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Abstract
Heart failure is a leading cause of death among people worldwide. The cost of treatment can be prohibitive,
and early prediction of heart failure would reduce treatment costs to patients and hospitals. Improved
readmission prediction would also greatly help hospitals, allowing them to manage their treatment
programs and budgets better. This literature review aims to summarize recent studies of predictive analytics
models that have been constructed to predict heart failure risk, readmission, and mortality. Random forest,
logistic regression, neural networks, and XGBoost were among the most common modeling techniques
applied. Most selected studies leveraged structured electronic health record data, including demographics,
clinical values, lifestyle, and comorbidities, with some incorporating unstructured clinical notes.
Preprocessing through imputation and feature selection were frequently employed in building the predictive
analytics models. The reviewed studies exhibit demonstrated promise for predictive analytics in improving
early heart failure diagnosis, readmission risk stratification, and mortality prediction. This review study
highlights rising research activities and the potential of predictive analytics, especially the implementation
of machine learning, in advancing heart failure outcomes. Further rigorous, comprehensive syntheses and
head-to-head benchmarking of predictive models are needed to derive robust evidence for clinical adoption.
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Introduction And Background
Heart disease is one of the deadliest diseases among people worldwide [1], with 50% of heart failure (HF)
patients dying within five years [2]. Doctors use a variety of tests to diagnose heart failure, including
physical examination, blood and laboratory tests, and family history of the disease [1]. Even though there is
no cure for heart failure, delicate medical procedures and treatments improve quality of life [2]. Researchers
have conducted various studies to build prediction models to assist with the diagnosis of heart failure: early
diagnosis allows a patient to get the proper treatment and minimizes the seriousness of this disease [3].

Medical procedures and treatments are expensive, especially for hospitalized patients [3]. To help reduce the
expense, researchers have done numerous studies to identify heart failure patients who will need
readmission. As information technology has developed, especially artificial intelligence, researchers have
begun developing better early prediction systems. Including machine learning in the models improves their
performance and prediction quality. With the right dataset and suitable data processing techniques, a
predictive model’s performance should improve [4]. Predictive analytics has become the most used approach
by researchers who construct predictive models using machine learning. In this approach, researchers use
data gleaned from electronic health records to predict hospital readmission and mortality. However, there
are serious obstacles to the development of predictive models that use a predictive analytics approach.
Problems with data presentation and addressing problems such as imbalance in data class create challenges
for researchers.

In this literature review, we provide an overview of predictive analytics methods, especially machine
learning approaches, for predicting heart failure risk, readmission, and mortality among patients with heart
failure. This narrative review aims to synthesize and interpret findings from a broad range of studies,
providing a comprehensive overview of the machine learning methodologies employed in this domain.
While traditional statistical approaches have been extensively used in clinical settings, our review
highlights the advancements and contributions of machine learning techniques, which offer enhanced
predictive capabilities by leveraging large, complex datasets. Through this narrative approach, we
contextualize the role of machine learning in improving clinical decision-making and patient outcomes,
offering insight into the potential and limitations of these technologies for heart failure risk prediction.

This article was previously posted to the Preprints.org preprint server on January 23, 2024, with doi
https://doi.org/10.20944/preprints202401.1671.v1.
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Review
Methodology of literature selection
Literature Exploration

Before starting our search for research articles on predictive analytics in heart failure, it was necessary to
define the targets, topics, and themes necessary for a comprehensive search. Five such targets were defined:
predictive analytics in heart failure, heart failure risk prediction, heart failure readmission prediction, heart
failure mortality prediction, and machine learning implementation in heart failure research. Furthermore,
we chose closely related keywords that would be critical to our Google Scholar and PubMed search and
limited it to the years from 2000 to 2023 to include only the most recent studies conducted in this field.
Quotation mark- (“ ”) and Boolean operators (AND and OR) were used to search for titles and abstracts that
were closely related to the defined topic. The final search query was: ("machine learning" AND ("heart
failure" OR "heart failure prediction" OR "heart failure risk" OR "heart failure risk prediction")) AND
("predictive analytics" AND ("heart failure" OR "heart failure prediction" OR "heart failure risk" OR "heart
failure risk prediction")). After doing this wide search, the next step was to select the studies to be included.
The search stage resulted in 3,270 publications.

Study Selection and Screening

In the study selection step, several considerations went into pairing down the articles found in the
preliminary search, as follows: 1. A paper must have been published in a journal or conference booklet, or
book series to be selected; 2. It must be a research paper, not a review, a meta-analysis, or a literature
review; 3. We considered the credibility and quality of the publisher. We cross-checked the publisher and
journal with Scimago/Scopus and Clarivate/Web of Science to do this; 4. The published papers should
include the full text. However, our university’s limited access to journal subscriptions may be problematic in
terms of the selection of papers. Having access to the major publications but not all possible publications
may have resulted in the exclusion of potentially relevant studies, thereby limiting the comprehensiveness
of our review. Despite these constraints, we endeavored to mitigate this limitation by accessing open-access
journals and utilizing interlibrary loan services whenever possible.

To eliminate papers that varied from the topic and to select those that met our conditions, we read the full
titles and abstracts of the selected papers, paying careful attention to the considerations we set above,
giving us 173 published papers. All were read with careful consideration given to the availability of data
analysis and processing techniques, the use of machine learning or other approaches to build the predictive
analytics model, and the data specification described in the articles. It was also important to ensure that the
paper was related to the prediction of heart failure diagnosis, mortality, and readmission of heart failure
patients. Papers meeting the above conditions in the screening stages were extracted for this review.

Data Extraction

Only 65 papers that met our specifications. The items extracted included the author’s name, year of
publication, study objective, origin of data, dataset specifications, machine learning algorithm(s),
methodology, and the evaluation of the model.

Literature Review Diagram Flow

Figure 1 below shows the flow of this review process.
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FIGURE 1: Literature review flow diagram

Classification of the Papers

The 65 papers extracted were classified into two categories. The first includes 26 papers that mainly aim to
predict or diagnose heart failure or risk of heart failure using statistical or machine learning approaches to
build a predictive analytics model for heart failure prediction, using either their own or open-accessed
datasets. The second category includes 39 papers that aimed to predict readmission or mortality among
patients with heart failure. They were divided into three subcategories: readmission (17), mortality (14), or
both (8).

Results
Table 1 summarizes the studies on predictive analytics for heart failure risk, readmission, and mortality
prediction. It includes diverse data sources like hospitals, clinics, and national databases, with sample sizes
ranging from small cohorts to over a million patients. The studies focus on predicting heart failure
diagnosis, readmission, and mortality using models such as random forest, neural networks, support vector
machines (SVM), and logistic regression. Performance metrics like accuracy and AUC are used, with notable
results including high accuracy and area under the curve (AUC) values, highlighting the potential of
machine learning to enhance predictive analytics in heart failure.

Study Data Source
Sample

Size

Prediction

Target
Model(s) Used Key Techniques

Performance

Metrics
Result

Heart failure prediction studies that include diagnosis and risk prediction

Guidi et al. [5]

St. Maria

Nuova

Hospital

136 HF severity
NN, SVM, Fuzzy genetic,

CART, Random Forest

Developing CDSS

for analysis HF

patients

Accuracy
NN=84.73% SVM=85.2% Fuzzy genetic=85.9% CART=87.6%

Random forest=85.6%
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Yajuan et al. [6]
Geisinger

Clinic
400,000+ HF diagnosis Random Forest

Combining

unstructured and

structured data

AUC Random forest=83%

Ng et al. [7]
Geisinger

Clinic
400,000+ HF diagnosis

Logistic regression,

Random Forest, SVM,

kNN, Decision tree (Only

L-1 logistic regression and

Random forest were

selected for superior

predictive performance)

Processing

longitudinal

electronic health

records data

through feature

extraction

techniques

AUC Both=0.74 - 0.80

Rammal [8] KSUMC 100 HF diagnosis
Random Forest, Logistic

regression

Big data

environment and

PCA

Accuracy,

recall,

precision,

AUC

Random forest (%)=93.3, 93.3, 94.3, 94.2 Logistic regresstion

(%)=93.3, 93.3, 93.3, 94.3

Nagrecha et al.

[9]

Medicare

USA
1 million+ HF diagnosis

Trajectory-based (Directed

Acyclic Graph/DAG)

Disease

progression
AUROC DAG Depth: 1=0.5; 2=0.84; 3=0.82; 4=0.8

Krittayaphon et

al. [10]
COOL-AF 3,461 HF risk factors

Cox Hazard proportional

model

Calculating risk

factors and

incidence rate

using Cox-

proportional

model

C-index, D-

statistic,

calibration

plot, brier test,

and survival

analysis

C-index=0.756; D-statistic=1.503; R-square of the calibration

plot=0.933; brier test=0.056

Austin et al. [11]
EFFECT

Study
9,943

HFpEF

prediction

Random Forest, Bagged

decision tree, Boosted

decision tree, SVM,

Logistic regression

Comparison of

predictive ability

of different

regression and

classification

methods

c-statistic,

brier score,

sensitivity,

and specificity

classification tree=0.683, 0.2152, 0.462, 0.820; bagged

tree=0.733, 0.2079, 0.451, 0.849; random forest=0.751, 0.1959,

0.378, 0.897; boosted tree (depth 1)=0.752, 0.2049, 0.453, 0.876;

boosted tree (depth 2)=0.768, 0.1962, 0.491, 0.847; boosted tree

(depth 3)=0.772, 0.1933, 0.492, 0.828; boosted tree (depth

4)=0.780, 0.1861, 0.500, 0.820; SVM=0.766, 0.1914, 0.401, 0.887

Blecker et al.

[12]
Tisch Hospital 37,229

ADHF

identification

Logistic regression, L1-

regularization model

Comparing

various

approaches in

identifying

patients with

ADHF

AUC,

sensitivity,

PPV

algorithm 1=n/a, 0.98, 0.14; algorithm 2=0.96, 0.98, 0.15;

algorithm 3=0.99, 0.98, 0.30; algorithm 4=0.99, 0.98, 0.34

Plati et al. [13]

UCD and

Ioannina

Hospital

487 HF classification

Decision tree, random

forest, rotation forest,

naïve bayes, kNN, SVM,

logistic model tree, and

bayes network

Comparing five

models with

various sets of

features including

the

implementation of

pre-processing

like balancing

Accuracy,

sensitivity,

specificity

Clinical features+LMT(%)=84.12, 82.10, 85.38; Clinidal features

and BNP+LMT(%)=88.15, 85.80, 89.62; Clinical and ECG

features+ROT(%)=90.76, 93.21, 89.23; ECG

features+ROT(%)=87.91, 90.74, 86.15; All

features+ROT(%)=91.23, 93.83, 89.62

Wang et al. [14]

Medical

University

Hospital in

Shanxi

Province

5,004 HF prediction
LR, kNN, SVM, RF,

XGBoost

SHAP for model

interpretation
AUC

LR=0.7819; kNN=0.6481; SVM=0.6963; RF=0.7983;

XGBoost=0.8010

Quesada et al.

[15]

ESCARVAL

RISK
32,527

Cardiovascular

risk

15 machine learning

methods

Risk scale

comparison

AUC,

accuracy,

error rate,

sensitivity,

specificity,

PPV, NPV,

LR+, and

NNT

Top-3 best performed ML algorithm: QDA=0.7086, 0.570, 0.430,

0.736, 0.559, 0.0.093, 0.972, 1.669, 10.7; NB=0.7084, 0.591,

0.409, 0.718, 0.583, 0.096, 0.971, 1.722, 10.4; NN=0.7042, 0.559,

0.441, 0.743, 0.548, 0.092, 0.972, 1.644, 10.9

Kolukula et al.

[16]
UCI Database 918 HF diagnosis

Logistic regression, SVM,

random forest

Applying

exploratory data

analysis before

Accuracy,

precision,

recall, F1

LR=0.85, 0.82, 0.84, 0.845; SVM=0.84, 0.83, 0.83, 0.840;

RF=0.986, 0.978, 0.981, 0.984
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model building score

Sornsuwit et al.

[17]
UCI Database 299 HF diagnosis

kNN, naïve bayes,

decision tree, adaboost,

bagging, logistic

regression, LEBoosting

Developing a new

classifier by

modifying

adaboost m1

classifier using

naïve bayes,

kNN, and

decision tree

Accuracy

kNN=62.22; NB=68.89; decision tree=67.78; Adaboost=95.69;

bagging=67.78; logistic regression=68.89; LPBoost=70;

LEBoosting=98.89 (%)

Ahmed et al.

[18]
UCI Database 500 HF diagnosis

Logistic regression, kNN,

gaussian naïve bayes,

multinomial naïve bayes,

SVM

Combining public

dataset with local

dataset

Accuracy
Logistic regression (82.76%), SVM (67.24%), KNN (60.34%), GNB

(79.51%), and MNB (79.51%).

Praveena et al.

[19]
UCI Database 918 HF diagnosis

kNN, SVM, and random

forest

Removing missing

values

Sensitivity,

precision,

specificity,

accuracy

kNN=0.7963, 0.7818, 0.7073, 0.75789; SVM=0.8, 0.8, 0.725,

0.76842; RF=0.8654, 0.8182, 0.7674, 0.82105

Alotaibi [20] UCI Database 918 HF diagnosis

Decision tree, logistic

regression, random forest,

naïve bayes, SVM

Imputation

implementation to

public dataset

Accuracy DT=93.19; LR=87.36; RF=89.14; NB=87.27; SVM=92.30 (%)

Mamun et al.

[21]
UCI Database 299 HF diagnosis

LightGBM, XGBoost,

Logistic regression,

bagging, SVM, decision

tree

SMOTE

implementation of

imbalance public

dataset

Accuracy,

AUC

LR(%)=80, 89.44; SVM(%)=73.22, 86.30; XGBoost(%)=84.00,

92.00; LightGBM(%)=85.00, 93.00; DT(%)=73.21, 73.20;

bagging(%)=82.00, 89.05

Nishat et al. [22] UCI Database 299 HF diagnosis

Decision tree, logistic

regression, naïve bayes,

random forest, kNN, SVM

SMOTE with

normalization of

imbalance public

dataset

Accuracy,

precision, F1

score, recall,

AUC

DT=0.733, 0.756, 0.795, 0.838, 0.720; LR=0.800; 0.878, 0.857,

0.837, 0.755; GNB=0.683, 1.000, 0.812, 0.683, 0.500; RF=0.800,

0.854, 0.854, 0.854, 0.769; kNN=0.667, 0.902, 0.787, 0.698, 0.530;

SVM=0.683, 1.000, 0.812, 0.683, 0.500

Senan et al. [23] UCI Database 299 HF diagnosis

SVM, kNN, decision tree,

random forest, logistic

regression

SMOTE

implementation of

imbalance public

dataset

Accuracy,

precision,

recall, F1

score

SVM(%)=90.00, 93.02, 93.02, 93.02; kNN(%)=93.33, 93.33, 97.67,

95.45; DT(%)=95.00, 93.48, 100, 96.63; RF(%)=95.00, 97.62,

05.35, 96.47; LR(%)=88.33, 93.00, 90.90, 91.93

Al-Yarimi et al.

[24]
UCI Database 918 HF diagnosis Decision tree, kNN, SVM

KS-Test for

feature selection

Precision,

accuracy,

sensitivity,

specificity, F-

measure,

Matthews

correlation

coefficient

FODW=0.89912, 0.911102, 0.954829, 0.872451, 0.88852,

0.823278; HRFLM=0.86574, 0.888546, 0.931869, 0.815411,

0.84294, 077306; HIFS=0.84712, 0.86347, 0.91806, 0.80536,

0.82544, 0.736158

Bharti et al. [25] UCI Database 918 HF diagnosis

Logistic regression, kNN,

SVM, random forest,

decision tree, deep

learning

Lasso for feature

selection

Accuracy,

specificity,

sensitivity

LR(%)=83.3, 82.3, 86.3; kNN(%)=84.8, 77.7, 85.0; SVM(%)=83.2,

78.7, 78.2; RF(%)=80.3, 78.7, 78.2; DT(%)=82.3, 78.9, 78.5; Deep

Learning(%)=94.2, 83.1, 82.3

Kanagarathinam

et al. [26]
UCI Database 918 HF diagnosis

Naïve bayes, XGBoost,

kNN, SVM, MLP, CatBoost

Pearson's

correlation for

feature selection

Accuracy,

AUC

Accuracy only (%) Naïve Bayes=85.98; XGBoost=86.91;

kNN=85.98; SVM=85.98; MLP=85.98; CatBoost=87.85

Venkatesh et al.

[27]
UCI Database 918 HF diagnosis Naïve bayes

Big data

environment

Precision,

recall, F1-

score

NB=0.80, 0.82, 0.81

Alsubai et al.

[28]
UCI Database 918 HF diagnosis

Decision tree, SVM,

random forest

Quantum

computing

Accuracy,

precision,

recall, F1

score, AUC

DT=0.62, 0.65, 0.63, 0.61, 0.633; SVM=0.70, 0.71, 0.70, 0.70,

0.699; RF=0.79, 0.79, 0.79, 0.79, 0.787; QDL=0.98, 0.98, 0.98,

0.98, 0.98

Botros et al. [29]
MIT-BIH and

BIDMC
18 HF diagnosis CNN, CNN-SVM

ECG signal

analysis

Accuracy,

sensitivity,

specificity

CNN(%)=99.31, 99.50, 99.11; CNN-SVM(%)=99.17, 99.74, 98.61
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Alsinglawi et al.

[30]
MIMIC-III 1,592

HF patient's LOS

prediction

Random forest, gradient

boosting, stacking

regression, DNN

Predicting length

of stay using

EHR-based

dataset

R-squared,

mean

average error

RF=0.8, 1.98; GB=0.81, 2.0; stacking regression=0.81, 1.92;

DNN=0.77, 2.30

Readmission Prediction

Shameer et al.

[31]

Mouth Sinai

Hospital
1,068

Hospital

readmission
Naïve bayes

Applying five

different data

modalities based

on feature's type

Accuracy and

AUC score
NB=83.9% and 0.780

Bat-Erdene et

al. [32]

KAMIR-NIH

registry
13,104

Rehospitalization

prediction

Logistic regression, SVM,

gradient boosting,

AdaBoost, random forest,

proposed DNN

Modifying deep

neural network

and comparing

with other ML-

based models

Accuracy,

AUC,

precision,

recall,

specificity,

F1-score

LR(%)=94.37, 95.82, 88.51, 75.82, 97.30, 78.51; SVM(%)=98.53,

99.60, 99.32, 89.88, 99.90, 94.27; gradient boosting(%)=97.58,

98.73, 94.94, 86.91, 99.27, 90.70; AdaBoost(%)=95.89, 97.73,

86.01, 83.21, 97.88, 84.56; RF(%)=97.98, 98.75, 99.41, 85.67,

99.91, 91.98; DNN(%)=99.37, 99.90, 96.86, 98.61, 99.49, 97.73

Rizinde et al.

[33]

Seven

hospitals in

Rwanda

4,083

Risk of

hospitalization

prediction

Random forest, SVM, kNN,

MLP, logistic regression,

decision tree

Applying various

pre-processing

techniques

including

balancing and

comparing with

various models

Accuracy,

precision,

recall, F1

score, AUC

RF(%)=87, 84, 89, 87, 94; SVM_RBF(%)=79, 77, 82, 79, 88;

SVM_Linear(%)=74, 73, 76, 74, 88; kNN(%)=85, 80, 91, 85, 88;

MLP(%)=82, 79, 86, 82, 88; LR(%)=75, 74, 75, 74, 81; DT(%)=52,

50, 96, 66, 57

Landicho et al.

[34]
NMMC 322

Readmission of

HF patients

Logistic regression, SVM,

random forest, neural

network

Applying cost-

senstive

classification

approach to the

model

Accuracy,

sensitivity,

specificity,

precision, F-

measure,

AUC

LR=0.585, 0.250, 0.904, 0.714, 0.370, 0.577; RF=0.561, 0.150,

0.952, 0.750, 0.250, 0.551; SVM=0.610, 0.300, 0.905, 0.750, 0.428,

0.602; NN=0.512, 0.000, 1.000, -, -, 0.500

Sohrabi et al.

[35]

Iran Medical

Centers
230

Re-

hospitalization of

HF patients

Decision tree, artificial

neural networks, SVM,

logistic regression

Data mining

approach for data

analytics

Accuracy,

AUC

Re-hospitalization 1 month DT=88.1%, 0.76; ANN=86.5%, 0.68;

SVM=86.4%, 0.62; LR=80.1%, 0.61

AbdelRahman

et al. [36]

University of

Utah Health

Care

2,787
Readmission of

CHF patients

Voting feature intervals

classifier, logistic

regression, combination

VFI and logistic regression

Utilizing three-

step approaches

AUC,

accuracy,

sensitivitiy,

specificity,

PPV, NPV

Voting classifier(%)=86.8, 91.5, 62.5, 94.2, 50, 96.4

Vedomske et al.

[37]

University of

Virginia CDR
1 million+

30-day

readmission of

CHF patients

Random forest

Processing

administrative

data

AUC

RF-based models with prior weighting on the response based on

divided variables: Base=0.67; Procedure=0.68; Diagnosis=0.77;

Both=0.8

Hilbert et al. [38]

California

State

Inpatient

Database of

the

Healthcare

Cost and

Utilization

Project

78,091
Readmission of

HF patients
Decision tree

Transparant

analysis of

decision tree

models

AUC Training=0.594; Testing=0.583

Zolbanin and

Delen [39]
CHSI at OSU 32,350

Readmission of

HF patients

Naïve bayes, neural

network, gradient boosting

Conducting

database-wide

data processing in

model building

AUC
Naïve Bayes=0.733; neural network=0.728; gradient boosting=

0.722

Golas et al. [40]

Partners

Healthcare

System

28,031

30-day hospital

readmission of

HF patients

Modifiend deep learning,

logistic regression,

gradient boosting, neural

network

Designing deep

unified networks

(DUNs) to avoid

overfitting in

predictive model

AUC,

accuracy,

precision,

recall, f1

LR=0.664, 0.626, 0.336, 0.616, 0.435; gradient boosting=0.650,

0.612, 0.325, 0.615, 0.425; maxout networks=0.695, 0.645, 0.354,

0.631, 0.454; DUN=0.705, 0.646, 0.360, 0.652, 0.464

30-day hospital Involving
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Mortazavi et al.

[41]
Tele-HF 1,653 readmission of

HF patients

Random forest, boosting,

SVM, logisitc regression
telemedicine-

based data

Discrimination

c-statistic

180 days heart failure readmission: LR=0.566; boosting=0.678;

RF=0.669; RF into SVM=0.657

Lorenzoni et al.

[42]
GISC 380

Hospitalization of

HF patients

GLMN, logistic regression,

CART, random forest,

adaboost, logitboost, SVM,

neural network

Involving three

different

approaches

(complete case,

kNN imputed,

median imputed)

in handling

missingness

Sensitivity,

PPV, NPV,

specificity,

accuracy,

AUC

Only best performed algorithm, GLMN (%): Complete Case: 77.8,

87.5, 75, 85.7, 81.2, 80.6; Mean-imputation: 26.5, 66.0, 59.5, 68.1,

60.3, 62.8; kNN-imputation: 24.1, 64.8, 59.4, 89.5, 60.3, 62.4

Sundararaman

et al. [43]
MIMIC-III 11,318

Readmission of

HF patients
Logistic regression

Employing four

model

approaches

involving

structured and

unstructured data

Accuracy and

AUC score

structured data=0.91, 0.68; unstructured data=0.92, 0.63; feature

selection=0.98, 0.96; structured + unstructured data=0.92, 0.64;

structured + feature selection=0.98, 0.97

Liu et al. [44] MIMIC-III 58,000+
Readmission of

HF patients
NLP CNN

Employing only

clinical notes
Accuracy

General readmission: CNN=0.759, 0. 754, 0.756, 75.70%;

RF=0.720, 0.633, 0.674, 69.35%

Sharma et al.

[45]

Alberta Health

Services
10,641

Readmission of

HF patients
12 ML models

Comparing 12

ML-based with

LaCE score

AUC

Validation set: XGBoost=0.654; GBM=0.650; AdaBoost=0.646;

CatBoost=0.642; LightGBM=0.641; Linear SVC=0.639; NB=0.624;

RF=0.617; DT=0.597; LR=0.596; NN=0.578; LSTM=0.624;

LaCE=0.570

Shams et al.

[46]

Veteran

Health

Administration

7,200
Readmission of

HF patients
PAR

Proposing PAR

approach and

comparing with

CMS and PPR

AUC-ROC PAR=0.836

Ben-Assuli et al.

[47]

Sheba

Medical

Center

10,763

30-day

readmission of

HF patients

XGBoost

Involving expert

cardiologists for

feature selection

AUC
Machine superlist=0.8156; Expert list=0.7116; Human-Machine

collaboration=0.8289

Mortality Prediction

Jing et al. [48]
Geisinger

EHR
270,000 Mortality

Logistic regression,

random forest, XGBoost

Performing split-

by-year training

scheme and

simulating care

gap closure to the

predictive models

AUC Logistic regression=0.74; Random forest= 0.76, XGBoost=0.77

Kamio et al. [49]

Tokushukai

Medical

Database

1,416

In-hospital

mortality for ICU-

admitted patients

with AHF

SVM, XGBoost, neural

network

Proposing three

types of data:

static, time-seris,

and a combination

F1-score,

precision,

recall, ROC

AUC, PR

AUC

Time-series & static data: LSVC=0.49, 0.38, 0.69, 0.74, 0.47;

XGB=0.49, 0.42, 0.64, 0.73, 0.48; Multi-neural network=0.37, 0.41,

0.52, 0.65, 0.37

Adler et al. [50] UCSD 5,822 Mortality risk Boosted decision tree

Performing

MARKER-HF

score

AUC
Results for each cohort study: UCSD (all variables)=0.88; UCSD

(RDW imputed)=0.87; UCSF=0.81; BIOSTAT-CHF=0.84

Lagu et al. [51]

HealthFacts

data of

Cerner

Corporation

13,163

Mortality of

patients with

ADHF

Logistic regression

Comparing seven

mortality

prediction models

AUC

Results for each model: Premier + =0.81; LAPS2=0.80;

Premier=0.76; EFFECT=0.70; GWTG-HF-Eapen=0.70; GWTG-

HF-Peterson=0.69; ADHERE=0.68

Panahiazar et

al. [52]
Mayo Clinic 119,749 Mortality

Decision tree, random

forest, Adaboost, SVM,

logistic regression

Comparing SHFM

with ML-based

models

AUC

Results of 1-year mortality prediction: SHFM-based: DT=0.60;

RF=0.62; AdaBoost=0.59; SVM=0.56; LR=0.68 Proposed model:

DT=0.66; RF=0.80; AdaBoost=0.74; SVM=0.46; LR=0.81

Almazroi et al.

[53]

UCI Heart

Failure
299 Mortality

Decision tree, SVM, ANN,

LR

Comparing three

ML-based model

to predict death

event of HF

patients

Accuracy,

precision,

recall, F1-

score

LR(%)=78.34, 91.67, 47.82, 62.8; DT(%)=80, 78.94, 65.21, 71.4;

SVM(%)=66.67, 80, 17.39, 28.57; ANN(%)=60, 40, 8.69, 14.28
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Karakuş et al.

[54]

UCI Heart

Failure
299 Mortality

Logistic regression, naïve

bayes, SVM, kNN,

decision tree, random

forest, neural network

Utilizing PCA to

determine the

effectiveness in

prediction

performance

Accuracy,

AUC

Accuracy was achieved between 69 and 100% AUC: Gaussian

SVM (1.00) and Coarse kNN (0.87)

Zaman et al.

[55]

UCI Heart

Failure
299 Mortality

Decision tree, random

forest, XGBoost

Implementing

SMOTE for

balancing and two

learners: base

and meta

Accuracy,

precision,

recall, F1-

score, AUC

DT(%)=80.49, 16.19, 84.21, 80.00; RF(%)=92.68, 88.09, 97.36,

92.50; XGBoost(%)=91.46, 87.80, 94.73, 91.13

Newaz et al. [56]
UCI Heart

Failure
299 Mortality

SVM, kNN, logistic

regression, adaboost,

random forest

Presenting a

robust BRF for

imbalance

problems

Senstivity,

specificity, G-

mean,

accuracy,

MCC, AUC

BRF + RFE(%)=78.21, 70.51, 74.26, 72.93, 46.33, 74.36; BRF +

Chi2(%)=80.21, 74.45, 76.83, 76.25, 52.53, 77.33

Kedia et al. [57]
UCI Heart

Failure
299 Mortality

Logistic regression, naïve

bayes, decision tree,

random forest, SVM

Performing

feature selection

RFE with SMOTE

for balancing

Accuracy,

precision,

recall, F1-

score

LR=85.56%, 0.82, 0.81, 0.81; GNB=85.56%, 0.83, 0.78, 0.80;

DT=80.0%, 0.75, 0.77, 0.76; RF=88.89%, 0.85, 0.84, 0.84; Linear

SVM=87.78%, 0.85, 0.84, 0.84; Stack model=90.00%, 0.88, 0.87,

0.87

Chicco et al. [58]
UCI Heart

Failure
299 Mortality

Random forest, decision

tree, gradient boosting,

linear regression, ANN,

naïve bayes, SVM, kNN

Combining ML-

and biostatistical-

based feature

selection

Accuracy, F1-

score, MCC,

PR-AUC,

ROC-AUC

Results of model after feature selection: RF=0.585, 0.754, +0.418,

0.541, 0.698; gradient boosting=0.585, 0.750, +0.414, 0.673,

0.792; SVM radial=0.543, 0.720, +0.348, 0.494, 0.667

Li et al. [59] MIMIC-III 1,177

Mortality of ICU-

admitted HF

patients

XGBoost, LASSO, logistic

regression

Utilizing ML-

based model for

screning

independent risk

factors for in-

hospital mortality

AUC and

calibration c-

statistic test

AUC score of each model: XGBoost=0.8416; LASSO=0.8562;

GWTG-HF=0.7747

Luo et al. [60] MIMIC-III 5,676

Mortality of ICU-

admitted HF

patients

XGBoost, logistic

regression

Utilizing

imputation and

ML-based feature

selection

AUC,

calibration

plot, decision

curve

analysis

AUC score of each model: XGBoost=0.831; ElasticNet=0.817;

SAPS-II=0.719; GWTG-HF=0.662

Chen et al. [61]
MIMIC-IV and

eICU

20,878

and

15,483

Mortality of ICU-

admitted HF

patients

Xgboost, logistic

regression

Utilizing an

updated of MIMIC

dataset and

testing the

proposed model

with eICU dataset

AUC XGBoost=0.771; Logistic=0.725; GWTG-HF=0.649

Readmission and Mortality Prediction

Awan et al. [62]

Hospital

Morbidity Data

Collection and

Mortality

Database

248,387
Readmission

and Mortality

logistic regression, random

forest, decision tree, SVM,

MLP

Comparing

proposed models

with LaCE score

AUC, PR-

AUC,

accuracy,

sensitivity,

specificity

LR=0.576, 0.455, 62.26%, 48.37%, 66.85%; Weighted-RF=0.548,

0.386, 76.22%, 21.71%, 88.07%; Weighted-DT=0.528, 0.379,

64.18%, 31.44%, 74.16%; Weighted-SVM=0.535, 0.377, 65.36%,

31.39%, 75.78%; MLP=0.628, 0.461, 64.93%, 48.42%, 70.01%

Awan et al. [63]

Hospital

Morbidity Data

Collection and

Mortality

Database

248,387
Readmission

and Mortality
MLP

Leveraging

feature selection

and dimension

reduction

sensitivitiy,

specificity,

AUC

Based on feature selection methods: forward selection=32.2%,

85.3%, 0.56; backward selection=44.2%, 66.6%, 0.57;

mRMR=58.7% 60.6%, 0.62

Sarijaloo et al.

[64]

EPIC EHR

and the

McKesson

Change ECG

Reporting

System

3,189

90-day AHF

readmission and

mortality

SVM, random forest,

gradient boosting, LASSO,

logistic regression

Comparing ML-

based models

with traditional

statistical analysis

for risk

assessment

AUC and

95% CI

LR=0.744, (0.732-0.755); ML-LASSO=0.748, (0.745-0.751); ML-

GBM=0.750, (0.743-0.756); ML-RF=0.570, (0.545-0.594); ML-

SVM=0.718, (0.703-0.733); Combined ML-LASSO+LR=0.760,

(0.752-0.767)

Final models for HF-readmission: XGBoost=0.718;
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Tian et al. [65] Shanxi

Province
1,011

Death,

readmission, and

MACEs

Logistic regression,

random forest, XGBoost,

LightGBM, naïve bayes,

MLP

Developing

chronic heart

failure measure

(CHF-PROM)

AUC

LightGBM=0.704; RF=0.707; Logistic=0.693; NB=0.673;

MLP=0.690 Final models for all-cause death: XGBoost=0.754;

LightGBM=0.733; RF=0.709; Logistic=0.742; NB=0.658;

MLP=0.746

Lv et al. [66]

Hospital of

Dalian

Medical

University

13,602

1-year in hospital

mortality and 1

year readmission

Logistic regression, SVM,

ANN, random forest,

XGBoost

Presenting

calibration plots of

each predictive

models for

comparison

calibration

plot, AUC

All-cause mortality: LR=0.91; RF=1.00; SVM=0.99; ANN=0.99;

XGBoost=0.99 All-cause readmission: LR=0.63; RF=0.91;

SVM=0.96; ANN=0.82; XGBoost=0.92

Eapen et al. [67] GWTH-HF 33,349
Readmission

and Mortality
CMS tool

Demonstrating the

use of CMS tool
C-statistics

Validation cohort: 30-day mortality=0.75; 30-day

hospitalization=0.59; 30-day mortality or rehospitalization=0.62

Zhao et al. [68]
TOPCAT trial

dataset
3,445

Readmission

and Mortality of

HFmrHF patients

Random forest, logistic

regression, LASSO,

RIDGE, gradient boosting,

SVM

Presenting

DeLong test to

assess

discrimination and

its improvement

AUC, c-index

Death 1-year: RF=0.68, 0.67; LASSO=0.75, 0.77; Logistic=0.46,

0.53; Ridge=0.52, 0.51; GBT=0.77, 0.76; SVM=0.62, 0.64 HF-

hospitalization 1-year: RF=0.84, 0.85; LASSO=0.47, 0.49;

Logistic=0.58, 0.43; Ridge=0.39, 0.63; GBT=0.81, 0.81;

SVM=0.40, 0.70

Beecy et al. [69]
CLEVER-

HEART
3,774

30-day

unplanned

readmission and

mortality

XGBoost

Comparing

proposed models

with HOSPITAL

score

AUC

30-day outcomes: Index Admission=0.723; Index

Discharge=0.754; Feature Aggregated=0.756; HOSPITAL

score=0.666; Index Admission BNP=0.5046

TABLE 1: Summary of the included studies
Abbreviations:

NN:Neural Networks; SVM:Support Vector Machine; RF:Random Forest; DT:Decision Tree; CART:Classification and Regression Tree; kNN:k-Nearest
Neighbor; LR:Logistic Regression; CNN:Convolutional Neural Network; LMT:Logistic Model Tree; ROT:Rotation Forest; XGBoost:eXtreme Gradient
Boosting; Adaboost:Adaptive Boosting; LEBoosting:Least Error Boosting; LPBoosting:Linear Programming Boosting; NB:Naive Bayes; LightGBM:Light
Gradient-Boosting Machine; MLP:Multilayer Perceptron; DNN:Deep Neural Networks; GB:Gradient Boosting; VFI:Voting Feature Intervals;
GLMN:Generalized Linear Model Net; NLP:Natural Language Processing; LSTM:Long Short-Term Memory; SVC:Support Vector Classifier; BRF:Boosted
Random Forest; ANN:Artificial Neural Networks; LASSO:Least Absolute Shrinkage and Selection Operator; PAR:Potentially Avoidable Readmissions;
CMS:Centers for Medicare & Medicaid; PPR:Potentially Preventable Readmissions; SMOTE:Synthetic Minority Over-sampling Technique; KS-
Test:Kolmogorov-Smirnov Test; PCA:Principal Component Analysis; RFE:Recursive Feature Elimination; AUC:Area Under the ROC curve; AUROC:Area
Under Receiver Operating Characteristic Curve; PPV:Positive Predictive Values; NPV:Negative Predictive Values; SHAP:Shapley Additive Explanations;
LR+:Positive Likelihood Ratio; NNT:Number Needed to Treat; PR-AUC:Precision Recall Aread under curve; MCC:Matthew's Correlation Coefficient;
HF:Heart Failure; ECG:Electrocardiogram; BNP:Brain Natriuretic Peptide; KSUMC:King Saud University Medical City; NMMC:Northern Mindanao Medical
Center; MARKER-HF:Machine Learning Assessment of Risk and Early Mortality in Heart Failure; UCI:University of California Irvine; UCSD:University of
California San Diego; BIOSTAT-CHF:Biology Study to Tailored Treatment in Chronic Heart Failure; GWTG-HF:Get With The Guidelines-Heart Failure;
ADHERE:Acute Decompensated Heart Failure National Registry; SHFM:Seattle Heart Failure Model; GISC:Gestione Integrata dello Scompenso Cardiaco

Predictive Analytics for Heart Failure Prediction

The selected studies highlighted the important role of machine learning in predicting HF from electronic
medical records. This approach may greatly help the clinical decision-making process and diagnose patients
with heart failure. Guidi et al. designed a clinical decision support system (CDSS) by implementing machine
learning in decision-making to evaluate the severity of HF among patients with HF [5]. The study
underscored the readability and accessibility of machine learning-based CDSS to non-cardiologist users.

Involving more than 400,000 primary care patients, two studies built machine learning-based predictive
analytics models for the early diagnosis of heart failure in primary care patients collected by the Geisinger
Clinic [6,7]. By using unstructured and structured electronic health record (EHR) data, these studies were
able to predict heart failure in different time windows and showed good performance. Similarly, Ramal and
Emam utilized the data of 100 patients from King Saud University Medical City (KSUMC) in a big data
environment [8]. Involving principal component analysis (PCA)’s pre-processing and feature reduction
techniques, the study obtained a promising result in predicting heart failure

Aside from machine learning in building its predictive models, Nagrecha et al. involved more than one
million elderly patients from Medicare USA and built predictive models using a trajectory-based disease
progression model to predict heart failure among unseen patients [9]. Another study used the Cox Hazard
proportional model to predict heart failure risk factors by patients collected by COOL-AF Thailand [10]. The
proposed study performed well in predicting heart failure by calculating the model’s C-index, D-statistics,
calibration plot, brier test, and survival analysis.

Austin et al. described the use of a machine learning-based predictive analytics approach to predict Heart
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Failure with preserved Ejection Fraction (HFpEF), a subtype of heart failure [11]. The study assessed the
proposed models using c-statistic, brier score, sensitivity, and specificity and accurately predicted the
presence of HFpEF in heart failure patients. Similarly, Blecker et al. used machine learning-based predictive
analytics models to identify acute decompensated heart failure (ADHF) in patients collected by Tisch
Hospital, USA [12]. The proposed study found that a machine learning-based predictive model best predicted
ADHF.

Plati et al. involved 487 patients provided by the University College of Dublin (UCD) and the Department of
Cardiology of the Hospital University Ioannina to build machine learning-based predictive analytics to
classify the type of heart failure [13]. By performing pre-processing techniques and class balancing to obtain
an ideal dataset, the study generated promising results for classifying heart failure by dividing the main
dataset into a sub-dataset for each type.

Furthermore, Wang et al. underscored the interpretability of predictive analytics models [14]. The study
described the use of model interpretation and feature importance explanation using the Shapley additive
explanation (SHAP) approach to give physicians an understanding of the models. The study used the SHAP
approach for the best-performed model to interpret the model and its feature importance. Additionally,
comparing machine learning-based with commonly used risk scales showed the effectiveness of their
predictive analytics approach [15]. The study showed that machine learning-based predictive analytics
outperformed other risk scales like SCORE and REGICOR.

While various previously discussed studies rely on hospital data, there are selected studies that build
predictive models that leverage open, public data from repositories such as Physionet and University of
California Irvine (UCI). Three selected studies used heart disease datasets from the UCI machine learning
database to build predictive models for diagnosing heart failure or heart disease [16-18]. By directly
processing the dataset, the studies employed various machine learning algorithms. However, challenges
arose due to missing values that existed in the dataset. Removing all the missing values was shown to be
fundamental to obtaining a dataset without missing values [19]. However, this might result in biased
prediction results. By implementing an imputation technique, Alotaibi showed better performance [20].

In other cases, an imbalance problem may have caused a reduction in prediction performance. Mamun et al.
showed that the SMOTE technique successfully addresses the imbalance in the UCI heart disease dataset,
and it improved the predictive performance [21]. However, the number of UCI heart disease patients differed
slightly in each class, so this technique was unnecessary. Nishat et al. and Senan et al. utilized the SMOTE
technique to solve the imbalance problem in the UCI heart failure dataset [22,23]. Furthermore, by
implementing normalization techniques, Nishat et al. showed improved prediction performance compared
to models without balancing and normalization, as Senan et al. did.

Selecting important features may lead to predictive performance improvement. Leveraging datasets from the
UCI database, Al-Yarimi et al. adopted the KS-Test to select the optimal attributes for their dataset and build
a decision tree-based predictive model [24]. However, according to Mathew’s correlation test to evaluate the
predictive model, the model's performance was not significantly improved. Bharti et al. used Lasso for
feature selection, resulting in better classification performance than was seen with the KS-Test approach
[25]. Differing from those studies, Kanagarathinam et al. performed feature selection using Pearson’s
correlation to obtain an ideal version of the UCI heart disease dataset [26]. This study shows improved
predictive performance compared to previously mentioned studies. However, the result might be biased
because the study discarded variables with missing values.

Unlike other studies, Venkatesh et al. used a big data approach and the UCI heart disease dataset to analyze
and predict heart status [27]. The study improved the prediction effectiveness with high CPU utilization and
low processing time by utilizing a clustering technique to filter unnecessary data. Alsubai et al. implemented
quantum computing in machine learning and deep learning algorithms, resulting in better predictive
performance than conventional machine learning algorithms [28].

Utilizing datasets from Physionet, Botros et al. used datasets from the MIT-BIH and BIDMC databases to
predict heart failure by analysis of ECG signals [29]. By leveraging a deep learning algorithm, the study was
able to build a predictive model with good performance in terms of accuracy, sensitivity, and specificity.
Using the MIMIC-III dataset, Alsinglawi et al. were able to predict the length of stay for patients with heart
failure using machine learning-based predictive analytics [30].

The selected studies underscore the benefit of implementing predictive analytics in heart failure prediction,
offering valuable insights for clinicians and physicians.

Predictive Analytics for the Prediction of Readmission or Mortality

Patients with heart failure face a high risk of mortality and hospital readmission. As with the
implementation of predictive analytics to predict heart failure and its risk, this approach can be applied to
predicting the hospitalization, readmission, and mortality of patients with heart failure.
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Readmission: With a dataset collected by Mount Sinai Hospital in 2014, Shameer et al. used the naïve Bayes
model to build a predictive analytics model [31]. Reaching an AUC score of 0.78 with an accuracy of 83.19%,
the study was able to predict hospital readmission among heart failure patients. Bat-Erdene et al. developed
predictive analytics models involving 52 hospitals from the Korea Acute Myocardial Infarction-National
Institute of Health (KAMIR-NIH) registry to predict rehospitalization of patients with acute myocardial
infarction (AMI) [32]. This study used a deep learning algorithm to build the predictive model, which resulted
in better performance than traditional machine learning models.

Rizinde et al. built machine learning-based predictive analytics models for predicting the risk of
hospitalization of patients with heart failure from the medical records of seven hospitals in Rwanda [33].
Their findings showed that their approach was able to predict a high risk of hospitalization with good
performance. In a study from the Philippines, Landicho et al. were able to predict the readmission of 322
patients with heart failure from NMMC in Cagayan de Oro City using machine learning-based predictive
analytics [34]. Sohrabi et al. built machine learning-based predictive models to predict one- and three-
month hospitalization of 230 patients with heart failure collected by medical centers in Iran [35]. The study
used a data mining approach to build machine learning-based predictive models, and their models reached
up to a 0.73 AUC score.

By utilizing a database from the University of Utah Health Care, AbdelRahman et al. built a machine
learning-based predictive model to predict the readmission of patients with chronic heart failure (CHF) [36].
By dividing the dataset used into a three-step approach, this study produced a high-performance predictive
analytics model that can be applied in various healthcare areas to improve the effectiveness of patient care.
Involving the data of more than 1 million patients from the University of Virginia Clinical Database
Repository (CDR), Vedomske et al. built a Random Forest-based predictive analytics model to predict
unplanned, all-cause, 30-day readmission of patients with CHF [37]. By processing administrative data, the
proposed model reached a 0.8 AUC in their model’s evaluation. Similarly, Hilbert et al. described the
implementation of their predictive analytics by demonstrating how their decision tree algorithm produced a
transparent analysis of their readmission prediction, resulting in a good AUC score [38].

Zolbanin and Delen proposed a novel data processing approach to extract data from medical records for
improved readmission prediction in a sample of heart failure patients [39]. Utilizing data from the Center for
Health Systems Innovation (CHSI) at Oklahoma State University (OSU), the proposed model was able to
demonstrate competitive advantages in predicting readmission among heart failure patients. Utilizing data
from Partners Healthcare System, Golas et al. implemented predictive analytics for the prediction of 30-day
hospital readmission of patients with heart failure [40]. By processing structured and unstructured data, the
study was able to showcase optimal performance in predicting 30-day readmission through the use of their
modified deep learning algorithm.

Two long-term projects, the Tele-HF project and the Gestione Integrata dello Scompenso Cardiaco (GISC)
study, built predictive analytics models for readmission [41,42]. The Tele-HF project, involving 1,653
patients, produced a 17.8% improvement in predicting 30-day all-cause readmission. The GISC study
compared various machine learning algorithms to predict the hospitalization of patients with heart failure.
The study demonstrated various levels of performance in predicting readmission.

Differing from other studies, Sundararaman et al. and Liu et al. utilized open, public data from the MIMIC-III
dataset for the predictive analytics of their heart failure readmission prediction [43,44]. Sundararaman et al.
employed structured and unstructured data to produce logistic regression-based predictive models. By
dividing the dataset into five types based on their proposed iteration, they achieved high accuracy and AUC
scores. Attempting a different approach, Liu et al. used only unstructured data (clinical notes) to build their
NLP CNN-based predictive models, achieving an accuracy of over 70% for predicting readmission.

To validate predictive analytics models for predicting readmission, Sharma et al. developed predictive
analytics models with 12 different machine learning algorithms and compared the performance of each
model with the LaCE score, a common method used for predicting patient readmission [45]. They
demonstrated that most machine learning-based predictive analytics models provided better performance in
predicting readmission than did the LaCE score. Shams et al. compared their proposed approach, the
Potentially Avoidable Readmission (PAR) approach, with other methods, such as 3M of the Centers for
Medicare and Medicaid Services (CMS) and Potentially Preventable Readmission (PPR) [46]. The study
showed efficacy in avoiding patient readmission within two weeks post-hospital discharge.

Involving expert cardiologists in the feature selection of the heart failure data collected from Sheba Medical
Center, Ben-Assuli et al. implemented three approaches to building their predictive models categorized by
the feature selection method: machine-based, human expert-based, and collaboration-based [47]. The study
generated better performance in predicting the 30-day readmission of patients with heart failure with
collaboration-based feature selection, providing a different perspective on developing predictive hospital
readmission analytics.

Mortality: Improved prediction of the risk of death for individual patients with heart failure is invaluable to
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healthcare professionals and help reverse the trend toward high cost. By leveraging clinical data from
Geisinger EHR, nearly 27,000 patients with heart failure and 276,819 episodes, Jing et al. constructed
machine learning-based predictive models using a split-by-year training scheme from 2013 to 2018. They
presented good accuracy in predicting all-cause mortality for this large cohort [48]. In a study done between
2013 and 2019 that involved data from 70 Japanese hospitals that contributed to the Tokushukai Medical
Database, Kamio et al. generated machine learning-based predictive models that included data for in-
hospital mortality by intensive care unit-admitted patients with acute heart failure [49]. By proposing three
types of data: static, time-series, and a combination, the study produced varying prediction performances
for different outcomes.

Utilizing the electronic medical records of 5,822 patients collected by the University of California San Diego
(UCSD), Adler et al. generated a new mortality risk predictive analytics model they named MARKER-HF [50].
The proposed model was able to predict the mortality risk separately for high- and low-risk groups based on
the MARKER-HF score. Similarly, Lagu et al. compared seven different mortality prediction models to
predict the inpatient mortality of hospitalized patients with ADHF collected from the HealthFacts data of
Cerner Corporation [51]. Although the study did not generate a new predictive model, it highlighted the
performance of existing approaches from various datasets and showcased their effectiveness in predicting
mortality. In contrast, Panahiazar et al. demonstrated that the Seattle Heart Failure Model (SHFM) could
predict mortality using the Mayo Clinic dataset [52]. However, their study also generated an approach to
building predictive models that resulted in better performance than the SHFM approach, with improved
prediction accuracy.

The use of open, public data, such as that from the UCI repository and Physionet, benefits researchers in
building mortality risk predictive analytics models. Without performing pre-processing, machine learning-
based predictive analytics models were built that predicted the survival possibility of heart failure patients in
the UCI heart failure dataset [53]. Utilizing the PCA method to determine the effectiveness of dimension
reduction in prediction performance, Karakuş and Er used various machine learning algorithms with the UCI
heart failure dataset and showed an improvement in classification accuracy [54]. However, because the
dataset contains an imbalance class, the study did not perform a balancing method, which may have led to
biased prediction results. Therefore, Zaman et al. addressed the imbalance class by employing the SMOTE
technique. The proposed models performed better than previous studies. However, Newaz et al. claimed that
the SMOTE technique might cause information loss and presented a robust Random Forest classifier, BRF,
that could handle imbalance problems with fine prediction performance [56].

Two studies employed feature selection methods for the UCI heart failure dataset [57,58]. While Kedia and
Bhushan experienced prediction performance reduction after employing recursive feature elimination,
Chicco and Jurman showcased improvement by combining machine learning-based and biostatistical-based
feature selection, leading to better performance metrics.

Leveraging the MIMIC-III dataset, Li et al. developed an XGBoost-based predictive analytics model for all-
cause in-hospital mortality of ICU-admitted patients with heart failure [59]. With data from 1,177 patients,
the study predicted mortality with good AUC-ROC and calibration c-statistic test performance. Similarly,
Luo et al. predicted in-hospital mortality among ICU-admitted heart failure patients using the MIMIC-III
dataset and the XGBoost algorithm [60]. The study incorporated imputation and feature selection
techniques, resulting in a better predictive model with better in-hospital mortality prediction performance
than Li et al. Using the updated MIMIC-IV dataset, Chen et al. constructed a predictive analytics model for
in-hospital all-cause mortality of ICU-admitted patients with heart failure [61]. The study demonstrated
excellent performance by building predictive models using 17 important features selected by LASSO
regression.

Both Readmission and Mortality

Various studies have implemented predictive analytics to predict hospital readmission and mortality risk for
heart failure patients. Awan et al. aimed to develop machine learning-based predictive analytics models for
30-day heart failure readmission or mortality by extracting datasets from the Hospital Morbidity Data
Collection and Mortality Database of the Western Australian Data Linkage System [62]. The study, which was
based on data from over 200,000 patients, showed good performance compared to the LaCE score. Awan et
al. also proposed different types of predictive model-building by leveraging feature selection and dimension
reduction techniques [63]. The study showed improved sensitivity and feature efficiency compared to their
previous approach. Similarly, through the use of a core data system, Sarijaloo et al. extracted datasets from
EPIC EHR and the McKesson Change ECG Reporting System to build machine learning-based models for the
prediction of 90-day acute heart failure readmission or all-cause mortality [64]. By assessing their models
with the AUC and 95% CI, the study generated predictive analytics to identify high-risk heart failure patients
for either readmission or mortality.

Using a dataset from Shanxi Province, China, Tian et al. generated predictive analytics models to predict
death, readmission, and Major Adverse Cardiovascular Events (MACEs) for heart failure patients [65]. The
proposed models were able to calculate the risk of death, readmission, and MACEs hospital outpatients with
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heart failure. Similarly, using electronic health records (EHR) data from the First Affiliated Hospital of Dalian
Medical University, China, Lv et al. developed predictive analytics models to predict one-year in-hospital
mortality, the use of positive inotropic agents, and one-year all-cause readmission, resulting in good
discrimination and predictive performances [66].

The GWTH-HF in-hospital program derived and validated risk-prediction tools from a large nationwide
registry [67]. Utilizing the Center for Medicare and Medicaid Services (CMS) tool for predicting mortality and
rehospitalization, the study claimed improved mortality and rehospitalization prediction, demonstrating
fair discriminative capacity in predicting rehospitalization.

Unlike previously discussed studies, Zhao et al. processed the TOPCAT trial dataset to predict mortality and
readmission risk among HFmrEF patients [68]. Their models showed promising prediction performance.
Similarly, Beecy et al. used the dataset from the CLEVER-HEART study dataset to build machine learning-
based predictive analytics models for predicting 30-day unplanned readmission and all-cause mortality [69].
The proposed models outperformed the HOSPITAL score, indicating superior predictive capabilities.

Discussion
Machine Learning Algorithms for Building Predictive Models

Machine learning algorithms are essential to building and developing predictive analytics models. The
objective of implementing machine learning algorithms is to make the decision-making of predictive
analytics more accurate in predicting specific diseases. The selected papers in this literature review present
diverse machine-learning algorithms that can be used to predict heart failure, readmission, and patient
mortality. As shown in Figure 2, the Random Forest algorithm appeared in 31 articles. It was useful for
predicting heart failure, readmission, and mortality. Notably, two studies demonstrated the effectiveness of
a Random Forest algorithm when applied to the EHR-based dataset [37,56]. However, an extensive
examination of its performance across diverse healthcare datasets is required to measure its trustworthiness
in clinical practice. Guidi et al. showed that although the Random Forest algorithm provided the best
accuracy in prediction, it provided a less understandable model compared to other algorithms [5]. The
implications of this for clinical acceptance need to be carefully considered.

FIGURE 2: Machine learning algorithms used in selected research
articles
SVM:Support Vector Machine; XGBoost:eXtreme Gradient Boosting; MLP:Multilayer Perceptron

Logistic regression, a traditional machine learning and statistics approach, also improves the robustness of
predictive analytics models. Sundararaman et al. indicated a deeper analysis of its predictive potential and
its appropriateness for complex clinical settings [43]. Although this algorithm provides simplicity and
interpretability, compared to ensemble learning like XGBoost, logistic regression produces lower predictive
performance [61].

SVM and Decision Tree (DT) have demonstrated effectiveness in heart failure prediction [34,53]. SVM is
known to be an effective nonparametric classification tool, especially for high-dimensional data. However,
its complexity results in a lack of interpretability and difficulty in evaluating feature importance [70]. Unlike
SVM, DT provides understandable information for identifying risk factors [38]. Nonetheless, a more thorough
examination of their results across diverse datasets and potential biases will improve the overall critical
discourse. Furthermore, a more comprehensive evaluation is required to confirm their effectiveness in
practical applications.
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When compared to statistical approach-based predictive models, XGBoost yields superior predictive
performance [48]. This algorithm can reduce the likelihood of overfitting when attempting to predict heart
failure [60]. However, the intricacy of XGBoost can make interpretation difficult, requiring different
approaches for experts looking for clear insights into the decision-making process [14]. Despite its potency,
XGBoost has a complexity that provides challenges for real-world deployment and interpretability, which
may limit its practical use.

Various selected studies have used neural networks and deep learning to build their predictive analytics.
Deep learning algorithms would produce far better performance than conventional machine learning
algorithms [32,64]. However, they require massive data, which risks overfitting to narrow datasets [44].
Furthermore, it can be challenging to interpret them due to their “black box” nature [40]. Therefore, their
applicability may be limited in real-world clinical settings.

Five of the studies in this literature review used algorithms that were different from those previously
mentioned. AbdelRahman et al. used a voting feature classifier model in building their predictive analytics
[36]. Lagu et al. modified existing classifier models to predict heart failure mortality [51]. Nagrecha et
al. introduced a novel perspective on predicting heart failure based on the unseen disease history of patients
by using a directed acyclic graph-based model [9]. Krittayaphong et al. used the Cox Proportional Hazard
model to predict heart failure [10]. Eapen et al. used the CMS approach to predict the rehospitalization and
mortality of heart failure patients [67]. These five studies highlight the versatility of predictive analytics and
demonstrate how various methodologies may predict heart failure risk. Various approaches for building
mortality and readmission predictive analytics models, such as CMS, LACE, 3M PPR, and HOSPITAL, are
worth considering and evaluating.

Data Pre-processing Implementation in Building Predictive Models

In predictive analytics, obtaining an ideal dataset is a process that allows the predictive models to achieve
satisfactory performance in predicting heart failure risk. As a crucial part of building a predictive model, the
pre-processing step leads to much better results predicting heart failure than models without pre-
processing. Most selected studies implemented a pre-processing stage. Their results showed differences and
improvements compared to studies without pre-processing. Table 2 shows the studies that used pre-
processing techniques.

Pre-
processing
Step

Article Frequent method

Data Cleaning
[7,13,19,20,23,26,28,32-36,39-
42,45-47,54,55,60,64-66,68,69]

Mean imputation, predictive mean matching, median imputation, random forest
imputation, kNN imputation, XGBoost imputation, and missForest

Data
Transformation

[13,14,22-26,30,31,33,34,36,39,41-
43,47,54,55,58,60,62-65,69]

Recursive feature elimination, SelectKBest, Chi-Square, Pearson's correlation, KS-
Test, T-Test

Data
Reduction

[47,50,54] PCA

Data Balancing
[13,14,21-
23,32,33,39,43,55,62,65,66]

SMOTE, Under-sampling, Over-sampling, ADASYN

TABLE 2: Pre-processing techniques used in selected articles
Data cleaning includes removing missing values and performing imputation techniques. Data transformation includes normalization, standardization, and
feature selection.

Abbreviations:

PCA:Principal Component Analysis; SMOTE:Synthetic Minority Over-sampling Technique; ADASYN:Adaptive Synthetic

Mean imputation frequently appears in various studies, while the machine learning-based imputation
technique obtained better results than statistical-based imputation. Although removing missing values by
employing imputation methods is commonplace, a more critical evaluation is necessary to determine their
impact on predictive model performance [39].

Only a few of the selected studies used normalization and standardization. However, feature selection
appears in many selected studies. Various studies used machine learning-based feature selection in post-
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processing to describe and present the most important features that influenced their prediction [41].
Although most studies did not compare feature selection methods, comparing them will allow the
determination of optimal techniques for use in the pre-processing stage [63]. Furthermore, a comprehensive
evaluation is essential to comprehend whether feature selection genuinely improves prediction performance
or introduces potential biases. Feature selection risks optimizing models to the specifics of training data
rather than generalizable patterns.

PCA was the most frequently used data reduction technique in the selected articles. Nevertheless, a more in-
depth analysis is required to understand the implication of dimensionality reduction in preserving essential
information. Data balancing was done in studies with imbalanced classes to obtain the ideal dataset. The
most used data balancing technique was the SMOTE method. However, a more comprehensive evaluation is
needed to determine its effectiveness across different datasets and potential consequences, such as
information loss.

Dataset Specification Used in Building Predictive Models

Understanding the dataset specification is essential to building the ideal and optimal predictive analytics
models for heart failure prediction with satisfactory performance. Demographic data, prominently age, and
sex, frequently appear in selected studies and are used in their predictive analytics building. Ben-Assuli et
al. reported that sex and age; expert-recommended demographical data; were the features most closely
related to the risk of heart failure [47]. Two studies found age to be the leading feature for predicting 30-day
readmission or death [62,63]. These studies give evidence of the importance of the use of demographical
data. Through the use of the UCI database involving the feature selection technique, Senan et al. showed
that sex and age impacted heart failure in patients [23]. While demographic data is undoubtedly crucial,
there is a need for a more nuanced exploration of how each demographic variable contributes to prediction
performance. Furthermore, considering factors like lifestyle or comorbidities, a deep analysis could improve
prediction performance.

Similarly, the physical and clinical values were essential to building an effective predictive analytics model
for heart failure prediction [41]. Physical and clinical values such as weight, diastolic and systolic blood
pressure, and heart rate are patient data that clinicians routinely collect. Various studies indicate the
importance of physical and clinical values in improving the prediction performance of heart failure
predictive analytics models [7,13,41]. Although these values have been shown to be indicators of heart
conditions, a more profound exploration is needed to understand the specific relationship between these
values and prediction outcomes.

Lifestyle variables, such as smoking and alcohol consumption, introduce a layer of complexity that
necessitates a holistic understanding of patient health [6,13]. However, these studies lack a comprehensive
investigation of how lifestyle variables contribute to heart failure prediction. In various studies,
comorbidities have been essential to building predictive models for the prediction of heart failure or
readmission. Panahiazar et al. showed that including comorbidity data improved prediction performance
compared to models without comorbidity data [52]. Nevertheless, a deeper exploration of the specific
comorbid conditions and their varying impacts on heart failure prediction is warranted. Figure 3 summarizes
the data categories described in the selected papers.
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FIGURE 3: Data categories reported in the selected papers
NYHA:New York Heart Association; LoS:Length of Stay

According to Figure 3, various studies used data like medication information and ECG values in building
their models [29,64]. However, a few studies used unstructured data, such as doctor's notes. By processing
patient data, such as patient descriptions, clinical notes, discharge summaries, diagnoses and procedures,
and admission events, Sundararaman et al. were able to generate well-performance predictive models [43].
Processing unstructured data to build a heart failure predictive model is suitable for in-house applications
like telemedicine, where the clinician collects patient data by phone [41]. Nevertheless, integrating between
unstructured and structured variables could unlock richer insights into heart failure risk prediction [40].

Publication by Year

Although our search was initially set for publications between 2000 and 2023, our refined search mainly
generated papers from 2010, as shown in Figure 4.

FIGURE 4: Publication by year based on refined-search results

We broke down the publications into four well-known methodologies for building predictive models, as
presented in Figure 5. As can be seen in the graph, researchers first utilized the machine learning approach
in 2012. Its use has increased over time and peaked in 2023 when about 633 studies utilized machine
learning to build a predictive model. This approach is currently widespread among researchers, especially for
developing predictive analytics models.
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FIGURE 5: Methodology used in the refined search papers
The medical approach, commonly used by medical field experts like doctors and clinicians in presenting their
predictive model by using medical or clinical approaches like physical examination and laboratory tests. The
statistical approach or statistical analysis approach including Cox hazard proportional approach. The machine
learning approach, the artificial intelligence-based approach. The big data and data mining approach, where
researchers use various big data applications or software in building predictive models.

Limitation of the study
This review has various limitations, including a restricted search strategy and databases, a lack of dual
independent screening and data extraction, and the inability to synthesize results quantitatively across
various studies. In the study selection, it is important to acknowledge the subjectivity in the process, which
may have biased the results. Although the selected studies utilized datasets from various countries, the
transferability of predictive models across diverse populations and settings remains unclear. Future research
should encompass quality appraisal, bias assessment, and meta-analysis to derive definitive conclusions
about the role and effectiveness of predictive analytics in improving heart failure prognosis. Despite these
limitations, this review delivers a foundation for progress toward higher-quality evidence synthesis in this
field.

Conclusions
Predictive analytics and machine learning techniques have demonstrated promising potential for improving
early diagnosis of heart failure, stratification of readmission risk, and prediction of mortality for heart
failure patients. Various machine learning algorithms like random forest, logistic regression, neural
networks, and XGBoost have been applied to structured data from electronic health records and
unstructured clinical notes. Appropriate data preprocessing through imputation, feature selection, and the
handling of class imbalance have emerged as crucial for developing high-performing predictive models.
While the reviewed studies highlight the rising research interest and show initial success, the authors would
like to emphasize the need for more rigorous evaluation, head-to-head benchmarking, and quality synthesis
to derive more robust evidence that supports the clinical adoption of these predictive analytics approaches
for improving heart failure outcomes.
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