 
altered epigenetic regulation of gene expression, parental 
obesity, and high-fat diets, highlighting their impact on the 
development of non-communicable diseases in offspring 
later in life [3, 152, 155–158]. Maternal obesity has been 
proposed to increase the risk of offspring developing condi-
tions such as hypertension, CKD, and metabolic diseases in 
adulthood [3, 6, 8, 9, 22, 151]. Obesity is a multifactorial 
condition, and the specific mechanisms or factors that pose 
the greatest risk to embryonic development remain unclear. 
During pregnancy, some degree of insulin resistance and ele-
vated circulating fatty acid and glucose levels are expected 
as part of normal physiological changes. However, 1 to 25% 
of all pregnant women develop gestational diabetes GDM, 
which, if left unregulated, exposes the fetus to prolonged 
periods of elevated hormones such as insulin and IGF, as 
well as increased circulating carbohydrates and fatty acids.
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A study by Ruchat et al. (2013) found that GDM epi-
genetically modifies genes primarily involved in metabolic 
pathways. These changes may explain the increased risk of 
metabolic diseases in both mothers and offspring post-GDM 
[159].

Research distinguishing the effects of obesity combined 
with GDM from those of obesity alone on kidney develop-
ment remains limited. Therefore, in this review, we focus on 
the impacts of GDM on the epigenetic regulation of kidney 
development. In the context of GDM, maternal hyperglyce-
mia has been shown to induce specific epigenetic changes in 
the fetus, including DNA methylation, histone modifications, 
and the dysregulation of miRNAs, all of which can have 
lasting effects on kidney development and function [29, 39, 
40, 43, 104].

The epigenetic modifications induced by GDM influence 
several molecular pathways essential to kidney develop-
ment and function. One key pathway is the oxidative stress 
response, which is increased in GDM due to high glucose 
levels. Epigenetic changes, particularly the increased meth-
ylation of antioxidant response genes, reduce the kidney’s 
ability to counteract oxidative stress, leading to cellular dam-
age during development [29, 40, 99, 104, 110, 160]. This 
chronic oxidative state can impair nephron formation and 
increase susceptibility to CKD (Fig. 2, left panel) [30].

DNA methylation, which typically (but not always) acts 
to repress gene expression, has been studied in GDM and 
kidney development [41, 126, 136, 161–163]. Research has 
shown that maternal hyperglycemia can alter DNA meth-
ylation at genes critical for kidney cell differentiation and 
function, potentially leading to abnormal development and 
susceptibility to disease [103, 105, 160, 164]. Some studies 
have reported hypermethylation of genes associated with 
kidney morphogenesis in the offspring of mothers with 
GDM, suggesting that these methylation changes could be 
an epigenetic mechanism through which GDM affects kid-
ney development [158, 161, 165, 166].

The study by El Hajj et al. (2013) investigated the impact 
of GDM on the DNA methylation of the Mest gene in off-
spring. The researchers found that intrauterine exposure to 
GDM led to significant hypomethylation of the Mest gene in 
the offspring’s DNA. This epigenetic alteration was associ-
ated with increased expression of the Mest gene, which is 
implicated in adipose tissue development and metabolic reg-
ulation. The findings suggest that maternal GDM can induce 
epigenetic changes in the offspring, potentially predisposing 
them to metabolic disorders later in life [41].

The study by Ly et al. (2016) found that maternal folic 
acid supplementation affects DNA methylation and gene 
expression in rat offspring, depending on the timing dur-
ing gestation and the specific organ. Early and late gesta-
tion supplementation resulted in different epigenetic and 
gene expression patterns, with organ-specific responses, 

particularly in the liver and brain. These changes influenced 
key developmental and metabolic genes, emphasizing the 
importance of timing and dosage of folic acid during preg-
nancy [126].

Haertle et al. (2017) identified specific DNA methylation 
changes in cord blood associated with GDM. These epige-
netic alterations are linked to genes involved in metabolism 
and immune responses, suggesting a potential mechanism 
for the intergenerational transmission of metabolic risk 
[161].

Chen et al. (2017) demonstrated differential DNA meth-
ylation patterns in individuals exposed to maternal diabetes 
in utero. These changes were observed in genes associated 
with glucose metabolism and insulin signaling, highlighting 
the long-term epigenetic impacts of maternal diabetes on 
offspring [162].

Michalczyk et al. (2016) identified epigenetic markers, 
such as altered DNA methylation patterns, which predict 
the risk of conversion from GDM to type 2 diabetes. These 
markers are promising for early identification and prevention 
strategies [166].

Histone modifications, which regulate chromatin struc-
ture and gene accessibility, are also altered in response to 
GDM. Exposure to GDM can increase the acetylation of his-
tones at specific genes that may be involved in kidney devel-
opment and metabolic pathways, enhancing their expression 
and potentially disrupting the fine balance required for nor-
mal nephrogenesis [28, 159, 165–167].

Hepp et al. (2018) found that histone H3 lysine 9 acetyla-
tion is downregulated in placentas from GDM pregnancies. 
Calcitriol supplementation further reduced this acetylation, 
suggesting that both GDM and interventions like calcitriol 
influence placental epigenetic marks [165].

Certain miRNAs involved in kidney development are 
overexpressed or reduced in GDM-exposed offspring, 
which may contribute to kidney developmental anomalies 
and increase disease risk in adulthood [122, 135, 138, 168].

Borrero et al. (2023) performed a systematic review that 
analyzed miRNA expression profiles in GDM patients, iden-
tifying specific miRNAs associated with the condition. The 
findings suggest that these miRNAs are altered in GDM and 
could serve as biomarkers for early GDM detection and may 
offer insights into the disease’s pathophysiology [136].

Hohenstein and Hastie (2014) discussed the involvement 
of the LIN28 protein and miRNAs in kidney development 
and the formation of Wilms tumors. They highlight how 
dysregulation of miRNA pathways can contribute to tumo-
rigenesis, emphasizing the importance of miRNAs in renal 
biology and cancer [137].

Cerqueira, Tayeb, and Ho (2022) reviewed the critical 
functions of miRNAs in kidney development and disease. 
The authors detailed how miRNAs regulate gene expres-
sion during nephrogenesis and their roles in various kidney 
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pathologies, underscoring their potential as therapeutic tar-
gets for prevention and treatment of developmental problems 
of the kidney [138].

Wang et al. (2021) studied the circulating mRNAs in 
patients with GDM. The authors identified circulating miR-
574-5p and miR-3135b as potential regulators of serum 
lipids and blood glucose levels in GDM patients [139].

Collectively, these studies underscore the significant roles 
of miRNAs in metabolic regulation, disease development, 
and their potential as biomarkers and therapeutic targets in 
conditions like GDM and kidney-related diseases.

GDM has been shown to epigenetically upregulate pro-
inflammatory genes in fetal kidney tissue, establishing a 
pro-inflammatory environment. This inflammatory state can 
lead to fibrosis, a process in which kidney tissue is replaced 
with scar tissue, thereby impairing kidney function. His-
tone modifications in inflammatory genes may increase their 
expression, promoting inflammation and disrupting kidney 
development. Such inflammatory responses in utero may 
prime the kidneys for a heightened response to inflammatory 
insults in adulthood, increasing the risk of kidney diseases 
[94, 96, 169].

Dłuski et al. (2021) reviewed epigenetic changes linked to 
GDM, focusing on DNA methylation, histone modifications, 
and non-coding RNAs. The authors found that alterations in 
these epigenetic pathways affect the expression of metabolic 
and inflammatory genes, contributing to disease progression 
and potential long-term effects on the offspring [164].

GDM exposure can lead to abnormal nephron structure 
and function, contributing to renal impairment later in life. 
Understanding how GDM-induced epigenetic changes 
impact kidney development can provide insights into poten-
tial intervention strategies. Unfortunately, there is a need 
for appropriate animal models for GDM that can be used 
to understand the molecular mechanism of how GDM pro-
motes epigenetic changes that impact kidney development 
and whether its impact is limited to a single generation or 
affects multiple generations.

Potential for Therapeutic Interventions 
and Prevention

Addressing the long-term impacts of GDM on kidney devel-
opment requires a focus on preventive and therapeutic strate-
gies that target both maternal health and fetal development. 
Preventive strategies include optimizing maternal glycemic 
control through dietary modifications, physical activity, and 
insulin therapy if necessary. Studies have shown that mater-
nal interventions to maintain normoglycemia can reduce the 
risk of developmental abnormalities in the kidneys of GDM-
exposed offspring [39, 43].

Nutritional supplementation during pregnancy also 
holds promise. Nutrients such as folate and choline, which 
support DNA methylation and histone modification, could 
help buffer against the epigenetic impact of GDM on the 
fetal kidney. Dietary interventions that include antioxi-
dants have shown potential in animal models, where they 
reduced oxidative stress markers in the offspring’s kidneys, 
suggesting a possible protective role against GDM-induced 
kidney alterations. However, there are limited studies on 
the efficacy of nutritional supplements for GDM, and the 
findings are not consistent. More large, high-quality stud-
ies are needed to determine the effectiveness of these sup-
plements [77, 170–172].

Compounds that influence DNA methylation or histone 
modification, like folate or histone deacetylase inhibi-
tors, may help normalize gene expression in fetal kidneys 
exposed to GDM. Finally, early postnatal interventions 
that include regular monitoring of renal health and meta-
bolic conditions can help mitigate long-term consequences 
in individuals exposed to GDM in utero.

In summary, GDM is a major risk factor for the devel-
opment of hypertension and CKD later in life. GDM dys-
regulates epigenetic mechanisms that are required for 
proper kidney development. The hyperglycemic environ-
ment causes depletion of nephron progenitors and impairs 
proper nephrogenesis, contributing to the oligonephropa-
thy observed in the offspring of mothers who face ges-
tational diabetes. It is of utmost clinical importance to 
develop new therapeutic strategies to prevent or treat GDM 
to ensure proper embryonic development.

Conclusion

Understanding the developmental complications aris-
ing from gestational diabetes is critically important for 
improving long-term health outcomes, as it has significant 
implications for the onset of non-communicable diseases 
later in life. Embryonic kidneys are particularly vulner-
able to the effects of gestational diabetes, with evidence 
from both animal models and human studies showing 
that offspring of mothers with gestational diabetes have 
an increased risk of developing hypertension and chronic 
kidney disease. Mechanistically, gestational diabetes can 
reprogram kidney development through epigenetic modi-
fications, underscoring the need for targeted interventions 
that could mitigate these long-term risks. Table 1 lists the 
main papers showing the relationship between maternal 
health, epigenetic programming, and long-term metabolic 
and renal health risks in offspring.
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Key References

•	 Bashir M, Fagier Y, Ahmed B, C Konje J. An overview 
of diabetes mellitus in pregnant women with obesity. 
Best Pract Res Clin Obstet Gynaecol. 2024;93:102469.

–	 This review elaborates on the current insights into 
the pathogenesis of endocrine disturbances linked to 
diabetes during pregnancy. It discusses the approach 
to screening, management strategies—including 
pre-pregnancy care—and the involvement of newer 
therapeutic agents in treatment.

•	 Wang H, Li N, Chivese T, Werfalli M, Sun H, Yuen 
L, et al. IDF Diabetes Atlas: Estimation of Global and 
Regional Gestational Diabetes Mellitus Prevalence for 
2021 by International Association of Diabetes in Preg-
nancy Study Group’s Criteria. Diabetes Res Clin Pract. 
2022;183:109050.

–	 This review shows that the global prevalence of 
GDM varies widely across the globe, ranging from 1 
to 25%. Factors such as diagnosis criteria and socio-
economics are discussed.

•	 Aisa MC, Cappuccini B, Barbati A, Clerici G, Tor-
lone E, Gerli S, et al. Renal Consequences of Gesta-
tional Diabetes Mellitus in Term Neonates: A Multi-
disciplinary Approach to the DOHaD Perspective in 

the Prevention and Early Recognition of Neonates of 
GDM Mothers at Risk of Hypertension and Chronic 
Renal Diseases in Later Life. J Clin Med. 2019 Mar 
28;8(4):429.

–	 This paper shows a direct measurement of the 
impact of GDM on kidney volume. The paper 
shows that neonates of mothers with strict nor-
moglycemic control showed no differences in kid-
ney volume compared to controls. In contrast, the 
descendants of mothers who lacked glycemic con-
trol had significantly lower renal volumes, which 
is a major factor in the development of CKD later 
in life.

•	 Lizárraga D, Gómez-Gil B, García-Gasca T, Ávalos-
Soriano A, Casarini L, Salazar-Oroz A, et al. Gestational 
diabetes mellitus: genetic factors, epigenetic alterations, 
and microbial composition. Acta Diabetologica 2023 
61:1.

–	 This paper examines how environmental factors, 
through epigenetic mechanisms, influence disease 
risk. It highlights the association between micro-
bial composition and GDM, suggesting that both 
epigenetic markers and microbiota could be passed 
to offspring, thereby increasing their likelihood of 
developing chronic degenerative conditions later in 
life.

Table 1   Research Summary on GDM and related topics. This table 
summarizes key research findings on gestational diabetes melli-
tus (GDM) and related topics, organized by primary subject. The 
“Primary Subject” column categorizes the studies into overarching 
themes such as maternal nutrition, epigenetics, and kidney devel-

opment. The “References” column lists the corresponding studies, 
while the “Main Findings” column highlights the significant insights, 
including the role of maternal conditions, epigenetic modifications, 
microRNAs, and nutritional interventions in influencing offspring 
health outcomes

Primary subject References Main findings

Maternal Nutrition and GDM  [1, 2, 6, 25] Maternal obesity and suboptimal nutrition during pregnancy are associated with 
adverse metabolic programming, increasing offspring’s risk for GDM, type 2 
diabetes, and cardiovascular diseases.

Epigenetics in GDM  [41, 161, 162, 164, 165] GDM induces DNA methylation changes and histone modifications in offspring, 
affecting metabolic pathways and increasing disease susceptibility. Histone H3K9 
acetylation is downregulated in GDM placentas.

MicroRNAs in GDM  [136, 138, 139] Specific miRNAs (e.g., miR-574-5p, miR-3135b) act as biomarkers and regulators 
of metabolic changes in GDM, impacting glucose and lipid metabolism.

Kidney Development  [45, 48, 50, 54, 127] Epigenetic and molecular regulation, including histone modifications and signaling 
pathways, governs nephron progenitor maintenance and kidney organogenesis.

Long-Term Health Implications  [5, 30, 78, 86] Intrauterine exposures, such as GDM or nutrient deficiencies, lead to nephron 
deficits, renal dysfunction, and increased risk of hypertension and kidney diseases 
in offspring.

Nutritional Interventions  [125, 126, 172] Maternal folic acid supplementation and other dietary interventions during preg-
nancy influence DNA methylation, gene expression, and kidney development in 
offspring, potentially mitigating adverse effects of nutrient deficiencies or GDM.

Diabetes Programming  [14, 17, 169] Exposure to maternal hyperglycemia during pregnancy predisposes offspring to 
metabolic and renal disorders, mediated by epigenetic programming.
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•	 Hjort L, Novakovic B, Grunnet LG, Maple-Brown L, 
Damm P, Desoye G, et al. Diabetes in pregnancy and 
epigenetic mechanisms-how the first 9 months from con-
ception might affect the child’s epigenome and later risk 
of disease. Lancet Diabetes Endocrinol. 2019;7:796–806.

–	 This paper discusses that epigenetic changes estab-
lished in utero may link the prenatal environment to 
future disease susceptibility. It indicates that iden-
tifying an epigenetic fingerprint associated with 
maternal diabetes could serve as a biomarker for 
early detection of at-risk offspring, enabling targeted 
monitoring and intervention.

•	 Parimi M, Nitsch D. A Systematic Review and Meta-
Analysis of Diabetes During Pregnancy and Con-
genital Genitourinary Abnormalities. Kidney Int Rep. 
2020;5:678–93.

–	 This study indicates that 2.0–3.7% of cases of 
CAKUT in the United States, and up to 14% of 
CAKUT in some populations could be eliminated if 
GDM was prevented or eradicated.
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