Table 2.
Performance evaluation of the models in the training cohort and validation cohort
| AUC (95%CI) | Sensitivity | Specificity | PPV | NPV | Accuracy | Youden Index | |
|---|---|---|---|---|---|---|---|
| Training cohort | |||||||
| INTRA | 0.77(0.71–0.83) | 0.82 | 0.67 | 0.55 | 0.88 | 0.72 | 0.49 |
| IntraPeri2mm | 0.76(0.70–0.82) | 0.84 | 0.60 | 0.51 | 0.89 | 0.68 | 0.44 |
| IntraPeri4mm | 0.67(0.60–0.74) | 0.89 | 0.38 | 0.41 | 0.88 | 0.55 | 0.27 |
| IntraPeri6mm | 0.68(0.62–0.75) | 0.83 | 0.48 | 0.44 | 0.85 | 0.59 | 0.31 |
| IntraPeri8mm | 0.70(0.64–0.77) | 0.67 | 0.68 | 0.51 | 0.81 | 0.68 | 0.36 |
| DeepL | 0.75(0.69–0.81) | 0.60 | 0.83 | 0.63 | 0.81 | 0.75 | 0.42 |
| RAITS | 0.87(0.82–0.92) | 0.71 | 0.92 | 0.82 | 0.87 | 0.85 | 0.63 |
| validation cohort | |||||||
| INTRA | 0.60(0.48–0.72) | 0.42 | 0.83 | 0.64 | 0.67 | 0.66 | 0.25 |
| IntraPeri2mm | 0.63(0.52–0.75) | 0.55 | 0.68 | 0.55 | 0.68 | 0.63 | 0.23 |
| IntraPeri4mm | 0.65(0.54–0.76) | 0.92 | 0.43 | 0.54 | 0.88 | 0.64 | 0.36 |
| IntraPeri6mm | 0.61(0.49–0.72) | 0.55 | 0.68 | 0.55 | 0.68 | 0.63 | 0.23 |
| IntraPeri8mm | 0.66(0.54–0.77) | 0.89 | 0.40 | 0.52 | 0.84 | 0.60 | 0.29 |
| DeepL | 0.65(0.54–0.76) | 0.76 | 0.51 | 0.53 | 0.75 | 0.62 | 0.27 |
| RAITS | 0.78(0.69–0.88) | 0.66 | 0.83 | 0.74 | 0.77 | 0.76 | 0.49 |
AUC, area under the receiver operating characteristics curve; CI, confidence interval; PPV, positive predictive values; NPV, negative predictive values; INTRA, intra-tumoral signature; IntraPeri2mm, peritumoral radiomic signature extracted from the 2 mm peritumoral area; IntraPeri4mm, peritumoral radiomic signature extracted from the 4 mm peritumoral area; IntraPeri6mm, peritumoral radiomic signature extracted from the 6 mm peritumoral area; IntraPeri8mm, peritumoral radiomic signature extracted from the 8 mm peritumoral area; DeepL, radiomics signature constructed by deep learning features; RAITS, Radiomics Integrated TLSs System