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ABSTRACT
Background: Morphological and vascular characteristics of breast cancer can change during neoadjuvant chemotherapy (NAC). 
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)-acquired pre- and mid-treatment quantitatively capture in-
formation about tumor heterogeneity as potential earlier indicators of pathological complete response (pCR) to NAC in breast cancer.
Aims: This study aimed to develop an ensemble deep learning-based model, exploiting a Vision Transformer (ViT) architecture, 
which merges features automatically extracted from five segmented slices of both pre- and mid-treatment exams containing the 
maximum tumor area, to predict and monitor pCR to NAC.
Materials and Methods: Imaging data analyzed in this study referred to a cohort of 86 breast cancer patients, randomly split 
into training and test sets at a ratio of 8:2, who underwent NAC and for which information regarding the pCR status was available 
(37.2% of patients achieved pCR). We further validated our model using a subset of 20 patients selected from the publicly available 
I-SPY2 trial dataset (independent test).
Results: The performances of the proposed model were assessed using standard evaluation metrics, and promising results were 
achieved: area under the curve (AUC) value of 91.4%, accuracy value of 82.4%, a specificity value of 80.0%, a sensitivity value of 
85.7%, precision value of 75.0%, F-score value of 80.0%, and G-mean value of 82.8%. The results obtained from the independent 
test show an AUC of 81.3%, an accuracy of 80.0%, a specificity value of 76.9%, a sensitivity of 85.0%, a precision of 66.7%, an F-
score of 75.0%, and a G-mean of 81.2%.
Discussion: As far as we know, our research is the first proposal using ViTs on DCE-MRI exams to monitor pCR over time 
during NAC.
Conclusion: Finally, the changes in DCE-MRI at pre- and mid-treatment could affect the accuracy of pCR prediction to NAC.
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1   |   Introduction

Neoadjuvant chemotherapy (NAC) in breast cancer is becoming 
a standard treatment due to its advantages over adjuvant ther-
apy, such as assessing response during treatment, improving 
surgical outcomes, and enabling surgical de-escalation without 
compromising efficacy [1]. Additionally, NAC helps identify pa-
tients with a better prognosis by assessing pathological complete 
response (pCR), a crucial predictor of favorable outcomes. pCR, 
determined through surgery after therapy as the absence of can-
cer cells in the breast and/or axillary lymph nodes, is essential 
for tailoring subsequent treatment strategies and improving pa-
tient prognosis [2–4]. Achieving pCR can significantly impact 
the planning of treatments, including recalibrating procedures 
before and after surgery [5–7]. Moreover, recent findings have 
highlighted the critical role of integrating early pCR predictions 
into the contemporary breast cancer management framework, 
especially regarding the minimization of mastectomies when 
pCR is achieved [8]. However, pCR is evaluated from surgical 
specimens, making early prediction and monitoring during 
NAC challenging.

Different histologic patterns of residual disease also play a fun-
damental role in the prognosis of breast cancer patients treated 
with NAC [9]. Various studies have proposed methods to assess 
pCR early, including mammography, ultrasonography, and dy-
namic contrast-enhanced magnetic resonance imaging (DCE-
MRI). Among these, DCE-MRI has been found to be most 
reliable [10]. Clinical protocols suggest acquiring DCE-MRI 
scans at multiple time points during NAC, namely, before treat-
ment (MRI T1), during treatment (MRI T2), and at the end of 
treatment, to monitor breast cancer progression. Radiological 
information from these scans can potentially indicate early pCR.

Radiologists manually identify tumor areas in MRI exams and 
assess changes in tumor diameter over time using Response 
Evaluation Criteria in Solid Tumors (RECIST) [11]. However, 
this method is operator-dependent and prone to errors. 
Radiomics, which converts bioimages into quantitative data, has 
emerged as a more efficient method for predicting therapy effi-
cacy [12, 13]. Conventional radiomics involves extracting hand-
crafted features, which are still operator-dependent.

To address these limitations, deep learning-radiomic workflows 
have been developed to automatically extract features from raw 
scans without human intervention. Convolutional neural net-
works (CNNs) have shown promise in medical image analysis 
compared to handcrafted methods [14, 15]. Recent studies have 
used CNNs for pCR prediction using MRI during NAC, that is, to 
classify patients into either pCR class or non-pCR class [16–19].

Vision Transformers (ViTs), a recent development in deep learn-
ing, split images into patches and use self-attention mechanisms 
to capture global dependencies between image tokens [20, 21]. 
To our knowledge, there is limited research on using ViTs for 
monitoring pCR during NAC in breast cancer. Our study em-
ploys a ViT-based ensemble model on MRI T1 and T2 scans 
from breast cancer patients undergoing NAC at our Institute. 
The model was tested on a dataset extracted from patients en-
rolled at our Institute, as well as on a subset of the publicly avail-
able I-SPY2 trial database. This database is a comprehensive 

collection of clinical and imaging data from breast cancer pa-
tients undergoing neoadjuvant therapy as part of the adaptive 
phase II I-SPY2 trial [22–24].

2   |   Materials and Methods

2.1   |   Segmentation Algorithm

This retrospective study was approved by the Scientific Board 
of the Istituto Tumori “Giovanni Paolo II” in Bari, Italy-Prot. 
1168/CE. The DCE-MRI scans referred to the patients en-
rolled at our Institute are contrast-enhanced T1-weighted axial 
exams counting from 160 to 360 slices. Each slice was acquired 
six times: a single pre-contrast image and five post-contrast 
images corresponding to approximately each minute after in-
jection of gadobutrolo (Gadovist, Bayer, Germany), at a dose of 
0.1 mmol/kg of body weight and flow rate of 1.5–2 mL/s, fol-
lowed by 20 mL of saline solution, were acquired in the prone 
position with a dedicated seven-channel breast coil on a 1.5 
Tesla Philips scanner (Achieva, Philips Medical Systems, Best, 
the Netherlands).

In the case of the public I-SPY2 trial database, the slices were 
acquired both prior to the injection and at six subsequent time 
points afterward, with the MRI scans performed at either 3 T or 
1.5 T. We selected the independent test set from the I-SPY2 trial 
dataset to ensure that the images corresponding to these pa-
tients exhibited homogenous characteristics compared to those 
of the patients from our institution. A key criterion for patient 
selection was that the MRIs were scanned at 1.5 T.

We automatically segmented and then extracted quantitative 
imaging information from second post-contrast DCE-MRI ex-
aminations acquired at pre- and mid-treatment because the con-
trast during the early post-injection phase between tumor and 
the surrounding tissue is optimal to a finer analysis of morpho-
logical characteristics, as demonstrated in the current state of 
the art [25]. We further segmented the pre- and mid-treatment 
DCE-MRI exams for the independent test specifically analyzing 
the images acquired at the second time point following contrast 
injection.

The segmentation algorithm we implemented refers to an 
extension of the one proposed by Wei et  al. [26], combined 
with the application of some morphological operators. It was 
applied along all the slices composing the two MRI exams 
under study.

Here, we briefly explain the procedure performed on one slice. 
First, the chest wall (CW) region of interest (ROI) was detected. 
After masking the CW ROI, an image containing both breasts 
was obtained (see panel A of Figure S1). Two images showing 
the two breasts separately were generated and the correspond-
ing mean gray intensity was computed to identify the breast con-
taining the tumor mass (BROI, see panel B of Figure S1). Finally, 
by applying some morphological operators, a sequence of five 
slices related to the BROI comprising the maximum tumor area 
were extracted (BROI slices, see panel C of Figure S1). Before 
given in input to the learning model, the extracted slices were 
resized using zero-padding as it preserves both the shape and 
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size of the tumor, which is crucial for maintaining the accuracy 
of tumor volume, that is, a significant predictor of pCR status as 
emphasized in previous studies [27, 28]. Thus, by using zero pad-
ding, we ensured that the original resolution of the tumor was 
preserved, while the surrounding empty space in the bound-
ing box was padded. This approach prevented any alterations 
to the tumor's original structure or distortions that could have 
occurred with interpolation, thereby minimizing any potential 
negative impact on model performance.

For more details, please refer to Data S1.

2.2   |   Learning Model

An ensemble deep learning-based predictive model to monitor 
pCR over time during NAC was designed. We formulated a bi-
nary classification task to predict and distinguish patients who 
reached or did not reach pCR at the end of therapy (pCR class 
and non-pCR class, respectively). Two baseline models sharing 
the same backbone architecture, but separately analyzing the 
five BROI slices related to MRI T1 and MRI T2, respectively, 
comprised the ensemble model (Figure 1). The backbone archi-
tecture of the two models mainly consisted of two modules: a 
transfer learning module based on ViTs and a majority voting 
module.

2.2.1   |   Transfer Learning Module

Transfer learning consists of leveraging features learned on one 
task by pre-trained neural networks to be applied to a new task, 
that, in our case, is pCR prediction. The most common workflow 
of transfer learning envisages freezing layers from a previously 
trained model containing information learned during a previ-
ous training phase and then adding and training some trainable 
layers on top of the frozen layers to turn the old features into 
predictions on the dataset under analysis [29].

We decided to use transfer learning rather than designing a cus-
tomized ad-hoc network because of the relatively small size of 
the dataset at disposal. On this kind of datasets, research works 
of the state of the art have demonstrated the successful appli-
cation of transfer learning techniques with promising and also 
generalizable results on independent validation cohorts [30]. 
The pre-trained network used to build our transfer learning 
model was a ViT architecture (ViTb_16).

The BROI slices were reshaped to 224 × 224 size images and 
partitioned into 16 patches per image, in order to be given as 
input to the pre-trained ViT architecture. Among the possible 
ViT networks, we decided to use a ViT architecture employing 
patches of size 16 × 16 as input because of its robustness against 
performance degradation and computational complexity [20]. 
Within the pre-trained architecture, the obtained patches are 
flattened and mapped through a trainable linear projection to 
produce a series of embedded image patches. To perform the 
classification task, an encoder receives the sequence of the em-
bedded picture patches, together with positional data, which 
add positioning information to the input, and a learnable class 
embedding sequence whose values represent the corresponding 
classification outcome. The output of the transformer encoder is 
sent to a multilayer perceptron (MLP) head to return the classi-
fication. To apply transfer learning, the last layer of the network 
was replaced with some stacking trainable layers, which are a 
flattening layer, a batch normalization layer, a dense layer with 
Gaussian Error Linear Unit (GELU) activation function together 
with an L2 regularizer, another batch normalization layer, and 
a final dense layer as a classifier with a sigmoid activation func-
tion. The model was trained and the data split into training and 
test sets according to an 8:2 ratio. Both sets contained the same 
proportion between the two classes. All the BROI slices associ-
ated to one patient were part of either the training set or the test 
set depending on whether the patient was assigned to the train-
ing set or the test set, respectively. Finally, the transfer learning 
module returned a classification score for each of the five BROI 
slices related to each patient. We further validated the developed 

FIGURE 1    |    Workflow of the proposed learning method. Ensemble model composed by two baseline models sharing the same backbone architec-
ture, but separately analyzing five BROI slices related to MRI T1 and MRI T2, respectively, comprised the ensemble model. The backbone architec-
ture of the two models mainly consisted of two modules: The transfer learning module based on a ViT architecture and the majority voting module.
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learning model using an independent test set, which comprised 
a subset of 20 patients from the I-SPY2 trial database, selected 
based on the criteria summarized in the first sub-sections of 
Methods and Results. In this instance, the entire cohort of 86 
patients from our institute was utilized as the training set.

2.2.2   |   Majority Voting Module

A majority voting technique was performed (see Figure  1) to 
obtain a unique classification score per patient. The final class 
assignment at the end of a model corresponds to the class that 
was most frequently assigned for the five BROI slices. The cor-
responding classification score was computed as the maximum/
minimum score of the models labeling the patient into the pCR/
non-pCR class, if the class assigned by the majority voting was 
the pCR/non-pCR class, respectively.

The responses obtained for each patient by the two models, 
separately analyzing the five BROI slices related to MRI T1 
and MRI T2, were joined together, thus resulting in an ensem-
ble model. Let sT1 and sT2 be the classification scores returned 
for a patient belonging to the test set by models exploiting MRI 
T1 and MRI T2, respectively. Then, a weighted score, sw, was 
obtained by implementing the ensemble procedure consisting 
of weighting each of the two scores sTi (i = 1, 2) with a term ex-
pressing the ability of the respective model to discern pCR and 
non-pCR classes on the training set, namely, the x

(

AUCMRITi

)

. 
To assure the sw value lying in the range [0;1], a normalizer term 
was also multiplied:

2.3   |   Competing Pre-Trained Architectures

To assess the robustness of the proposed learning model based 
on ViT, the transfer learning modules of the two baseline mod-
els were replaced using some pre-trained CNN architectures, 
known as good performing in the field of computer vision ap-
plied to biomedicine. They are ResNet101 [31], Densenet201 
[32], and Xception [33]. ResNet101 architecture is a 101 layer-
net belonging to the class of residual CNNs, which make use 
of stacking residual blocks to train much deeper networks with 
the aim of maintaining compelling performances. It receives 
224 × 224 size images as input. The DenseNet201 model is com-
posed of layers receiving additional inputs from all preceding 
layers and passing their feature-maps to all subsequent layers. 
It receives 224 × 224 size images as input. Xception is a 71-layer 
deep architecture, whose function is to apply the filters on each 
of the depth map and then compress the input space using 1 × 1 
convolution across the depth. It receives 299 × 299 size images as 
input. To obtain a fair comparison with the proposed learning 
model, the classification layer of these networks was replaced by 
the same trainable layers used for the pre-trained ViT architec-
ture, except for the activation function of the dense layer, which 
in this case was Rectified Linear Unit (ReLu).

2.4   |   Implementation Details

All the trainable models were trained for 30 epochs using a 
batch size of 8. To address the class imbalance issue (37.2% of 
pCR cases), focal loss rather than binary cross entropy error was 
defined as the loss function of the networks [34]. The Adam op-
timization algorithm was used to optimize the weights of the 
network [35] with a starting learning rate of 10−4. To prevent 
overfitting, data augmentation based on random flip horizon-
tally and vertically, random rotation with angles in the range 
[−20, 20] degrees with a step of 5°, and randomly contrast ad-
justment with a factor of 0.2, was implemented in the training 
phase. The implementation code was written and run using 
ColabPro Notebook.

2.5   |   Explainability: LIME Algorithm

The predictions obtained at the transfer learning level were 
visually interpreted employing the local interpretable model-
agnostic explanations (LIME) [36, 37]. Basically, the algorithm 
generates a new dataset of “perturbed” samples with the cor-
responding predictions of the network. On this dataset, an in-
terpretable model, which is weighted by the proximity of the 
sampled instances to the instance for which we want to have an 
explanation, is trained. The learned model should be a good ap-
proximation of the predictions locally. In the case of explanation 
of image samples, variations of the images are generated by seg-
menting them into “superpixels” and turning superpixels off or 
on. A heatmap over the raw images highlights the most import-
ant superpixels, that is, those regions mainly contributing in the 
decision-making process. With respect to the label predicted by 
the network (pCR/non-pCR), the regions which positively con-
tribute to the assignment of that image into the predicted class 
are colored green, while the negatively contributing superpixels 
are colored red. LIME picks the a priori defined threshold value 
to select the number of top contributing superpixels. In this case, 
we set the threshold equal to 20.

2.6   |   Performance Evaluation

The performance of all the introduced models in assigning pa-
tients belonging to the test set to the either pCR class or non-
pCR class was evaluated in terms of area under the curve (AUC) 
as well as standard metrics, which are accuracy, sensitivity, 
specificity, and precision. Two other metrics, namely, F1-score 
and geometric mean (G-mean), which have been evaluated as 
suitable to assess an appropriate performance measure for im-
balanced datasets  [38], were also computed. While F1-score 
evaluates the relative contribution of precision and sensitivity as 
equal, G-mean takes into account the balance between classifi-
cation performances on both classes, thus avoiding overfitting of 
the most numerous class as well as underfitting of the class with 
the minor number of subjects. Finally, the bootstrap paired t-test 
was utilized to evaluate the AUC values of the proposed model 
in comparison to competing models, ensuring a robust statisti-
cal analysis that accommodates the limitations associated with 
the dataset size [39]. A result was considered statistically signifi-
cant when the p-value returned was less than 0.05.

(1)normalizer = 1∕AUCMRIT1
+AUCMRIT2

(2)
sw= sT1 ×

(

AUCMRIT1
×normalizer

)

+ sT2 ×
(

AUCMRIT2
×normalizer

)
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3   |   Results

3.1   |   Data Collection

A cohort of 86 breast cancer patients who underwent NAC at 
the same institute from 2017 to 2022 was enrolled. The fol-
lowing criteria were required for inclusion: (i) primary breast 
cancer confirmed using core needle biopsy before the begin-
ning of therapy; (ii) no metastasis ab initio; (iii) availability of 
both pretreatment and mid-treatment breast DCE-MRI scans 
(MRI T1 and MRI T2, respectively), where mid-treatment MRI 
were acquired after three or four cycles of chemotherapy; (iv) 
absence of any treatment before NAC; (v) availability of in-
formation regarding pCR achievement. Among the patients 
included in this study, 32 (37.2%) achieved pCR at completion 
of the entire course of NAC (pCR class), while 54 (62.8%) have 
not reached pCR (non-pCR class), as shown in Table 1. Other 
clinical information is summarized in the same table. The 
variables ER (Clone EP1 DAKO) and PgR (Clone PgR636) were 
reported as negative if ER and PgR were equal to 0; positive 
if ER and PgR assumed values higher than or equal to 1%, re-
spectively, whereas Ki67 (Clone MIB1 DAKO) was reported in 
percentage. The HER2 (polyclonal Rabbit Anti-Human c-erb 2 
Oncoprotein) variable was performed according to the ASCO-
CAP guidelines; the grading values were assessed in agreement 
with Elston Classification.

The I-SPY2 trial dataset includes several clinical variables such 
as hormone receptor (HR) status, HER2 status, age, menopausal 
status, and race. We selected an independent test set of 20 pa-
tients from the I-SPY2 trial to ensure that the proportion of pCR 
and non-pCR classes was consistent with that of our own data-
base. Table 2 summarizes the main clinical characteristics re-
lated to the independent test.

3.2   |   Performance Evaluation

Receiver operating characteristic (ROC) curves for both baseline 
models exploiting MRI T1 and MRI T2 (panels A and B) and 
for the ensemble model (panel C) are depicted in Figure 2. The 
corresponding AUC values are also reported. Specifically, the 
curves and AUC values were computed at the transfer learning 
level (panel A), at the majority voting level (panel B), and at the 
ensemble level (panel C) by varying the transfer learning mod-
ule embedded in the baseline models (either ViT or CNNs). From 
looking at panels A and B, a dual comparison, that is, between 
the two baseline models and among diverse embedded transfer 
learning modules, could be performed: ViT and Xception archi-
tectures reached the best AUC values for the MRI T1 model; 
ViT and Densenet201 modules outperformed the other modules 
for the MRI T2 model. Anyway, the ViT architecture achieved 
the most stable AUC values between the two models (69.0% and 
74.3% for the MRI T1 model and 67.9% and 75.7% for the MRI T2 
model at the transfer learning level and majority voting level, 
respectively).

In contrast to the AUC values obtained at transfer learning and 
majority voting level, differences among AUC values obtained 
by the ensemble model based on ViT (91.4%) and the ensemble 
models based on CNNs modules were more evident. Among the 

CNNs, the best AUC value was reached in correspondence of 
Xception architecture (78.9%). We found a significant p-value in 
the comparison of the AUC values returned by our model with 
the competing models (ViT versus Xception: p = 0.0045, ViT 

TABLE 1    |    Clinical characteristics referred to the patients enrolled at 
our institute. Absolute values and percentages are reported (percentages 
in round brackets). For age and Ki67, the median value and first (q1) and 
third (q3) quartiles of the distribution are indicated in squared brackets.

pCR class non-pCR class

Overall (abs.; %) 32 (37.2%) 54 (62.8%)

Age (years)

Median; [q1, q2] 50 [43.5, 61.0] 47 [41.0, 62.0]

Grading

G1 (abs.; %) 1 (3.1%) 2 (3.75)

G2 (abs.; %) 1 (3.1%) 16 (29.6%)

G3 (abs.; %) 28 (87.5%) 33 (61.1%)

NA (abs.; %) 2 (6.3%) 3 (5.6%)

ER

Negative (abs.; %) 16 (50.0%) 14 (25.9%)

Positive (abs.; %) 16 (50.0%) 40 (74.1%)

PgR

Negative (abs.; %) 25 (78.1%) 23 (42.6%)

Positive (abs.; %) 7 (21.9%) 31 (57.4%)

Ki67 (%)

Median; [q1, q3] 55 [35.0, 75.0] 30 [20.0, 40.0]

HER2

Negative (abs.; %) 13 (40.6%) 36 (66.7%)

Positive (abs.; %) 19 (59.4%) 18 (33.3%)

TABLE 2    |    Clinical characteristics referred to the independent test. 
Absolute values and percentages are reported (percentages in round 
brackets). For age, the median value and first (q1) and third (q3) quartiles 
of the distribution are indicated in squared brackets.

pCR class non-pCR class

Overall (abs.; %) 7 (35.0%) 13 (65.0%)

Age (years)

Median; [q1, q2] 47 [40.5, 56.5] 51 [39.0, 52.3]

HR

Negative (abs.; %) 5 (71.4%) 4 (30.8%)

Positive (abs.; %) 2 (28.6%) 9 (69.2%)

HER2

Negative (abs.; %) 4 (57.1%) 9 (69.2%)

Positive (abs.; %) 3 (42.9%) 4 (30.8%)
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versus DenseNet201: p = 10−4, ViT versus ResNet101: p = 10−5), 
suggesting that there is a statistically significant difference in 
their performance in discriminating between classes. Overall, 
the ViT-based ensemble model obtained the best performances 
in terms of other standard metrics, as summarized in Table 3: ac-
curacy value of 82.4%, sensitivity value of 85.7%, precision value 
of 75.0%, F-score value of 80.0%, and G-mean value of 82.8%. 
Specificity is the only metric with a lower value than Xception, 
but more balanced with respect to sensitivity (80.0% vs. 90.0%). 
We tested the ViT-based ensemble model and the best compet-
ing model, that is, Xception, over the independent test reaching 
an AUC value of 81.3% and 73.1%, an accuracy value of 80.0% 
and 70.0%, a specificity value of 76.9% and 77.0%, a sensitivity 

value of 85.0% and 57.1%, a precision value of 66.7% and 57.1%, a 
F-score value of 75.0% and 57.1%, and a G-mean value of 81.2% 
and 66.3%, respectively. Figure 3 shows the ROC curves related 
to the two abovementioned models. In this instance, our ViT-
based model demonstrated superior performance compared to 
the competing model, with a significant p-value of 0.01 indicat-
ing a difference between the two AUC values.

3.3   |   Explainability Results

The visual explanation of the decision-making process under-
lying the ViT architecture at the transfer learning level was 

FIGURE 2    |    Comparison of ROC curves and the corresponding AUC values for the test set related to our institute's cohort. (A) ROC curves of the 
two baseline models at the transfer learning level when varying the transfer learning module composing the baseline models, either ViT or CNN 
architectures, (B) ROC curves of the two baseline models at the majority voting level when varying the transfer learning module composing the base-
line models, either ViT or CNN architectures, and (C) ROC curves at the ensemble level when varying the transfer learning module composing the 
baseline models, either ViT or CNN architectures.
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obtained by applying the LIME algorithm. The visualization 
of LIME superpixels in positive and negative regions applied 
to two BROI slices related to a non-pCR/pCR patient correctly 
classified by both MRI T1 and MRI T2 models are depicted in 
Figures  3,4 and 5, respectively, representing images from pa-
tients at our institute. Meanwhile, the images from patients in 
the independent test set can be found in Figures S2 and S3. The 
raw slices are shown alongside the raw slices overlaid by the 
most contributing superpixels, where the red color highlights 
the negatively contributing superpixels to the assignment to 
non-pCR/pCR class, whereas the green represents otherwise.

The panels on the right present heatmaps where color intensity 
represents the importance of each superpixel generated from the 
raw slices, with blue indicating a positive contribution and red a 
negative contribution to the assigned class. In these heatmaps, 
a higher color intensity reflects a greater significance of the cor-
responding superpixel. As shown, the most important superpix-
els, whether contributing positively or negatively, are primarily 
concentrated within the intratumoral area and along the lesion's 
edges. This suggests that both the internal features of the tumor 

and the boundaries of the lesion play a crucial role in determin-
ing the classification, highlighting their relevance in the model's 
decision-making process.

However, other valuable superpixels refer to the surrounding 
peritumoral area, that is, the site of peripheral neo angiogenesis. 
Examples of visualization of LIME superpixel positive and neg-
ative regions applied to two BROI slices related to a non-pCR/
pCR patient misclassified by both MRI T1 and MRI T2 models 
with transfer learning module as ViT architecture are reported 
in Figures S4 and S5.

4   |   Discussion

We used pre- and mid-treatment DCE-MRI exams to evaluate 
quantitative information of tumor heterogeneity during NAC to 
predict and monitor pCR achievement in breast cancer patients.

An ensemble model that integrates multi-period image features 
was developed. The focus of our work is part of an active re-
search field, whose objective is the early prediction of pCR by 
analyzing image data acquired before or during NAC to address 
the clinical need of improving and personalizing treatment 
planning, with the aim of sparing patients from potentially inef-
fective and/or toxic treatment.

Most of the models developed in the field employed either con-
ventional radiomics [40–42] or CNNs [16–19, 43, 44]. However, 
the exploitation of the recently introduced ViT architectures for 
this application area is not widespread yet. As far as we know, 
Tong et al. [45] were pioneers in applying a ViT-based approach 
on image data to predict pCR in breast cancer. They developed a 
multi-time-point ViT, taking in input the ultrasound (US) exams 
acquired before and after NAC, in order to predict pCR shortly 
before surgery.

In our study, we used a ViT architecture on DCE-MRI scans ac-
quired before and in the middle of the treatment. We did not 
analyze the scan at the end of NAC because our main goal is to 
provide clinicians a support to evaluate possible changes in the 
ongoing NAC treatment.

TABLE 3    |    Summary of evaluation metrics for the ensemble model when varying the transfer learning module composing the baseline models, 
either ViT or CNN architectures. For each metric, bold values indicate the optimal achieved values.

Ensemble model

ViT Xception Densenet201 ResNet101

AUC (%) 91.4 78.6 62.9 57.1

Accuracy (%) 82.4 70.6 64.7 64.7

Specificity (%) 80.0 90.0 57.1 60.0

Sensitivity (%) 85.7 42.9 70.0 71.4

Precision (%) 75.0 75.0 57.1 55.6

F-score (%) 80.0 54.6 57.1 62.5

G-mean (%) 82.8 62.1 63.3 65.5

FIGURE 3    |    Comparison of ROC curves and the AUC values ob-
tained from the ViT-based ensemble model and the best competing 
model, Xception, in the independent test set.
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This study is the first building block to achieve this ambitious 
purpose. The encouraging results achieved on both the test set 
related to our institute's cohort and the independent test set are 
competitive when compared to the state of the art. Among the 
more recent studies analyzing pre- and mid-treatment MRI data 
to predict pCR to NAC in breast cancer patients, Eun et al. [40] 
carried out a texture analysis on mid-treatment axial MRI exam 
achieving an AUC value equal to 82%.

Fun et al. [46] defined predictive models merging radiomics fea-
tures from pre- and mid- treatment MRI scans also integrated with 
molecular subtype information, finally obtaining an AUC value of 

80.9%. Li et al. [18] combined conventional radiomics features with 
deep learning features extracted by a cutting-edge CNN from pre- 
and mid-treatment MRI exams, achieving an AUC value of 90.0%.

This study has some limitations. The results from our model's 
performance present an interesting contrast, particularly when 
examining the AUC values achieved on different datasets. On the 
test set derived from our patients, the model attained an AUC of 
91.4%. This high value indicates that our model is highly effective 
at distinguishing between the classes within our specific cohort, 
likely due to the relevance of the features utilized and the model's 
ability to capture the underlying patterns present in this dataset.

FIGURE 4    |    Visualization of LIME superpixels in positive and negative regions applied to two BROI slices from a non-pCR patient in our insti-
tute's cohort, correctly classified by both the MRI T1 and MRI T2 models utilizing a transfer learning module based on the ViT architecture. The 
panels on the left show the raw slices. The central ones depict the raw slices overlaid by the most contributing superpixels, where the red color high-
lights the negatively contributing superpixels to the assignment to non-pCR class, whereas the green represents otherwise. The panels on the right 
represent heatmaps where color intensity is a measure of importance of all the superpixels generated on the raw slices (blue for a positive contribution 
and red for a negative contribution).
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However, when evaluated on an independent test set extracted 
from a public dataset, the performance decreased to an AUC 
of 84%. While this remains a commendable performance, the 
difference between the two AUC values prompts important 
considerations. The reduction in performance may suggest 
that the model's effectiveness is somewhat context-dependent, 
highlighting the potential variability in results when applied to 
different populations or datasets. Moreover, the public dataset 
may encompass variations in clinical settings or imaging tech-
niques that were not fully represented in our internal cohort.

This underscores the importance of validating models across 
diverse datasets to ensure their robustness and generalizability. 

Additionally, it highlights the necessity for further investigation 
to comprehend the factors that contribute to the observed differ-
ences in outcomes. In this context, exploring image harmoniza-
tion techniques could be beneficial. Approaches such as neural 
style transfer, histogram matching, and domain adaptation 
methods can help align images from different sources, mitigat-
ing the impact of variability in imaging conditions. By imple-
menting these innovative harmonization techniques, we could 
potentially enhance model performance across varying datasets 
and improve its applicability in diverse clinical settings.

However, it is essential to recognize that the current analysis 
should be considered in a hypothesis-generating study aimed at 

FIGURE 5    |    Visualization of LIME superpixels in positive and negative regions applied to two BROI slices from a pCR patient in our institute's co-
hort, correctly classified by both the MRI T1 and MRI T2 models utilizing a transfer learning module based on the ViT architecture. The left panels 
show the raw slices. The central panels depict the raw slices overlaid by the most contributing superpixels, where the red color highlights the negatively 
contributing superpixels to the assignment to pCR class, whereas the green represents otherwise. The right panels represent heatmaps where color in-
tensity is a measure of importance of all the superpixels generated on the raw slices (blue for a positive contribution and red for a negative contribution).
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identifying initial trends and associations, rather than leading to 
definitive conclusions. While our findings provide valuable in-
sights, further research is required to validate these hypotheses 
and ultimately enhance clinical decision-making. We recognize 
the need for further validation on larger and more diverse data-
sets to establish the robustness and generalizability of our find-
ings across various clinical contexts. Moreover, as part of future 
work, we will consider incorporating end-of-treatment scans, 
which could provide a meaningful benchmark for assessing the 
predictive performance of our model for early pCR prediction. 
This approach would allow for a more comprehensive evalua-
tion of the effectiveness of the proposed model and its clinical 
applicability in monitoring treatment responses.

In conclusion, we developed an ensemble ViT-based model to ex-
tract quantitative data from pre- and mid-treatment DCE-MRI, 
predicting pCR achievement. With further validation, it could 
guide early treatment decisions and personalization. Additionally, 
localization maps offer visual insights into the model's decision-
making, enhancing clinician understanding and trust.
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