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Abstract

This work investigates the use of configuration state imaging together with deep neural networks 

to develop quantitative MRI techniques for deployment in an interventional setting. A physics 

modeling technique for inhomogeneous fields and heterogeneous tissues is presented and used 

to evaluate the theoretical capability of neural networks to estimate parameter maps from 

configuration state signal data. All tested normalization strategies achieved similar performance in 

estimating T2 and T2
*. Varying network architecture and data normalization had substantial impacts 

on estimated flip angle and T1, highlighting their importance in developing neural networks to 

solve these inverse problems. The developed signal modeling technique provides an environment 

that will enable the development and evaluation of physics-informed machine learning techniques 

for MR parameter mapping and facilitate the development of quantitative MRI techniques to 

inform clinical decisions during MR-guided treatments.
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1 Introduction

Magnetic resonance imaging (MRI) has been a critical tool for gathering clinical 

information about soft tissues within the body. Conventionally, MRI has offered radiologists 

qualitative insights into the identities and properties of biological tissues. Quantitative 

measurements of MR-sensitive parameters have shown substantial clinical value for the 

evaluation and monitoring of cancer [10, 12, 14]. As the use of MRI to guide interventional 
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procedures increases, quantitative MRI (qMRI) has the potential to substantially impact 

oncology interventions. Clinical adoption of qMRI has been limited by the requirements for 

collecting and processing the data needed to make these measurements [5, 6]. Advances in 

MRI acquisition and reconstruction, together with modern deep learning techniques, have 

the potential to address time and computing constraints that have impeded the clinical 

deployment of qMRI. Deep learning techniques must first overcome several technical 

challenges posed by this context.

Large, diverse training datasets are typically required to achieve reliable performance 

of deep learning models. In qMRI, such datasets are not available and are costly to 

create [6]. Additionally, varying imaging parameters and system imperfections across 

scanners and protocols adversely impact current deeplearning models in MRI [11, 13]. 

These inconsistencies are exacerbated in the interventional context. Finally, for any qMRI 

technique to achieve the desired clinical impact, the uncertainty and repeatability must be 

adequately understood to inform clinical decisions [2]. Physics-informed neural networks 

(PINNs) have the potential to address data and generalization challenges faced by current 

machine learning approaches in qMRI [6, 18]. To support the development of new PINN 

approaches to quantitative MRI, this work develops physics modeling techniques for 

inhomogeneous fields and heterogeneous tissues with protons bound to water and to fat 

contributing to the received signal. This modeling technique is then used to evaluate 

the theoretical capability of neural networks to estimate parameter maps from simulated 

configuration state imaging data.

Unbalanced steady-state sequences have the capacity to sample multiple configuration 

states that uniquely encode both tissue properties and field maps [8, 15]. For this work, 

a multi-echo configuration state imaging sequence previously developed for brain imaging 

was evaluated [4], with monopolar readout gradients to facilitate imaging fat. Gradients are 

balanced along the phase encoding directions and unbalanced along the frequency encoding 

direction. The unbalanced frequency encoding gradient results in many configuration states 

in steady-state, which are sampled as each pathway becomes coherent during readout (Fig. 

1a). The different encoding of flip angle and T1 information in various configuration states 

(Fig. 1b) suggests that a mapping could be learned to separate flip angle and T1 information 

from a single set of configuration state signals at a single nominal flip angle. The resulting 

data enable the creation of quantitative T1, T2, and T2
* maps from a single acquisition while 

also reconstructing anatomically meaningful and interpretable source images. Analytical 

models estimating these parameters from configuration state imaging often necessitate 

making many assumptions that cannot be satisfied in the real imaging environment or 

require the acquisition of additional information [1, 9]. The potential for neural networks to 

relax these assumptions in a data-informed way and extract relevant additional information 

(explicitly or implicitly) provides an alternative approach for solving these inverse problems.
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2 Methods

2.1 MR Forward Model

The Bloch Equation.—For an isolated population of hydrogen spins, the behavior of 

the bulk nuclear magnetic moment, M = Mxî + Myĵ + Mzk̂, in the presence of an external 

magnetic field is defined by the Bloch equation,

dM
dt = γM × B − Mxî + Myĵ

T2
− Mz − M0

T1
k̂,

(1)

where γ is the gyromagnetic ratio, B is the external magnetic field, T1 and T2 are 

the longitudinal and transverse relaxation times, respectively, and M0 is the equilibrium 

magnetization in the direction of the main magnetic field.

To enable the modeling of a heterogeneous environment where signal may originate from 

many spin populations with varying local magnetic fields and resonance frequencies, we 

developed a technique for simulating MR signal evolution for samples with arbitrary NMR 

spectra and parameters in the presence of typical field inhomogeneities.

Bloch Solver.—The on-resonance frequency for a particular spin population is 

proportional to the strength of the external magnetic field, ω0 = γB0, where the 

proportionality constant is also the gyromagnetic ratio γ. Depending on their local chemical 

environment, spins of the same type of nucleus may exhibit different resonance frequencies, 

described by their chemical shift, δ = ω − ω0
ω0

. For example, the primary peak of the NMR 

spectra for lipid-bound protons has a chemical shift of δfat = − 3.5 ppm relative to water 

protons.

We allow tissue-specific parameters T1, T2, and the population resonance frequency 

ω = ω0 1 + δ  to be spatially varying, while the external field B may vary over space 

and time. Different system features are considered along the longitudinal and transverse 

directions of the external magnetic field. Longitudinally, the external field consists of 

the main magnetic field, B0, magnetic gradient fields, Bgrad r, t , and main field spatial 

inhomogeneity, ΔB0 r . The x- and y -components of the external field are defined by the 

applied radio-frequency excitation field, B1, which can be considered as a separable function 

of the time-varying excitation envelope (on-resonance frequency demodulated), B1
e t , and 

the spatially-varying excitation efficiency, B1
map r .

Equation 1 can be written as the combination of two operations on M: precession with 

angular velocity ω = γ 1 + δ B and relaxation governed by T1 and T2. Demodulating the 

effects of on-resonance precession about the main magnetic field, precessional angular 

velocity is given by
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ω = γ(1 + δ)B = γ
1 + δ B1, x

e B1
map

1 + δ B1, y
e B1

map

δB0 + 1 + δ ΔB0 + G ⋅ r
.

(2)

The solution was approximated using a symmetric operator splitting technique [7], where 

a piecewise constant field was assumed (10μs resolution when temporally varying) and 

the new magnetic moment obtained by sequential application of rotation and relaxation 

operators. Specifically, the magnetic moment after an interval Δt is approximated by 

applying half the total rotation, applying relaxation and recovery, and then applying the 

remaining rotation:

M t + Δt ≈ R t; Δt/2 A Δt R t; Δt/2 M + b Δt .

(3)

R t; Δt/2  is the axis-angle rotation matrix for rotation about the unit vector u = ω
∥ ω ∥  by the 

angle θ = ∥ ω[t] ∥ Δt
2 . The relaxation components are given by

A Δt = diag exp −Δt/T2 , exp −Δt/T2 , exp −Δt/T1 ,

(4)

b[Δt] = 0, 0, M0 1 − exp −Δt/T1
⊤ .

(5)

Signal Model.—The Bloch equation alone is inadequate to model some practical NMR 

phenomena, such as spin echoes [17]. In practice, the measured MR signal demonstrates 

a reversible decay of signal due to local variations in resonance frequency and dephasing 

due to nonzero gradients, in addition to irreversible T2 decay. This is modeled by the 

collective evolution of a population of spins with varying chemical shifts and positions 

along the readout direction (a 2D grid of spectroscopic axis and position). Reversible 

decay due to inhomogeneous broadening is observed as a monoexponential decay following 

exp −t/T2
′ . Because different phase coherence pathways are known to have varying 

levels of gradient-echo- and spin-echo-like properties, the adopted technique must be 

able to independently model each of these components. This is achieved by solving the 

Bloch equation for spins with varying chemical shift and adding them together with a 

Lorentzian weighting (full − width half − maximum = πT2
′ −1). Along this spectroscopic axis, 

the resonance frequency increment must be small enough to prevent time-domain aliasing. 

This limit can be expressed as
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Δf ≤ min 1
2Tmax

, 1
Tmax − ϵT2

* ,

(6)

where Tmax is the total simulated duration, ϵ is the maximum allowed relative error (in this 

work, 10−3), and T2
* is the combined rate including the effects of both irreversible and 

reversible signal decay,

1
T2

* = 1
T2

+ 1
T2

′ .

(7)

After simulation, the signal at a given readout time was computed as the weighted sum 

of the magnetization vectors of all the spins for that voxel, the spectroscopic axis added 

together with Lorentzian weighting and the position axis with uniform weighting. MATLAB 

code for the Bloch solver and signal model are available at https://github.com/fuslab-uofu/

mri-signal-model.

2.2 Neural Network Training

Configuration state signals were simulated for a range of MR parameters observed in 

breast cancer patients in the literature [3, 16] (T1 = 200 − 1800 ms, T2 = 25 − 250 ms). Other 

parameters were randomly initialized from, T2
′ = 0.1 − 10,000 ms, flip angle = 5 − 15∘ with B1

efficiency varying from 5–150%, and ΔB0 in ±3 μT. The sequence had fixed TR=20 ms and 

a main magnetic field strength B0 = 3T, with 250 repetitions to reach steady-state. Random 

configurations were used to generate 262,144 samples. When included, gaussian noise was 

added to the real and imaginary channels separately. Target values were normalized by 

dividing by the maximum value. At training time, samples were divided into a random 80/20 

training/evaluation split.

Neural networks were trained to estimate T1, T2, T2
*, and achieved flip angle (FA) using 

three different normalization schemes: 1) normalization on a sample basis, dividing by 

the magnitude of the 0th pathway; 2) normalization on a pathway basis, dividing by the 

maximum achieved signal intensity for a particular pathway over the full dataset; and 3) 

batch normalization (to standard normal distribution) of each individual feature (4 pathways 

× 3 echoes = 12 features). Networks had a fully connected architecture with 12 inputs 

features and a single output with GELU activation at the input to each hidden node, 

supervised on the simulated data for 200 epochs using Adam optimizer (initial learning 

rate 1e–4) and plateau learning rate scheduling. Networks were trained without and with 

added noise (1% of mean, when added), and three variations of network depth and breadth 

were used for training (number of hidden layers/nodes: [16, 32, 64, 32, 16]; [256, 512, 512, 

256]; or [512, 1024, 512]).

Additional experiments were conducted evaluating the performance of networks predicting 

all relaxation parameters (T1, T2, T2
*) with field maps as additional inputs. Network inputs 
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consisted of sample-normalized signal magnitude values and the ΔB0 offset and achieved 

FA for each sample (4 pathways × 3 echoes + 2 = 14 inputs). A fully connected network 

with [512, 1024, 512] hidden nodes and GELU activation at the input to each hidden 

node were trained for 200 epochs with T1, T2, and T2
* as targets, both with and without 

added noise (noise also added to field map values as 1% of max). To evaluate the need 

for field maps as inputs, equivalent networks were trained using the same scheme, except 

without FA and/or ΔB0 values as inputs. An additional network was trained with the same 

relaxometry prediction architecture with achieved flip angle as input, but using the output of 

the batch-normalized FA estimation network as the input FA value.

As a demonstration of the intended final use case, fully connected neural networks were 

also trained on real data acquired in a salt pork phantom (TR=20 ms; TE=2.9/8.5/14 ms; 

FA=10°; FOV/sample spacing =256/2 mm cube; total time=2 min 11s), supervised on T1 

and T2 maps of the same sample obtained (T2
* and B1 maps were not acquired in this dataset). 

Inputs were 3 × 3 × 3 patches of 4 pathways × 3 echoes, normalized using pathway-based 

normalization. Hidden layers had [512, 1024, 512, 256] nodes, with GELU activation on 

inputs to hidden layers. All neural network training was conducted using Python 3.9.17 with 

PyTorch 2.0.1.

3 Results

Results for networks with [512, 1024, 512] hidden nodes trained to estimate T1, T2, T2
*, 

and achieved FA on noisy simulated data with various normalization strategies are 

summarized in Table 1. Sample normalized inputs gave the most accurate predictions for 

T2 and T2
* (Fig. 2b–c). This normalization scheme resulted in poor fits for estimating T1 and 

FA (Fig. 2a, d), with noiseless training giving nearly equivalent results to the noisy condition 

(noiseless RMSE/R: 398/0.51 for T1, 2.3/0.85 for FA). Pathway-based normalization resulted 

in the best performance for B1 and T1 estimation, with slightly degraded performance in 

estimating T2 and T2
* (Fig. 2e–h).

Providing achieved FA as additional information at the network inputs resulted in improved 

ability to estimate T1, with negligible improvement in T2 and T2
* estimation (Table 1). 

Figure 3 shows the prediction performance in real data acquired in salt pork, comparing the 

acquired T1 and T2 maps with network training results.

4 Discussion

These results provide a preliminary demonstration of the theoretical capacity for 

configuration state imaging to serve as the basis for rapid quantitative MRI. Trained neural 

networks were successful in predicting achieved flip angle, T1, T2, T2
*, even with noisy data. 

Unlike the highly undersampled acquisitions used for MR fingerprinting, this technique 

provides meaningful anatomical images and a readily interpretable basis for neural network-

based contrast translation.

The results presented here demonstrate the potential impact of architectural and training 

decisions on the ability of fully connected neural networks to solve these inverse problems. 
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Even for closely related problems, the optimal configuration may depend on the specific 

parameter of interest. Sample-based normalization provided the best evaluation performance 

in estimating T2 and T2
*, but the worst performance for estimating T1 and achieved FA. 

Including estimated FA as an input to relaxation parameter estimation dramatically improved 

the ability to estimate T1. Physically meaningful intermediate stages and architectural biases 

may therefore be important in training networks for this application.

The developed signal modeling technique provides a simulation environment that can 

test network designs on controlled datasets that include challenges expected in the MRI 

environment of interest, facilitating the investigation of the limits and guarantees of the 

resulting machine learning system. Although not evaluated in this work, the technique is 

extensible to model additional challenges including motion and flow, field drift, and partial 

voluming. This will enable evaluation of deep operator learning architectures to incorporate 

sequence parameters (TR, TE) and scanner characteristics (slew rate, field strength) as extra 

information, providing better tolerance of the variation expected in clinical workflows. The 

required complexity of forward models for self-supervised physics-informed training can 

also be evaluated in this environment. It is expected that increasing the incorporation of 

physics information into the network architecture and training will further improve network 

performance on real data.

Future work will evaluate the transfer of learned mappings from simulated data to real data 

and the application of neural interpolators to estimate parameter values for real data. It may 

also be feasible to leverage redundant spatial information across the pathways to improve 

SNR of real data. The impact of magnetization transfer, which is not accounted for in the 

current model, will also be evaluated. Further development of this technique will enable the 

acquisition of quantitative maps that facilitate clinical decision making during MR-guided 

treatments.
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Fig.1. 
Configuration state imaging encodes different information in each configuration state. a) 

Plot of the 0th moment under the frequency encoding gradient over time for a single 

repetition of the sequence sampling 4 configuration states at 3 echo times with monopolar 

readout gradients. As area accumulates under the frequency encoding gradient, different 

configuration states become coherent and measurable. b) Simulated signal magnitude for 

configuration states −2, −1, 0, +1 for varying combinations of flip angle and T1 in water 

protons (scale adjusted for visualization).
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Fig.2. 
Regression plots of neural network parameter estimates (vertical axis) vs simulated 

parameter (horizontal axis) for networks trained with sample- (a–d) and pathway-based 

(e–h) normalization for T1 (range 200–1800), T2 (range 20–250), T2
* (range 0–250), and 

achieved FA (range 2.5–22.5).
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Fig.3. 
Sample of real data acquired in salt pork and network evaluation results for T1 (a–c) and 

T2 (d–f). (a, d) Regression plots of performance estimating T1 and T2; (b, e) ground truth 

parameter maps; (c, f) parameter maps estimated using trained neural network.
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Table 1.

Parameter estimation performance for a variety of training conditions and network architectures.

Normalization Sample norm + additional inputs

Target Metric Sample Pathway Batch None {FA, B0} FA B 0 est. FA

T1 (ms) RMSE 399 25 69 398 36 36 398 59

Slope 0.26 0.99 0.97 0.26 0.99 0.99 0.26 0.98

Intercept 734 5.5 26 743 6.5 8.8 743 17.6

R 0.51 1.00 0.99 0.51 1.00 1.00 0.51 0.99

T2 (ms) RMSE 1.6 2.1 6.1 2.1 1.7 1.6 2.0 2.0

Slope 1.00 1.01 0.99 1.00 1.00 1.00 1.00 1.00

Intercept 0.12 0.28 0.98 0.15 0.079 0.21 0.15 0.14

R 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

T2
*
 (ms) RMSE 5.7 6.8 7.9 6.0 5.8 5.7 6.0 7.1

Slope 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.98

Intercept 0.61 0.63 0.92 1.00 1.00 1.00 1.00 1.00

R 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00

FA (°) RMSE 2.3 0.054 0.23

Slope 0.72 1.00 1.00

Intercept 2.8 0.00057 0.038

R 0.85 1.00 1.00
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