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Abstract
Objective: We examine pathways of airway alteration due to wall thinning, narrowing, and obliteration in chronic obstructive pulmonary disease 
(COPD) using CT-derived airway metrics.
Methods: Ex-smokers (N¼649; age mean ± std: 69 ± 6 years; 52% male) from the COPDGene Iowa cohort (September 2013-July 2017) were 
studied. Total airway count (TAC), peripheral TAC beyond 7th generation (TACp), and airway wall thickness (WT) were computed from chest CT 
scans using previously validated automated methods. Causal relationships among demographic, smoking, spirometry, COPD severity, airway 
counts, WT, and scanner variables were analysed using causal inference techniques including direct acyclic graphs to assess multi-pathway 
alterations of airways in COPD.
Results: TAC, TACp, and WT were significantly lower (P< .0001) in mild, moderate, and severe COPD compared to the preserved lung function 
group. TAC (TACp) losses attributed to narrowing and obliteration of small airways were 4.59%, 13.29%, and 32.58% (4.64%, 17.82%, and 
45.51%) in mild, moderate, and severe COPD, while the losses attributed to wall thinning were 8.24%, 17.01%, and 22.95% (12.79%, 
25.66%, and 33.95%) in respective groups.
Conclusions: Different pathways of airway alteration in COPD are observed using CT-derived automated airway metrics. Wall thinning is a dom-
inant contributor to both TAC and TACp loss in mild and moderate COPD while narrowing and obliteration of small airways is dominant in se-
vere COPD.
Advances in knowledge: This automated CT-based study shows that wall thinning dominates airway alteration in mild and moderate COPD 
while narrowing and obliteration of small airways leads the alteration process in severe COPD.
Keywords: quantitative CT; artificial intelligence; causal graph analysis; airway counting; airway morphology; COPD. 

Introduction
Chronic obstructive pulmonary disease (COPD) is a progres-
sive lung disease characterised by airflow limitation. 
Common pathological traits of COPD include inflammatory 
or fibrotic narrowing of peripheral airways (bronchiolitis) 
and destruction of lung parenchyma (emphysema).1,2 CT is 
being increasingly used in multi-centre lung studies.3-6 CT- 
based methods enable quantification of airway morphologic 
features detectable at imaging resolution, which has been 
popularly applied to study airway-related pathophysiology in 
COPD and other lung diseases and to understand their 
impacts on disease progression and clinical outcomes.3

Schroeder et al4 reported that including airway measures 
improves the accuracy of CT-based characterization of lung 
function. Airway wall thinning5,6 as well as narrowing and 
obliteration of small airways7 in COPD have been 

demonstrated. Both pathways of airway alteration adversely 
affect CT-derived “total airway count” (TAC) in COPD.8

In a histologic study, McDonough et al9 found that lungs 
with COPD are associated with reduced airway density and 
cross-sectional areas of terminal bronchioles, and that small 
airways disappear before the onset of alveolar wall destruc-
tion. Other histologic and micro-CT-based studies have 
reported similar findings on airway lumen narrowing and dis-
appearance of peripheral airways in COPD.10,11 Tiddens 
et al12 investigated airway size and wall dimensions in trans-
versely cut cartilaginous airway sections of lung tissue 
obtained from COPD patients and reported reduced lumen 
area and a greater percentage of wall area (WA%) in COPD. 
While histologic methods offer accurate information at high- 
resolution, they are not suitable for large studies due to their 
invasive nature. On the other hand, CT offers an in vivo 
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method to quantify anatomic and physiologic data detectable 
at imaging resolution and signal-to-noise ratio. Data avail-
able from CT-based large population-based studies13-16 have 
been investigated using various methods with different 
degrees of automation to understand disease aetiology and 
pathophysiology. Using a semi-automated method on total 
lung capacity (TLC) chest CT scans from the Genetic 
Epidemiology of COPD (COPDGene)13 study and anatomi-
cally matched airway analysis, Washko et al5 observed that 
both lumen narrowing and airway wall thinning increase 
with COPD severity, together, resulting in increasing WA% 
with COPD severity. Using a similar approach on both the 
Multi-Ethnic Study of Atherosclerosis (MESA)16 and 
Subpopulations and Intermediate Outcomes in COPD Study 
(SPIROMICS)14 chest CT data, Smith et al6 reported greater 
airway wall thinning with increasing COPD severity at ana-
tomically matched airways. Using micro-CT to study speci-
mens of centrilobular emphysema and panlobular 
emphysema, Tanabe et al17 observed that airway wall thick-
ening at the level of the pre-terminal bronchioles was associ-
ated with segment shortening. Thus, actual wall loss was 
masked by an apparent wall thickening. Paradoxically, termi-
nal bronchial segment shortening came in the presence of in-
creased lung volumes. Hoffman and Weibel18 discussed that 
the apparent contradiction is explained by the concept of a 
tensegrity structure19 whereby components of a fibre contin-
uum,20 maintaining the structural integrity of the lung, break. 
This, in turn, reduces the forces maintaining airway expan-
sion. The objective of this study is to apply previously vali-
dated fully-automated CT-based methods of airway 
counting21,22 and wall thickness (WT) computation23 to de-
couple different pathways of airway alteration due to wall 
thinning, narrowing, and obliteration at different COPD se-
verity stages.

Methods
Human participants and chest CT imaging
Ex-smokers human participants (n¼ 649) were retrospec-
tively selected from the Iowa cohort (n¼1066) of the 
COPDGene (ClinicalTrials.gov: NCT00608764) study13

(N¼6717) at their first follow-up visits (Figure 1). Current 
smokers at their first follow-up visits were excluded to reduce 
smoking-induced artefacts and abnormalities in airway WT. 
Inspiratory or TLC chest CT scans were acquired on a 
Siemens (Forchheim, Germany) SOMATOM Definition 
Flash scanner (abbreviated as “Flash”) (n¼422) or a 
Siemens SOMATOM Force scanner (abbreviated as “Force”) 
(n¼227).13,24 Scanner-specific imaging protocols were stan-
dardized using a quantitative CT lung assessment system 
(QCT-LAS).13,24 For both CT scanners for the Iowa cohort, 
inspiratory scans were acquired using 120 kVp, 200 mAs, 
and pitch of 1.1, and the images were reconstructed over 
512×512 arrays with 0.75 mm slice thickness, 0.5 mm slice 
spacing, and approximately 0.64 mm in-plane pixel size. 
Previously reported repeat inspiratory chest CT scans 
(n¼37)25 were used to evaluate the reproducibility of our 
airway metrics. The Iowa cohort of the COPDGene study 
was approved by the University of Iowa Institutional Review 
Board, and written informed consent was obtained from each 
participant.

Airway measurements and data analysis
Airway segmentation and branch counting in TLC chest CT 
scans were performed using previously validated automated 
methods.21-23,26,27 The algorithm incorporates a multi- 
parametric freeze-and-grow (FG) algorithm into a deep learn-
ing (DL) framework,20,21 where the airway tree is iteratively 
grown by freezing leakage regions and relaxing the threshold 
parameter on the DL-derived airway lumen likelihood map. 
Airway branches are counted by detecting bifurcations on a 
single-voxel skeletal representation of the airway tree after 
applying local scale-based pruning of false branches.26 A bi-
furcation on a skeleton is defined at a topological junction 
where a voxel is adjacent to more than two voxels.28

Topological generation or generation, in short, of a specific 
airway branch is defined as “1” plus the number of bifurca-
tions encountered on the path from trachea to the specific 
branch. Thus, the generation of trachea is always “1”. An ex-
pert thoracic radiologist reviewed the results for forty ran-
dom participants. TAC was computed as the total number of 
detected airways over all generations, while peripheral air-
way count (TACp) was computed beyond the 7th generation. 
At a given airway branch, WT was computed by locating 
wall transitions on radial lines using a locally adaptive half- 
max method.23 A participant’s airway WT was estimated as 
the average of WT values observed at generations 7, 8, and 9. 
Lung size of a participant was computed as the volume of the 
segmented lung region available in the COPDGene database.

Age, body mass index (BMI), sex, lung size, smoking pack- 
years, and spirometry measures of forced expiratory volume 
in one second (FEV1)-to-forced vital capacity (FVC) ratio 
and %predicted FEV1 were incorporated into the analysis to 
adjust for their interdependencies with airway metrics. 
Global Initiative for chronic Obstructive Lung Disease 
(GOLD) status, defined using FEV1/FVC and %predicted 
FEV1, was used to characterise COPD severity groups: pre-
served lung function (GOLD 0); mild COPD (GOLD 1 or 
Preserved Ratio Impaired Spirometry [PRISm]); moderate 
COPD (GOLD 2); severe COPD (GOLD 3 or 4).

Two-sample t-tests were applied to assess group differences 
and statistical significance (P< .05). Pearson’s correlations 
were used for continuous variables, while biserial correla-
tions, mathematically equivalent to Pearson correlations, 
were applied for dichotomous variables such as sex and CT 
scanner. COPD severity was represented as an ordinal vari-
able with 0, 1, 2, and 3 for preserved lung function and mild, 
moderate, and severe COPD, respectively, and was treated as 
a continuous variable.29

Logarithm-transformations were applied to TAC, TACp, 
WT, and lung size to improve the suitability of linear models, 
and analyses were based on these transformed values. Causal 
models, specifically, separate directed acyclic graphs 
(DAGs),30-32 were constructed to estimate the dependencies 
of TAC and TACp with different predictor and outcome vari-
ables by performing structured learning using the Grow- 
Shrink algorithm33 available in the “bnlearn” library34 of the 
software R (version: 4.2.1, https://cran.r-project.org/). 
During structured learning, variable relationships and their 
dependencies were enforced to ensure that the DAG depen-
dencies were consistent with established biological knowl-
edge. Specifically, no directed relationships affecting the age 
and sex variables were allowed. Also, the direction of the fol-
lowing relationships WT ! TAC and COPD Severity !
TAC (similarly, WT ! TACp and COPD Severity ! TACp, 
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for TACp) were fixed to evaluate multi-pathway effects of 
WT and COPD Severity on CT-derived airway counts. A 
single-door criterion was applied to parse the direct effects of 
COPD, while a back-door criterion was applied for total 
effects. See the Online Data Supplement (Appendix S1) 
for details.

Results
The study population (n¼649; 52% male) included ex- 
smokers with preserved lung function (n¼ 362), mild COPD 
(n¼122), moderate COPD (n¼ 116), and severe COPD 
(n¼49); see Table 1 for demographic, smoking, and spirom-
etry data. The observed values for TAC, TACp, and WT 
spanned from 77 to 809, 13 to 680, and 0.96 mm to 
1.36 mm, with mean ± std of 376.46 ± 115.96, 256.98 ± 
109.37, and 1.22 ± 0.062 mm, respectively. In the expert re-
view of 40 datasets, no false airway branch was detected; 
also, no segmental or sub-segmental branches were missed. 
Only, 0.7% (5/763) of sub-sub-segmental branches were 
missed. Figure 2A shows observed airway counts for the 
study population at different topological generations. No 
expert-detected spurious airway branches were reported. 
Anatomic generations of the airway tree are standardized as 
segmental, sub-segmental, and sub-sub-segmental levels 
along the airway paths in different lung lobes.35 Specifically, 
segmental airways are the first airway branch entering into 
different segments of the lung lobes, and the next two airway 
generations are referred to as sub- and sub-sub-segmental air-
ways, respectively. Topological generations are defined by 
airway tree bifurcations, while anatomic generations are de-
fined by entry to lung lobe segments. The observed topologi-
cal generation numbers for segmental, sub-segmental, and 

sub-sub-segmental branches were 4.8 ± 0.7, 5.9 ± 0.8, and 6.9 
± 0.8, respectively. TAC, TACp, and WT were highly repro-
ducible in repeat CT scans25 with their intra-class correlation 
coefficient (ICC) values being 0.99, 0.99, and 0.95, 
respectively.

Participants with mild, moderate, and severe COPD were 
significantly older (P¼ .00053 for mild COPD and P< .0001 
for moderate and severe COPD) and had more extensive his-
tory of smoking in pack-years (P¼ .0091 for mild COPD and 
P< .0001 for moderate and severe COPD) than those with 
preserved lung function (Table 1). No significant group dif-
ferences were observed for sex distribution or BMI. Also, no 
significant differences were observed in lung size between dif-
ferent COPD severity groups except between mild and severe 
COPD groups (P¼ .036). Compared to the preserved lung 
function group, mild, moderate, and severe COPD groups 
had significantly worse (P< .0001) pulmonary function 
measurements (FEV1/FEV and %predicted FEV1), which is 
consistent with group definitions. Among the participants 
scanned on the Flash scanner and those on the Force scanner, 
no significant differences in age, sex, and COPD severity 
were observed.

COPD and CT-based outcome variables
Summary statistics of CT-based WT, TAC, and TACp metrics 
are presented in Table 2. Observed WT for preserved lung 
function and mild, moderate, and severe COPD groups were 
1.23 ± 0.05, 1.21 ± 0.06, 1.18 ± 0.06, and 1.16 ± 0.05 mm, re-
spectively. WT significantly decreased with increasing COPD 
severity (P< .0001 for every group pair except between mod-
erate and severe COPD groups [P¼ .030]). Participants with 
preserved lung function had a TAC of 417.9 ± 102.3, while 
those with mild, moderate, and severe COPD had TAC 

Figure 1. Flowchart of participant selection for this retrospective study from the Iowa cohort of the Genetic Epidemiology of Chronic Obstructive 
Pulmonary Disease (COPDGene) study at their first follow-up or phase 2 visits conducted between September 2013 to July 2017. Participants who were 
current smokers at the time of their first follow-up visits were excluded to reduce the impacts of smoking related artefacts.
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values of 374.1 ± 108.6, 310.9 ± 94.5, and 227.8 ± 78.8, re-
spectively; TACp values were 294.8 ± 99.0, 255.7 ± 103.7, 
195.6 ± 86.9, and 122.7 ± 68.9 for respective groups. Both 
TAC and TACp significantly decreased with increasing 
COPD severity (P< .0001). These results related to TAC are 
consistent with the representative airway tree segmentations 
for different COPD groups illustrated in Figure 2B.

Relationships between predictors and CT-based 
outcome variables
Figure 3 presents correlations among different variables. 
Negligible correlations of the CT scanner variable with de-
mography, smoking history, lung function, and COPD sever-
ity suggest no population bias between the scanners. Females 
had lower lung size (r¼−0.76), TAC (r¼−0.16), TACp 

(r¼−0.16), and WT (r¼−0.17) and less severe COPD 
(r¼−0.05) as compared to males. A positive correlation of 
age with COPD severity (r¼ 0.26) is consistent with Table 1. 
High negative correlations between COPD severity and 

different spirometry measures were expected. TAC and TACp 

were very highly correlated (r¼0.99), while WT showed 
moderate positive correlations (r¼0.66 and 0.67 for TAC 
and TACp, respectively). Both TAC and TACp showed mod-
erate positive correlations with spirometric lung function 
measures and moderate negative correlations with COPD se-
verity. Specifically, the r values for TAC with FEV1/FVC, 
%predicted FEV1, and COPD severity were 0.52, 0.55, and 
−0.53, respectively, and those values for TACp were 0.51, 
0.54, and −0.52, respectively. Relatively lower correlations 
were observed for airway WT with spirometry measures of 
FEV1/FVC (r¼0.42), %predicted FEV1 (r¼0.54), and 
COPD severity (r¼−0.44).

Direct and indirect effects of COPD on airway 
counts and wall thickness
Both TAC and TACp produced the same DAG structure sug-
gesting two simultaneous COPD-associated pathways affect-
ing total and peripheral airway counts (Figure 4). 

Table 1. Demographic characteristics, lung function, and smoking data of Genetic Epidemiology of Chronic Obstructive Pulmonary Disease (COPDGene) 
study participants included in this retrospective study.

Characteristics Preserved lung functiona Mild COPDa Moderate COPDa Severe COPDa

No. of participants (%) 362 (55.8) 122 (18.8) 116 (17.9) 49 (7.6)
Demographic characteristics
Age (y), mean ± std 68.7 ± 7.9 71.4 ± 7.0 72.9 ± 6.6 74.3 ± 5.8

(P< .00053) (P< .0001) (P< .0001)
(P¼ .091) (P5 .0069)

(P¼ .18)
Female Sex, no. (%) of participants 183 (50.6) 56 (45.9) 54 (46.6) 21 (42.9)

(P¼ .43) (P¼ .52) (P¼ .39)
(P¼1.00) (P¼ .85)

(P¼ .79)
Body mass index, mean ± std 30.7 ± 5.9 31.4 ± 6.4 30.0 ± 6.6 29.3 ± 5.9

(P¼ .29) (P¼ .36) (P¼ .15)
(P¼ .11) (P¼ .051)

(P¼ .51)
Lung size (×104 mm2), mean ± std 3.33 ± 0.55 3.29 ± 0.66 3.37 ± 0.56 3.54 ± 0.71

P¼ .50 P¼ .59 P¼ .056
P¼ .33 P5 .036

P¼ .13
Smoking Pack-years, mean ± std 36.8 ± 20.8 43.5 ± 25.0 53.5 ± 25.5 58.8 ± 26.9

(P5 .0091) (P< .0001) (P< .0001)
(P5 .0024) (P< .0001)

(P¼ .25)
Spirometry (postbronchodilator) results
FEV1/FVC, mean ± std 0.76 ± 0.10 0.68 ± 0.13 0.56 ± 0.15 0.41 ± 0.12

(P< .0001) (P< .0001) (P< .0001)
(P< .0001) (P< .0001)

(P< .0001)
FEV1 (%predicted), mean ± std 96.8 ± 16.7 79.3 ± 19.8 62.8 ± 17.2 37.9 ± 11.6

(P< .0001) (P< .0001) (P< .0001)
(P< .0001) (P< .0001)

(P< .0001)
CT scanner distribution
Siemens definition flash, no. (%) of 
participants

247 (68.2) 71 (58.2) 73 (62.9) 31 (63.3)
P¼ .056 P¼ .35 P¼ .59

P¼ .54 P¼ .66
P¼ 1.00

All participants were ex-smokers with a smoking history of at least 10 pack-years.
First, second, and third rows of P-values present comparisons with preserved lung function, mild COPD, and moderate COPD groups, respectively. P-values 
in bold are significant (P< .05).

aCOPD is defined as postbronchodilator FEV1/FVC ratio of <0.7 by pulmonary function tests (spirometry). Preserved lung function consists of 
participants with GOLD 0, mild COPD consists of participants with GOLD 1 or PRISm, moderate COPD consists of participants with GOLD 2, and severe 
COPD consists of participants with GOLD 3 or 4.
Abbreviations: COPD ¼ chronic obstructive pulmonary disease; GOLD ¼ global initiative for chronic obstructive pulmonary disease; FEV1¼ forced 
expiratory volume in 1 s; FVC ¼ forced vital capacity, % predicted FEV1¼ the ratio between measured FEV1 and the expected FEV1 value based on age, 
sex, height, and ethnicity; PRISm ¼ preserved ratio impaired spirometry; std ¼ standard deviation.
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Specifically, two paths from the “COPD Severity” node to 
“TAC” were identified. The indirect effect (bd in Figure 4) is 
reflected by the path via “WT”. Thus, the indirect effect rep-
resents the COPD-imaging interaction that links to wall thin-
ning and technical detectability of airways in CT scans. The 
direct effect (a in Figure 4) is assessed along the path from 
“COPD Severity” to “TAC”. It characterises a second 
pathology-imaging interaction, which may be attributed to 
missing airways due to narrowing and obliteration of small 
airways related to parenchymal destruction and disruption of 
the lung’s structural tensegrity, leading to loss of lung elastic 
recoil. Compared to the preserved lung function group, mild, 
moderate, and severe COPD groups had direct effect coeffi-
cients of −0.047, −0.14, and −0.39 and indirect effect coeffi-
cients of −0.086, −0.19, and −0.26, respectively, for TAC. 
Findings on TACp were similar. The direct and indirect effect 
coefficients for TACp for these three COPD groups were 
−0.047, −0.20, −0.61, and −0.14, −0.30, −0.41, respec-
tively. Following the log transformation of TAC and TACp 

during analysis, a coefficient value α was translated into a 
percentage change in TAC or TACp compared to participants 
with preserved lung function using eα � 1ð Þ×100%. 
Furthermore, the DAGs elucidate that BMI, WT, and CT 
scanner are confounding variables either directly or indi-
rectly, via WT, affecting TAC (or, TACp).

Figure 5 presents estimated changes in TAC and TACp due 
to the direct and indirect effects of COPD at different disease 
severity. The direct effect of COPD contributes to 4.59% and 
13.29% declines in TAC for mild and moderate COPD 
groups, respectively, which were less in magnitude than 
8.24% and 17.01% declines for respective groups due to the 
indirect effect. In severe COPD, the direct effect of COPD of 
32.58% decline in TAC was stronger than the indirect effect 
of 22.95%. Findings for TACp were similar except that the 
magnitudes of decline in both direct and indirect effects as 
well as the differences between direct and indirect effects 
were enhanced for all three COPD severity groups. 
Additionally, WT was found to be impacted by COPD 

Figure 2. Airway tree segmentation and branch counts in inspiratory or total lung capacity chest CT scans. (A) Box-and-whisker plot of airway counts at 
individual tree-generations over the study population (n¼ 649, 52% male). (B) Segmented airway trees of male and female participants with preserved 
lung function and mild, moderate, and severe COPD with total airways counts matching to their respective group means in the study population. 
Preserved lung function group: participants with Global Initiative for chronic Obstructive Lung Disease (GOLD) 0; mild COPD: participants with GOLD 1 or 
Preserved Ratio Impaired Spirometry (PRISm), moderate COPD: participants with GOLD 2, and severe COPD: participants with GOLD 3 or 4.
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severity, BMI, and CT scanner and was indirectly impacted 
by age through COPD severity and sex through BMI. It was 
observed that the CT scanner variable directly affects TAC, 
TACp, and WT. Sex was found to affect BMI and lung size, 
while BMI and lung size, as well as age and COPD severity 
were related without any causal direction.

Discussion
The fully-automated CT-based method produced no false or 
spurious airway branches and delivered high accuracy of 
branch detection. These observations are consistent with our 
previous findings on different datasets that the automated 
method is accurate, repeatable, and generalizable.21,22 The 
performance of the method creates an opportunity to retro-
spectively apply it to multi-centre CT-based pulmonary stud-
ies investigating airway-related pathophysiology in lung 
diseases. If needed, the DL component of the algorithm may 
be efficiently retrained using transfer learning,36,37 where the 
ground truth may be generated using the intensity-based FG 
method21 that is computationally slow but requires 
no training.

Two directed paths from COPD severity node to TAC (or, 
TACp) representing image-derived airway counts are found 
on the DAGs of Figure 4 derived by causal inference analysis 
of automated CT-based measures of airway metrics. These 
paths represent two discrete pathologic processes altering 
CT-derived airway counts in COPD are found: (i) narrowing 
and obliteration of small airways and (ii) failure to detect air-
ways in CT due to wall thinning. Peripheral airway destruc-
tion1,11 and luminal narrowing in the presence of late-stage 
COPD-associated lung volume expansion18 have been estab-
lished in the literature explaining the first pathway. This lu-
minal narrowing has been attributed to loss of lung elastic 
recoil associated with parenchymal destruction and disrup-
tion of the lung’s tensegrity structure.17-20,38 The second 
pathway is attributed to airway wall thinning in COPD,5,6

leading to failure to detect small airways in CT. Both of these 

pathologies interplay with the limits of CT spatial resolution 
and airway wall and lumen detectability serving to truncate 
the segmented airway tree and limiting the TAC. The current 
study establishes a method to decouple and weigh the impacts 
of the two pathological pathways of airway alterations in 
COPD using CT-derived metrics. This method may be helpful 
in tracking biological processes at different stages of COPD 
or other pulmonary diseases via automated quantitative CT. 
Specifically, our findings suggest that, in mild and moderate 
COPD, the negative impact on airway count through wall 
thinning may be the dominant phenomenon relative to the di-
rect effect of COPD attributed to narrowing and obliteration 
of small airways due to emphysema-associated disruption of 
the lung fibre network. Relative magnitudes of negative 
impacts of the two pathways flip in the later stages of COPD. 
These findings are novel and particularly important because 
the pathway attributed to the narrowing and obliteration of 
small airways is associated with significantly higher rates of 
exacerbation, hospitalization, and 5-year mortality as com-
pared to mild and moderate COPD.2 Following the DAGs, 
BMI, WT, and CT scanner are confounding variables affect-
ing direct and indirect causal effects of COPD on airway 
counts. Therefore, the adjustment of these variables, as de-
fined in the equations in Figure 4, is essential for obtaining 
unbiased estimates of direct and indirect causal effects of 
COPD on image-derived airway counts.

The observations presented here decouple two underlying 
airway alteration pathways in COPD and quantitatively 
weigh their impacts at different stages of COPD using a CT- 
based automated method and a causal inference model. 
However, it is worth mentioning that the CT-based airway 
count and morphologic metrics may not express the true 
anatomy of the airway tree; instead, they represent image- 
derived characterization of a pathologic process.

CT scanner technology and resolution have been improv-
ing, and one of the aspects of our causal inference analysis 
was to evaluate the effects of CT scanners on detection of the 
airways and measurement of WT. The observation that there 

Table 2. CT-based outcome variables of Genetic Epidemiology of Chronic Obstructive Pulmonary Disease (COPDGene) study participants included in this 
retrospective study.

Characteristics Preserved lung functiona Mild COPDa Moderate COPDa Severe COPDa

No. of participants (%) 362 (55.8) 122 (18.8) 116 (17.9) 49 (7.5)
Wall thicknessb (mm), 
mean ± std

1.23 ± 0.05 1.21 ± 0.06 1.18 ± 0.06 1.16 ± 0.05
P< .0001 P< .0001 P< .0001

P< .0001 P< .0001
P5 .030

TAC,b mean ± std 417.94 ± 102.35 374.13 ± 108.57 310.87 ± 94.48 227.82 ± 78.81
P< .0001 P< .0001 P< .0001

P< .0001 P< .0001
P< .0001

TACp,b mean ± std 294.82 ± 98.98 255.75 ± 103.72 195.64 ± 86.90 122.71 ± 68.92
P< .0001 P< .0001 P< .0001

P< .0001 P< .0001
P< .0001

All participants were ex-smokers with a smoking history of at least 10 pack-years.
First, second, and third rows of P-values present comparisons with preserved lung function, mild COPD, and moderate COPD groups, respectively. P-values 
in bold are significant (P< .05).
Abbreviations: COPD ¼ chronic obstructive pulmonary disease, GOLD ¼ Global Initiative for Chronic Obstructive Pulmonary Disease, FEV1¼ forced 
expiratory volume in 1 second, FVC ¼ forced vital capacity, PRISm ¼ Preserved Ratio Impaired Spirometry.

aCOPD is defined as postbronchodilator FEV1/FVC ratio of <0.7 by pulmonary function tests (spirometry). Preserved lung function consists of 
participants with GOLD 0, mild COPD consists of participants with GOLD 1 or PRISm, moderate COPD consists of participants with GOLD 2, and severe 
COPD consists of participants with GOLD 3 or 4.

bLogarithm-transformations were applied to total airway count (TAC), peripheral TAC (TACp), and airway wall thickness for subsequent analysis to 
improve the linear relationship between them and airway tree generation.
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was no age, sex, and COPD severity bias between partici-
pants imaged in two scanners eliminates population-related 
confounding effects of scanners on airways measures in the 
causal inference analysis.

CT-derived WT of peripheral airways significantly de-
creased with increasing COPD severity, which is consistent 
with the CT-derived findings of Washko et al5 and Smith et 
al,6 where greater loss in airway WA was observed with in-
creasing COPD severity at anatomically matched segmental 
and sub-segmental airways. Following the negative associa-
tion of WT with COPD severity, observed strong negative 
correlations of WT with spirometry measures of lung func-
tion were expected. The relationships between COPD sever-
ity and TAC are consistent with previous CT-derived 
findings.8,9,11 CT-derived TACp significantly decreased with 

increasing COPD severity. Peripheral airway counts of mild, 
moderate, and severe COPD groups were significantly lower 
than that of the preserved lung function group, which is con-
sistent with histologic observations on loss of small and pe-
ripheral airways at the onset of COPD.7

Besides COPD severity and lung function, higher airway 
counts and WT were observed among males, which is consis-
tent with the known dependence of COPD susceptibility on 
sex observed in spirometry-based studies.2 However, reduced 
CT-derived airway counts in females may be primarily attrib-
uted to reduced lung size and concomitant generation- 
matched airway wall and lumen dimensions in females, 
which is consistent with CT-based observations of others.3

Observed weak negative correlations of airway counts with 
ageing may be explained by increased airway destruction 

Figure 3. Pearson correlations between different demographic, smoking, lung function, and CT-derived variables. Note that biserial correlations, 
mathematically equivalent to Pearson correlations, were applied for dichotomous variables such as sex and CT scanner. Chronic obstructive pulmonary 
disease (COPD) severity was represented as an ordinal variable, specifically, 0 for preserved lung function, 1 for mild COPD, 2 for moderate COPD, and 3 
for severe COPD, and was treated as a continuous variable. BMI: body mass index. Lung size was computed as the maximum axial lung cross-sectional 
area. Airway wall thickness (WT) was computed as the average of the mean airway wall thickness at generations 7-9. Preserved lung function group: 
participants with global initiative for chronic obstructive lung disease (GOLD) 0; mild COPD: participants with GOLD 1 or preserved ratio impaired 
spirometry (PRISm), moderate COPD: participants with GOLD 2, and severe COPD: participants with GOLD 3 or 4.
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Figure 4. Causal inference graphs for CT-derived (A) total airway count (TAC) and (B) peripheral TAC (TACp) beyond the 7th airway tree generation. BMI: 
body mass index; COPD: chronic obstructive pulmonary disease. Lung size was computed as the maximum axial lung cross-sectional area. Airway wall 
thickness (WT) was computed as the average of the average airway wall thickness at generations 7-9.

Figure 5. The effect of chronic obstructive pulmonary disease (COPD) on CT-derived (A) total airway count (TAC) and (B) peripheral TAC (TACp) beyond 
the 7th generation in terms of percentage change. Direct effects of COPD on CT-derived airway counts may be attributed to narrowing and obliteration of 
small airways due to emphysema-related loss of lung elastic recoil, while indirect effects are attributed to missing airways due to wall thinning. Mild 
COPD: participants with global initiative for chronic obstructive lung disease (GOLD) 1 or preserved ratio impaired spirometry (PRISm), moderate COPD: 
participants with GOLD 2, and severe COPD: participants with GOLD 3 or 4.
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with ageing as demonstrated histologically39 and loss of lung 
elastic recoil.40,41

Smoking pack-years, a well-known risk factor of COPD,2

were expectedly negatively correlated with WT and airway 
counts. WT and airway counts were weakly and negatively 
correlated with BMI, and BMI had a direct negative effect on 
WT in the causal inference analysis. Conflicting findings on 
the relationship between BMI and WT have been reported in 
the literature using CT-based studies,42,43 which may be par-
tially attributed to imaging challenges and bias in CT-derived 
metrics for participants with high BMI. Increase in 
generation-matched airway size in larger lungs3 improves air-
way detectability causing positive correlations between lung 
size and airway metrics as observed here; weakness in corre-
lations may be explained by the presence of different con-
founding factors including sex, COPD severity, age, and 
smoking history.

Our results on associations of airway counts and morphol-
ogy with COPD severity, sex, age, BMI, and smoking history 
are consistent with histologic and semi-automated CT-based 
findings and extend those to peripheral airways using a CT- 
based automated method.

A limitation of this study is that the participants were all 
former smokers and mostly non-Hispanic Caucasians, and 
therefore, results may not be extended to a broader popula-
tion. Also, the COPDGene Iowa cohort represents a rural 
population, and results may vary in an urban population 
with different lifestyles and exposures.

This automated CT-based study decouples different path-
ways of airway alteration due to wall thinning, narrowing, 
and obliteration at different COPD severity stages. 
Specifically, the study shows that wall thinning is a dominant 
contributor to TAC loss in mild and moderate COPD, while 
narrowing and obliteration of small airways is enhanced and 
leads in severe COPD. Also, it demonstrates the links be-
tween total and peripheral airway counts and morphology 
with COPD severity, sex, ageing, and smoking history.
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Supplementary material is available at BJR online.
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