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Abstract 

Nocturnal hypoglycemia is a critical problem faced by diabetic patients. Failure to intervene in time can be dangerous 
for patients. The existing early warning methods struggle to extract crucial information comprehensively from com-
plex multi-source heterogeneous data. In this paper, a deep learning framework with an innovative dynamic atten-
tion mechanism is proposed to predict nocturnal hypoglycemic events for type 1 diabetes patients. Features related 
to nocturnal hypoglycemia are extracted from multi-scale and multi-dimensional data, which enables comprehensive 
information extraction from diverse sources. Then, we propose a prior-knowledge-guided attention mechanism 
to enhance the network’s learning capability and interpretability. The method was evaluated on a public available 
clinical dataset, which successfully warned 94.91% of nocturnal hypoglycemic events with an F1-score of 96.35%. By 
integrating our proposed framework into the nocturnal hypoglycemia early warning model, issues related to feature 
redundancy and incompleteness were mitigated. Comparative analysis demonstrates that our method outperforms 
existing approaches, offering superior accuracy and practicality in real-world scenarios.

Keywords Feature extraction, Attention mechanism, Nocturnal hypoglycemia early alarm, Type 1 diabetes, Deep 
learning

Introduction
Diabetes mellitus is one of the commonest chronic dis-
eases [1], which is generally categorized into type 1 diabe-
tes (T1D), type 2 diabetes (T2D), and gestational diabetes 
[2]. Due to the inability in insulin production and utiliza-
tion, the blood glucose levels are consistently higher than 
normal for diabetic patients without proper treatment. 
As the most effective method of lowering blood glucose 
levels, insulin therapy is essential for the treatment of 
T1D and longer-lasting T2D [3, 4]. Hypoglycemia is one 

of the serious adverse effects of diabetes treatment and 
is a major obstacle to achieving optimal glycemic con-
trol [5]. Studies have found that nocturnal hypoglycemia 
is common in diabetic patients treated with insulin [6]. 
The nocturnal hypoglycemia is extremely dangerous for 
the diabetic patients as the patients’ response to hypo-
glycemia is reduced considerably and the physiological 
defenses against hypoglycemia is significantly lower dur-
ing sleep [7].

Traditional assessment of blood glucose testing is 
usually achieved by continuous glucose monitoring 
(CGM) systems. However, it takes time for the con-
sumed carbohydrates/glucose to raising the blood 
glucose level. Therefore, it is necessary to predict the 
hypoglycemic event before it occurs [8]. With the 
increasing popularity of big-data analytics methods, 
machine learning and deep learning methods have been 
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widely used in the medical field by using classical net-
work regression or classification [9, 10].

Conventional methods based on physiological and 
clinical parameters are usually used in clinical studies 
[11] to predict hypoglycemia. Bayrak et  al. [12] used 
the Recursive Autoregressive Partial Least Squares 
algorithm on CGM sensor data to model. Zhu et  al. 
[13] proposed a Convolutional Neural Network (CNN) 
model with CGM, insulin, and dietary intake to pre-
dict blood glucose (BG) levels. Jun et al. [14] proposed 
an autoregressive integrated moving average model. 
This method relies too much on the predicted blood 
glucose and requires sufficient prediction accuracy. 
In addition to the above methods, classification mod-
els have also been used in early warning tasks. Lena 
et  al. [15] warned of nocturnal hypoglycemia by con-
tinuous electroencephalogram monitoring and auto-
mated real-time analysis. Slander et  al. [16] proposed 
a CGM data-based early warning system that provides 
complementary information through autonomic nerv-
ous system response characteristics. Although several 
methods exist to predict hypoglycemia, the following 
challenges remain. First, the complexity of time series 
data results in information loss and redundancy in 
obtaining nocturnal hypoglycemia information from 
time series data. Secondly, time series data features 
are difficult to capture, and relying only on predictive 
warnings does not maximize information utilization. 
Intra- and inter-individual variability and the complex-
ity of different variables in glucose dynamics also pose a 
significant obstacle to problem-solving.

To overcome the above problems, in this paper, we 
propose a deep learning framework (Fig. 1) for hypogly-
cemic events forecasting based on dynamic attentional 
feature fusion inspired by clinical prior knowledge. The 
framework considers asynchronous information from 
different input variables and performs dynamic nocturnal 
hypoglycemia warning based on their features. The early 
warning framework includes two parts: feature mining 
and attention module. The feature mining part considers 
the complexity of different variables in BG dynamics and 
multifaceted features. In the attention module, since data 
features are affected by individual and temporal variabil-
ity, a priori knowledge-guided dynamic attention fusion 
method is designed to capture feature salience dynami-
cally under knowledge guidance. The main contributions 
of this paper are as follows:

(1) In order to maximize the information utilization of 
the input data, the proposed feature mining mod-
ule mines asynchronous variable features from dif-
ferent scales and dimensions, fuses prediction with 

early warning and avoids redundancy and incom-
pleteness of input information.

(2) To judge the value of information based on real 
world experience, the proposed attention mecha-
nism adopts a priori knowledge guidance, which can 
dynamically calculate the attention weights based on 
clinical experience and enhance the interpretability 
of the method while removing redundant features.

(3) Addressing the complexity of changes in different 
time-series variables in BG dynamics, a deep learn-
ing framework based on dynamic attention feature 
fusion is proposed for accurate blood glucose early 
warning.

Materials and methods
Traditional feature mining
The measurement of BG provided by CGM sensor is time 
series sequence, and its feature extraction methods contain 
statistics-based, frequency domain, modeling, and machine 
learning. Among them, statistical-based feature extraction 
methods can represent the clinical information embed-
ded in BG data [17]. The traditional features in this paper 
include statistical features and clinical parameter features. 
Statistical features include: BG extreme deviation Xrange , 
which reflects the discrete state of BG; BG standard devia-
tion Xsd , which observes the volatility of BG data; BG mean 
Xµ , median Xmedian , and mode Xmode . Clinical param-
eter features are based on the continuous BG monitoring 
parameters combined with the clinical knowledge as the 
basis of feature extraction. These include: nadir BG value 
Xmin and BG coefficient of variation XCV .

Clinical sequence deep characterization
In the clinical setting, diet and insulin incorporation impact 
the patient’s BG level. The insulin remaining active within 
the body can be represented using a two-compartment 
model that estimates the insulin on board (IOB) [18]:

where t is the time instant, the compartments C1 and C2 
are insulin mass (mU) in the accessible and non-accessi-
ble subcutaneous compartments, and u(t) (mU min−1 ) 
is the insulin infusion rate. KDIA ( min−1 ) is a constant 
related to the duration of insulin action (DIA), which 
characterizes the patient’s insulin activity dynamics.

(1)
dC1(t)

dt
= u(t)− KDIAC1(t),

(2)
dC2(t)

dt
= KDIA(C1(t)− C2(t)),

(3)IOB(t) = C1(t)+ C2(t).
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Carbohydrates (CHO) on board (COB) represents 
the remaining CHO amount of a meal that has not yet 
appeared in the blood glucose. It describes the appear-
ance rate ( Ra ) of glucose in the blood due to CHO 
intake [19]:

where Cin is the amount of CHO ingested and Cbio is 
the bioavailability. tmax denotes the maximum appear-
ance rate time of glucose in the accessible glucose 

(4)Ra(t) =
CinCbiote

(−t/tmax)

t2max

,

(5)COB(t) = CinCbio −

t

tmeal

Ra(t)dt.

compartment. tmeal is the time instant when the meal is 
consumed.

In terms of the form of input variables, clinical series 
are time series without a fixed period. Therefore, diet 
and insulin data are subjected to data reconstruction to 
ensure the consistency of the different variables. Data 
reconstruction is achieved through the operation of fill-
ing zeros at empty values. We then used a convolutional 
neural network [20] to extract features from the recon-
structed clinical data.

Multi‑scale predictive features
Due to the time-dependent nature of time series, the cur-
rent observation is affected by the previous observations. 
If the forecast results are used as one of the features, the 
correlation between the time series data can be captured, 

Fig. 1 Framework of the proposed method
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providing a more comprehensive representation of the 
features.

Deep neural networks are currently considered for 
modelling many complex tasks. However, many tradi-
tional neural networks are unable to adequately capture 
information from complex time series data. Temporal 
convolutional networks [21] (TCNs) are employed for 
BG time series prediction with controllable sensory field 
sizes. In general, a one-dimensional convolutional net-
work with n layers and a kernel size of k has a receptive 
field r of:

The number of solution layers n is:

where l is the receptive field size.
The sensory field width ω is:

where b represents expansion base.
However, this network has the limitation of using a sin-

gle CNN with the same kernel size. Therefore, the Multi-
ple Temporal Convolution Network (MTCN) is proposed 
in this work (Fig.  2), which utilizes convolutional ker-
nels with different sizes to extract features from differ-
ent time scales and achieve complementary information. 

(6)r = 1+ n · (k − 1),

(7)n = [(l − 1)/(k − 1)],

(8)ω = 1+

n−1
∑

i=0

(k − 1) · bi = 1+ (k − 1) ·
bn − 1

b− 1
.

We experimentally adjusted the value of kernel size and 
finally defined the values of kernel size in the multiscale 
network as 4, 5 and 6 (Table 1).

Glucose sequence deep characterization
Traditional early warning methods usually obtain tem-
poral features from the data, which are not sufficiently 
characterized. Spatio-temporal feature is considered an 
information supplement to reduce the dependence of the 
early warning model on the predicted values.

Long short-term memory fully convolutional neural 
network (LSTM-FCN) is used as a spatio-temporal fea-
ture extraction model to merge temporal and spatial fac-
tors (Fig.  3). Fully Convolutional Networks (FCN) are 
commonly used in image segmentation [22, 23]. In this 
paper, FCN [24] is used as a feature extractor. And the 
basic convolution blocks are implemented as follows:

The output value y of the convolution kernel is 
obtained by convolutional neural network in Sect. " Clin-
ical Sequence Deep Characterization". s is then obtained 
by the normalization operation. h is finally obtained using 
the ReLU activation function. Each block is accompa-
nied by a batch normalization and ReLU activation layer 
after which the convolved features are fed into the global 

(9)s = BN (y),

(10)h = ReLU(s).

Fig. 2 Framework of the MTCN
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average pooling layer. The main limitation of ReLU is the 
’dying ReLU’ problem, in which neurons using ReLU acti-
vation cease learning and output a constant zero value 
when they encounter large negative inputs. This problem 
not only affects the slope at zero, but extends to all nega-
tive input values. To solve this problem, leaky ReLU is a 
common solution. Therefore, the activation function of 
the neural network in this paper has also been adjusted to 
leaky ReLU for experiments.

Long Short-Term Memory (LSTM) [25] is a type of 
Recurrent Neural Networks (RNN) [26] that learns 
long-term dependent information. There are three 
kinds of gate structures included in the LSTM which are 

forgetting gate, input gate, and output gate. The specific 
parameters of LSTM-FCN are shown in Table 2.

Prior‑knowledge‑guided dynamic attention mechanism
In order to ensure the completeness of information and 
improve the warning accuracy of existing data-driven 
models, the combined effect of different types of features 
needs to be considered. Attention mechanisms [27] can 
enhance informativeness by automatically learning fea-
tures that are more important for early warning based 
on input information. However, in practice it is desired 
that the model can learn different behaviors based on the 
same attention mechanism and combine different behav-
iors as knowledge. Therefore, a multi-head attention 
mechanism (Fig. 4) is used, where the outputs of different 
attention pooling are spliced together and transformed 
by another linear projection that can be learned to pro-
duce the final output.

Although the attention mechanism can generate atten-
tion weights from features, the process of this weight 
generation is not controllable. In model training, this 
process may cause the training weights to deviate from 
prior knowledge. Inspired by this, the distribution P of the 

Table 1 Prediction results of different kernel sizes in TCN 
network on OhioT1DM dataset

RMSE (mg/dL) MAE (mg/dL)

MTCN 14.160 9.617
TCN(kernel size = 4) 14.450 9.815

TCN(kernel size = 5) 14.554 9.787

TCN(kernel size = 6) 14.343 9.663

Fig. 3 Framework of the LSTM-FCN



Page 6 of 15Yu et al. BMC Medical Informatics and Decision Making          (2024) 24:378 

weights is captured in advance, and the process is guided 
by incorporating domain knowledge. Their weights are 
artificially increased for features that have been shown to 
have a greater impact on the final warning results.

Feature description: 1 is a predicted value, 2–4 are deep 
features, 5–7 are dietary features, 8–10 are insulin fea-
tures, 11–17 are clinical features, and 18 is the label.

To provide an intuitive understanding of the proposed 
model, we further visualize the attention matrices. An 
initial weight matrix is often randomly defined in the 
attention mechanism (Fig. 5A). But this does not provide 
a valuable guide to the final warning result. We calculate 
the similarity between features and nocturnal hypoglyce-
mic events by Pearson’s coefficient. Figure 5B shows that 
the correlation between insulin and diet and the occur-
rence of nocturnal hypoglycemic events is relatively low. 
It has been found that patients with continuous glucose 
monitors (CGM) do not need to be overly concerned 
about nocturnal hypoglycemia [6]. This is because the 
detected blood glucose value has a greater impact on 
the early warning results. Inspired by this, the prior 

matrix should be predefined as a guide for generating the 
attention weights. In detail, we first define an arithme-
tic matrix P ∈ [0, 1][0, 1] . Then, features that have been 
shown to have a greater influence on the final hypogly-
cemic event are artificially increased in weight pij . Refer-
ring to previous studies and incorporating the results of 
the correlation analysis, the trend of the weight distribu-
tion is given (Fig. 5C). The a priori probability attention 
weight P can be defined as:

n is the number of features.
The samples highly influenced by insulin and diet also 

need to be fine-tuned regarding their feature weights. 
Samples sensitive to insulin and dietary intake are trained 
by the dynamic attention mechanism to increase the 
weight share of these two inputs.

In the attentional transformation, we want the weights 
of each layer to be gradually improved within a certain 
range, instead of drastically deviating from the weights of 
the previous layer. This process is achieved by describing 
the distances. And the introduction of Kullback–Leibler 
(KL) divergence can measure the difference between two 
probability distributions. Therefore we use KL divergence 
to align the distribution of weights. Note that the weight 
matrix A:

After obtaining the initial attentional weights, the KL 
divergence of the two neighboring layers is calculated. 
To force the attention distribution of the l + 1th layer to 
be close to that of the lth layer. In this way, prior knowl-
edge can better guide the generation of self-attention 
distribution.

(11)
Pij =

exp(pij)
n
∑

k=1

exp(pik)

(12)A =

{

PriorMatrix P, when l = 1;
MultiAttentionG, when l > 1.

Table 2 The detailed parameters of LSTM-FCN

Structure Parameter

Global hyper-
parameter

Optimizer Adam

Learning rate 0.001

Mini-batch size 32

Maximum number of epochs 50

LSTM Number of hidden units 8

FCN Number of kernels 128

256

128

Size of kernels 8 × 1

5 × 1

3 × 1

Weight initializer method he_uniform

Fig. 4 Multi-head attention
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Fig. 5 Correlation analysis and initial weight matrix P and attention weight (A: Random weight; B: Initial weight; C: Attention weight)
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where A(l) is the temporal attention generated from the 
l block. A(l) represents the prior attention P when l = 1.

We reconstruct the loss function by using this function 
describing the distance as part of the loss function:

Finally, the obtained final attention weight matrix A′ is 
combined with the feature F = [f1, f2, f3, · · · , fn−1, fn] to 
obtain the final warning result.

Algorithm 1 Knowledge-guided dynamic attention mechanism

(13)DKL[A(l),A(l + 1)] = −
∑

A(l) log
A(l)

A(l + 1)
,

(14)L = min(Lloss + ε

T
∑

l=1

DKL[A(l),A(l + 1)]),

(15)R = softmax(A′ · F).

Results
Dataset
The OhioT1DM dataset contains eight weeks’ worth of 
CGM, insulin, physiological sensors, and self-reported 
life-event data for each of 12 people with type 1 diabe-
tes [28]. The dataset contains data sampling dates, time 
stamps, and corresponding CGM records calibrated 
by finger prick at intervals. The OhioT1DM dataset is 
pre-divided into the training set and test set for the BG 
level prediction challenge. Specifically, the training set 
contains about 40 days of data, and the test set contains 
about 10 days of data. Individuals with insufficient data 
were excluded because long-term data are required to 
determine nocturnal hypoglycemia. After preprocess-
ing, we retained 10 patient training and testing datasets 
for our experiments. It’s worth noting that although 
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the number of subjects is relatively small, each subject 
provided 288 blood glucose samples per day. This data 
volume is substantial for LSTM glucose prediction. We 
labeled glucose below threshold (70  mg/dL) as hypo-
glycemic label, totaling more than 7,000 samples, with 
nearly 300 hypoglycemic labels. In order to avoid train-
ing losses caused by data imbalance, positive and nega-
tive samples were balanced by over-sampling before 
training. Specifically, we used the RandomOverSampler 
to identify the underrepresented classes in the dataset 
and randomly selected samples from these classes to 
duplicate until the sample counts across each class were 
approximately equal. Regarding model training, we 
ensure that the number of features is proportional to 
the number of hypoglycemic samples to prevent over-
fitting. Because when hypoglycemic samples are scarce, 
an excessive number of features can lead the model to 
overfit on these limited samples, resulting in good per-
formance on the training data but poor generalization 
to new data.

Additionally, despite the limited number of subjects in 
the dataset, there is considerable diversity within it. Vari-
ability exists between each and across different days for 
the same subject, enhancing the richness and diversity 
of the dataset. The input data used in this paper includes 
CGM, dietary information and insulin. CGM data 
involves continuous measurement of glucose levels over 
time. It provides information about changes in blood glu-
cose levels. Dietary information includes detailed infor-
mation about food intake and helps the model to capture 
the relationship between eating habits and nocturnal 
hypoglycemic events. Insulin data takes into account 
insulin use. The inclusion of insulin information helps to 
assess the effect of insulin dose on blood glucose levels.

Preprocessing
CGM may generate noise or outliers during the measure-
ment process. The transmission of such data may bring 
outliers when recording the data and affect the model’s 
training process. Therefore, smoothing the CGM data in 
the proposed framework can make it more stable. This 
paper adopts the Savitzky-Golay smoothing filtering 
method [29] to process CGM data. In order to achieve a 
relatively smoother result while retaining sufficient local 
features, the frame length was set to 7. Within each slid-
ing window, a 3rd order polynomial was used to fit the 
raw data.

Data normalization is aligning data of different size 
ranges to the same size range [30]. It allows different data 
to be put together for comparison and manipulation. All 
input variables in this framework, BG values, dietary 
intake, and insulin infusion, were used to realign the 

data distribution to a standard normal distribution using 
Z-score standardization.

where Z is the normalized data and x is the raw data.

Evaluation metrics
Early warning rate, false alarm rate, missed alarm rate, 
accuracy rate, and F1-score are used to evaluate the per-
formance of early warning methods [31]. Accuracy rate 
cannot be used as the primary reference metric when 
the samples are not balanced. A high warning rate may 
result in many false warnings, but it applies to the likeli-
hood of being detected for serious times and is an essen-
tial measure of hypoglycemic alerts. The F1-score carries 
out a trade-off between two contradictory metrics, preci-
sion and recall (warning rate), to evaluate a model com-
prehensively. The intersection of different categories of 
predicted and actual values of the model lead to the cor-
responding confusion matrix [32].

Performance of the model
Table 3 lists the average 30-min prediction performance 
of the different models in the OhioT1DM dataset, includ-
ing RMSE, and MAE, corresponding to the proposed 
MTCN, LSTM, and GRU methods. However, all methods 
have different levels of delay in predicting the BG values 
as shown in Fig. 6.

Figure 6 shows a patient’s BG raw data and the predic-
tion results corresponding to MTCN prediction method 
proposed in this paper as well as other methods. As can 
be observed from the figure, MTCN is more sensitive to 
changes in data fluctuations. In contrast, the changing 
trend of the proposed model is closest to the actual BG 
value because other methods cannot capture relevant 
information of arbitrary length, which can result in insuf-
ficient information.

In the nocturnal hypoglycemic warning experiment, 
according to the proposed method, feature mining 
techniques are first employed to learn the character-
istics of input data. The mined features include tradi-
tional features, multi-scale prediction features, clinical 
sequence deep features, and BG sequence deep features. 

(16)Z =
x − µ

σ
.

Table 3 Prediction results of different models on OhioT1DM 
dataset

RMSE (mg/dL) MAE ( mg/dL)

MTCN 14.160 9.617
LSTM 15.086 10.144

GRU 16.806 11.948
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Subsequently, a classification model is trained using an 
attention mechanism, taking into account the combined 
effects of different types of features. During the learning 
process of attention weights, prior knowledge is utilized 
to guide the process and obtain the final warning results. 
Additionally, regularization technique Dropout is incor-
porated into the classification model to prevent overfit-
ting. The hypoglycemic threshold of clinical data was set 
at the level of 70 mg/dL and used to support nocturnal 
hypoglycemic warning. The BG data of 10 patients were 
applied to evaluate the effectiveness of the framework 
proposed in this paper.

The proposed method was compared with four other 
methods containing Threshold warning, Random For-
est (RF), Support Vector Machine (SVM), Traditional 
features. Threshold warning is a basic early warning 
method that sets thresholds to determine if a particu-
lar indicator exceeds or reaches a predetermined alert 
level. Random Forest is an integrated learning method 
that builds a powerful model by combining multiple 
weak learners (decision trees). Support Vector Machine 
is a supervised learning algorithm used for classification 
and regression analysis. It works by finding the optimal 
hyperplane in the data space to separate different classes 
while maximizing the margin between data points of 
different classes for optimal classification performance. 

Traditional feature methods use a pre-defined set of fea-
tures for model training and prediction. These features 
can be attributes that are considered relevant to the pre-
diction goal in the domain knowledge. Table 4 describes 
the hyperparameters of the above model. Table 5 lists the 
30-min nocturnal hypoglycemia warning performance 
for patients.

As shown in Table 5, the proposed framework outper-
forms other methods in four medium metrics: accuracy 
rate, warning rate, miss rate, F1-score, training time and 

Fig. 6 BG prediction with four methods. Note: to facilitate the display of results, data from different nights of the same patient were spliced 
into the same image

Table 4 Early warning model hyper-parameters

Early warning model Parameter

Proposed model Maximum number of epochs 50

Mini-batch size 64

Optimizer Adam

Threshold warning Threshold 70 mg/dL

RF N_estimators 100

Max_depth 5

SVM Kernel Linear

C 1.0

Traditional features Maximum number of epochs 50

Mini-batch size 64

Optimizer Adam
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FLOPs (Floating Point Operations Per Second). There-
fore, it can be found that the proposed framework is 
more sensitive to different patients and boundary region 
states. It is usually desired that both precision rate and 
recall rate are at a high level, but these two metrics are 
contradictory in deep learning. Expecting a high preci-
sion rate requires sacrificing some of the recall rate. In a 
clinical situation, it is desired to minimize misses while 
having a relatively small number of false positives. A 
high F1-score value indicates that this method balances 
the precision and recall metrics well. However, in terms 
of computational complexity, the proposed framework 
entails higher computational demands due to the incor-
poration of multi-scale predictive features and a dynamic 
attention mechanism. Despite this, the training time 
remains within an acceptable range. For the experiments 
conducted in this paper, we used an Intel(R) Core(TM) 
i7-8550U CPU @1.80 GHz 1.99 GHz processor with 8 GB 
of RAM, leveraging the NVIDIA GeForce MX130 graph-
ics card for deep learning tasks. The operating system 
was Windows 11, and the experimental code was writ-
ten in Python 3.10.11, relying on the TensorFlow 2.10.0 
framework. This indicates that our method does not 
demand high-end experimental equipment; rather, ordi-
nary computing resources suffice. Future efforts can fur-
ther reduce training time and computational demands.

In order to verify the validity of the methodology of this 
paper, we looked at the nocturnal hypoglycemic alerts 
of different patients separately. The blue curve in Fig.  7 
indicates the real blood glucose data, and the purple 
and orange icons mark the real warning and the warn-
ing result sequences, respectively. Figure 7A and B depict 
the early warning results of 30  min ahead of time noc-
turnal hypoglycemia for different patients. The method 
proposed in this paper can accurately predict most of the 
hypoglycemic conditions and can predict most points 
below the threshold in different blood glucose fluctua-
tion states. This shows that the model has good adaptive 
performance.

The ablation experiment was used to assess the valid-
ity of the structure proposed in this paper. The details of 
the experiments are that Model A contains the full set 

of features described in the second part of this paper as 
well as the dynamic attention mechanism. Model B is 
the result of a threshold warning that relies on predicted 
values. Model C removes the inputs of diet and insulin. 
Model D removes the dynamic attention mechanism and 
degenerates into a self-attentive model. As illustrated in 
Table 6, the proposed model (model A) achieved the best 
performance. The threshold warning (model B) method, 
which only considers predicted values and lacks infor-
mation on the temporal correlation of process variables, 
still has some errors in predicting blood glucose values. 
Errors occurring on the warning boundary lead to a 
high underreporting rate of the method. While the fea-
ture information incorporated in Model C is insufficient 
and lacks information sufficient to accurately classify 
hypoglycemia from non-hypoglycemia. Model D relies 
only on self-attentive mechanisms trained without prior 
knowledge guidance and lacks information and inter-
pretability of judgements on actual clinical events. The 
proposed method does not lose relevant and necessary 
information and also increases the interpretability of the 
model, adding accurate empirical knowledge to the end-
to-end model.

Many existing studies focus on building hypoglycemia 
warning models based on CGM data [33–36]. Compar-
ing our results with similar literature, [33] proposes a 
personalized alarm system using LSTM models. Their 
report demonstrates the ability to correctly detect 77% 
of hypoglycemic events. An effective prediction model 
is established based on data features [36], achieving an 
87.83% hypoglycemia alarm rate. The comparison high-
lights that solely relying on prediction values for hypo-
glycemia warning can be overly dependent on the model, 
potentially leading to the loss of valuable input informa-
tion. Our proposed dynamic warning method guided by 
prior knowledge achieves a hypoglycemia alarm rate of 
94.91% in the test data, effectively identifying a signifi-
cant portion of hypoglycemic risks. This approach is ben-
eficial for patients to take timely measures to prevent the 
occurrence of hypoglycemic events. To validate the effec-
tiveness of our model, we conducted cross-validation. In 
order to verify the validity of the model, we carried out 

Table 5 Nocturnal hypoglycemia warning results of different models on the OhioT1DM dataset

Early warning model Accuracy Recall Missed False F1‑score Training time
(Unit: Seconds)

FLOPs
(Unit: K)

Proposed model 98.4% 94.12% 5.88% 1.43% 96.21% 50.02 175.58

Threshold warning 98.87% 75.74% 24.26% 0.24% 85.77% 0.33 1.16

RF 98.43% 87.5% 12.5% 1.15% 92.64% 1.21 18.8

SVM 98.13% 92.65% 7.35% 1.66% 95.31% 1.13 18.6

Traditional features 98.61% 89.71% 10.29% 1.05% 93.95% 33.00 115.05
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Fig. 7 Early warning results of nocturnal hypoglycemia in the proposed model (a: patient A; b: patient B)
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cross-validation. We trained and evaluated the model 
using fivefold cross-validation to ensure its generalization 
across different subsets. The cross-validation results show 
the performance metrics of each model in the early warn-
ing task, including accuracy, recall, miss, false positive, 
and F1 scores. The average performance of each model is 
as follows: accuracy rate of 97.66% (± 0.20%), recall rate 
of 94.91% (± 0.49%), miss rate of 5.49% (± 1.79%), false 
positive rate of 2.22% (± 1.05%), and F1 score of 96.35% 
(± 0.20%). These results show that our model is robust on 
different data subsets and has good generalization ability. 

These results show that our model is robust on different 
data subsets and has good generalization ability.

Discussion
Our study successfully warned 94.91% of nocturnal hypo-
glycemic events with an F1-score of 96.35%. The results 
suggest that the proposed warning framework can iden-
tify nocturnal hypoglycemic events in a timely manner. 
As the model is guided by a priori knowledge, it is able 
to improve the effectiveness of the early warning method 
by not deviating from realistic scenarios during the train-
ing process. At the same time, this deep learning-based 
framework may help to develop personalized early warn-
ing methods for other events.

In our study, the attention mechanism is applied to 
a nighttime hypoglycemia warning task. It endows the 
model with powerful feature selection and weight adjust-
ment capabilities. On this basis, we introduce a priori 
knowledge to avoid the training process of the model to be 
detached from the real situation, e.g., diet promoting the 
occurrence of hypoglycemic time. In addition, we further 

Table 6 Results of ablation experiments

Early warning model Accuracy Recall Missed False F1‑score

Proposed model 
(model A)

98.4% 94.12% 5.88% 1.43% 96.21%

Model B 98.87% 75.74% 24.26% 0.24% 85.77%

Model C 99.06% 79.78% 20.22% 0.2% 88.38%

Model D 98.7% 89.71% 10.29% 0.95% 93.99%

Fig. 8 Attentions from general attention mechanism and proposed model (A: General attention mechanism; B: Proposed model)
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visualized the temporal weighting matrix generated by 
the proposed method, the general attention mechanism, 
during a nocturnal hypoglycemia warning. Traditionally, 
meal is negatively correlated with nocturnal hypoglyce-
mic events. However, as shown in Fig.  8A, the final fea-
ture weights obtained by randomly initializing the weight 
matrix tend to discriminate meal as positively correlated 
with nocturnal hypoglycemia. This finding contradicted 
actual hypoglycemia diagnosis.

In contrast, Fig.  8B demonstrates the effectiveness of 
our proposed approach. It accurately identifies features 
that are positively or negatively associated with noctur-
nal hypoglycemia and adjusts attention weights based on 
sample variations. This nuanced understanding enables 
our model to discern subtle patterns that might be over-
looked in traditional analyses. By capturing these intri-
cate associations, our method enhances the reliability of 
hypoglycemia predictions, providing valuable insights 
into nocturnal hypoglycemia dynamics.

Feature description: 1 is a predicted value, 2–4 are deep 
features, 5–7 are dietary features, 8–10 are insulin fea-
tures, 11–17 are clinical features, and 18 is the label.

While our study has achieved some success, there are 
still limitations that need to be acknowledged. Firstly, our 
dataset is relatively limited, and future research should 
consider incorporating a larger number of samples to 
enhance the scalability and generalizability of the model. 
Secondly, given that hypoglycemic events in diabetic 
patients are influenced by multiple factors, there is room 
for further improvement in our model. Future research 
may explore the inclusion of additional relevant inputs 
to more comprehensively capture the diverse factors in 
patients’ lives. This approach is expected to contribute to 
an improved accuracy in predicting nocturnal hypoglyce-
mia and enhance the robustness of the warning model in 
clinical practice.

Conclusion
This paper proposes a deep learning framework based 
on dynamic attention feature fusion for nocturnal 
hypoglycemia prediction. The framework consists of 
two parts: feature extraction and dynamic attention 
module. Feature extraction includes traditional fea-
tures, asynchronous variable features, multi-scale pre-
dictive features, and deep spatial–temporal features, 
which effectively avoid redundancy and incomplete-
ness of input information. Dynamic attention is guided 
by prior knowledge to generate attention weights that 
do not deviate from reality and enhance the interpret-
ability of the framework. The evaluation results on the 
OhioT1DM dataset show that the framework proposed 
in this paper is clinically acceptable compared to other 
early warning models, and ablation experiments also 

verify the validity of the network. Besides, the frame-
work has application value in other multivariate time 
series early warning tasks. In conclusion, the experi-
mental results show that the proposed framework is 
feasible and accurate for nocturnal hypoglycemia pre-
diction in real scenarios.
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