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Abstract

Background Chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) are debilitating
diseases associated with divergent histopathological changes in the lungs. At present, due to cost and technical
limitations, profiling cell types is not practical in large epidemiology cohorts (n> 1000). Here, we used computational
deconvolution to identify cell types in COPD and IPF lungs whose abundances and cell type-specific gene expression
are associated with disease diagnosis and severity.

Results We analyzed lung tissue RNA-seq data from 1026 subjects (COPD, n=465; IPF, n=213; control, n=348) from
the Lung Tissue Research Consortium. We performed RNA-seq deconvolution, querying thirty-eight discrete cell-type
varieties in the lungs. We tested whether deconvoluted cell-type abundance and cell type-specific gene expression
were associated with disease severity. The abundance score of twenty cell types significantly differed between IPF and
control lungs. In IPF subjects, eleven and nine cell types were significantly associated with forced vital capacity (FVC)
and diffusing capacity for carbon monoxide (D,CO), respectively. Aberrant basaloid cells, a rare cells found in fibrotic
lungs, were associated with worse FVC and D, CO in IPF subjects, indicating that this aberrant epithelial population
increased with disease severity. Alveolar type 1 and vascular endothelial (VE) capillary A were decreased in COPD
lungs compared to controls. An increase in macrophages and classical monocytes was associated with lower D,CO in
IPF and COPD subjects. In both diseases, lower non-classical monocytes and VE capillary A cells were associated with
increased disease severity. Alveolar type 2 cells and alveolar macrophages had the highest number of genes with cell
type-specific differential expression by disease severity in COPD and IPF. In IPF, genes implicated in the pathogenesis
of IPF, such as matrix metallopeptidase 7, growth differentiation factor 15, and eph receptor B2, were associated with
disease severity in a cell type-specific manner.
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Conclusions Utilization of RNA-seq deconvolution enabled us to pinpoint cell types present in the lungs that are
associated with the severity of COPD and IPF. This knowledge offers valuable insight into the alterations within tissues
in more advanced illness, ultimately providing a better understanding of the underlying pathological processes that

drive disease progression.

Keywords Chronic obstructive pulmonary disease, Idiopathic pulmonary fibrosis, RNA sequencing, Computational
deconvolution, Lung function tests, Cell type-specific gene expression.

Background

Chronic obstructive pulmonary disease (COPD) and
idiopathic pulmonary fibrosis (IPF) are debilitating
chronic diseases of the lungs with progressive and com-
plex pathobiology [1, 2]. COPD is characterized by air-
flow limitation, chronic airway inflammation, and lung
parenchymal destruction [1]. IPF is characterized by cel-
lular proliferation, interstitial inflammation, and fibrosis
[2]. COPD and IPF are both related to long-term inhala-
tion of noxious agents (e.g. tobacco smoking) and mani-
fest in older adults as accelerated lung aging [3]. As such,
both diseases are associated with significant morbidity,
mortality, and a high economic burden to our society [4,
5]. Therefore, there is an urgent need for disease preven-
tion and improved treatments.

Genetics plays a role in predisposition to both diseases;
eighty-two and nineteen loci have been associated with
the risk of developing COPD or IPF, respectively [6, 7].
COPD and IPF risk loci are enriched for pathways impor-
tant in regulating cellular functions. For example, COPD
risk loci are enriched for pathways regulating extracel-
lular-matrix, cell-matrix adhesion, histone deacetylase
binding, the Wnt-receptor signaling pathway, SMAD
binding, and the MAPK cascade [6]. Similarly, IPF risk
loci are enriched for pathways related to host defense,
cell-cell adhesion, spindle assembly, transforming growth
factor beta (TGF-B) signaling regulation, and telomere
maintenance [8]. Furthermore, genetic factors are postu-
lated to impact disease susceptibility in a cell type-spe-
cific and context specific manner. Therefore, improved
molecular characterization of cells in the diseased lungs
may provide insight into understanding disease pathobi-
ology, paving the path to new therapeutics.

Investigating the molecular and cellular aspects of
pathological lungs in the context of these diseases holds
great promise for developing preventative and treatment
strategies. In particular, single-cell RNA sequencing
(scRNA-seq) has been used in COPD and IPF patients
to search for putative disease-causing cell types. For
example, scRNA-seq analysis of IPF lungs has identi-
fied aberrant basaloid cells, a rare, disease-enriched cell
type [9]. In COPD lungs, scRNA-seq has identified a high
metallothionein-expressing macrophage subpopulation
enriched in advanced COPD and altered bioenergetics
and cellular stress tolerance in an alveolar type 2 pneu-
mocyte (ATII) subpopulation [10]. A recent multi-omic

single-cell analysis revealed a CD8" T cell subpopulation
(KLRG1+TEMRA cells) to be enriched in COPD lung
tissue [11]. However, the number of subjects included in
these prior studies was modest, limiting the generaliza-
tion to a larger patient population.

Due to the cost and technical limitations, performing
scRNA-seq or tissue dissection experiments combined
with fluorescence-activated cell sorting are yet to be
practical in large epidemiology cohorts (#>1000). More-
over, the impact of tissue dissociation on gene expression
in fluorescence-activated cell sorting (FACS) and scRNA-
seq protocols remains poorly understood. Given that
COPD and IPF are heterogeneous diseases, molecular
studies encompassing a wide range of subjects with cell
type-specific resolution are needed to unravel the com-
plex interplay of cells in disease pathophysiology. To this
end, large-scale clinical and genomic data in population
cohorts may be leveraged to advance our search for cel-
lular drivers of COPD and IPF pathogenesis.

In the present study, we performed computational
deconvolution with bulk lung homogenate RNA-seq data
from 1,026 subjects in the Lung Tissue Research Consor-
tium (LTRC). By leveraging the large-scale omics data,
we tested the hypothesis that there are specific cell types
whose abundance and cell type-specific gene expression
are associated with disease severity in COPD and IPF
subjects.

Methods

Study participants

Research subjects undergoing clinically indicated tho-
racic surgery were recruited to participate in the LTRC,
as previously described [12]. The study was approved by
the Mass General Brigham Institutional Review Board
(Mass General Brigham Human Research Committee)
and all subjects provided written informed consent. The
study was conducted in accordance with the Belmont
Report. The study period was between March 2005 to
February 2019 and study was registered with clinicaltri-
als.gov with study identification (NCT02988388; first
posted December 9, 2016).

COPD subjects included in this analysis had forced
expiratory volume in one second (FEV;) to forced
vital capacity (FVC) ratio<0.70 and FEV,% pre-
dicted <80%. Spirometric severity was characterized by
Global Initiative for Chronic Obstructive Lung Disease
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spirometry grades 2—4. COPD subjects had either path-
ological emphysema and no alternative pathological
diagnosis. Any individual meeting the physiological diag-
nostic criteria for COPD but with a clinical diagnosis of
IPF or sarcoidosis was excluded from the COPD group.

IPF subjects had a clinical diagnosis of IPF based on the
site’s multidisciplinary diagnostic process of all available
data instituted at each participating institution. Control
subjects had normal spirometry with no pathologic diag-
nosis of ILD/IIPs, sarcoidosis, constrictive bronchiolitis,
cellular hypersensitivity pneumonitis, diffuse alveolar
damage, or eosinophilic granuloma.

Computational deconvolution

Computational deconvolution was performed using
CIBERSORTx (available at https://cibersortx.stanford
.edu/) [13]. We used LTRC TOPMed Harmonized phe-
notype data set dated November 30, 2022 and freeze 1
LTRC gene expression data set. Data are available on the
NCBI database of Genotypes and Phenotypes (dbGaP),
accession phs001662. Detailed methods are provided in
the online supplemental methods. Briefly, we corrected
for library generation batch effect using CombatSeq
before deconvolution.

Thirty-eight discrete cell varieties were queried in the
deconvolution; cells were labeled as per Adams et al.
(Supplemental Table 1) [9]. We chose to use this data-
set for two main reasons: (1) the dataset included a wide
range of control, COPD, and IPF subjects. (2) the data-
set included disease-specific cell types such as aberrant
basaloid cells. Moreover, the cell annotations for the
scRNA-seq were shown to be consistent with automated
annotation drawn from multiple cell type definition data-
bases such as the Human Primary Cell Atlas and Blue
ENCODE databases, as previously reported [9].

We used CIBERSORTx absolute mode where the
absolute abundance score was estimated by the median
expression level of all genes in the signature matrix
(matrix generated using the reference scRNA-seq matrix)
divided by the median expression level of all genes in the
sample mixture (LTRC gene expression) [14, 15]. This
approach allows relative abundance comparisons across
samples and cell types.

Cell type-specific differential gene expression analysis

We performed differential gene expression analysis in
cell type-specific gene expression matrices to find out
which genes, even after removing the cellular abundance
effects, were differentially expressed between case and
controls. Using cell type-specific gene expression matri-
ces (gene-by-sample matrices for each cell type) gener-
ated from CIBERSORTX, we performed differential gene
expression analysis using limma [16]. Cell type-specific
differential gene expression was log,-transformed, and
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we included only the genes with varying levels in our
analysis (a built-in function of CIBERSORTX). We tested
the association between cell type-specific gene expres-
sion and disease severity separately in the COPD and
IPF groups. In COPD subjects, disease severity was mea-
sured by lung function tests including forced expiratory
volume in 1 s (FEV,) and diffusing capacity of the lungs
for carbon monoxide as a percent predicted (D;CO %).
In IPF subjects, disease severity was measured by forced
vital capacity (FVC) and D;CO %. Linear models were
adjusted for age, sex, height, ever smoking, and lifetime
smoking intensity (in pack-years). Subject with missing
covariates were excluded. Multiple testing correction was
performed by the Benjamini-Hochberg procedure. Sig-
nificance was determined at a false discovery rate (FDR)
of 5%.

Functional enrichment analysis
We performed functional enrichment analysis using the
STRING database version 12.0 (https://string-db.org)
[17]. The reason for using STRING was to use a com-
plementary method based on publicly available dataset
to explore the functional consequences of differentially
expressed genes. Alongside the protein-protein inter-
action, we also report gene set enrichment results per-
formed using cell type-specific gene expression data
which is part of the STRING interactive online platform.
Using the STRING interactive online platform, we que-
ried active interaction sources and obtained confidence
value in functional protein-protein interactions for pro-
tein network construction. We excluded any protein-pro-
tein interaction source that was based on text mining to
reduce false positive signals. Active interaction sources
include experiments, databases, co-expression, neighbor-
hood, gene fusion, and co-occurrence. The list of genes
used in the functional enrichment analysis are included
in the Supplemental Tables 2 and 3.

Results

Subjects

465 subjects met the case criteria for COPD, 213 subjects
met the case criteria for IPF, and 348 subjects met the
control criteria. Demographic and clinical characteristics
of the 1,026 subjects included in our analysis are shown in
Table 1. Notably, IPF subjects were predominantly male
(70%). The cohort included 90% of self-identified white
subjects. COPD subjects were predominantly smokers
(95.2% have ever smoked) and IPF and control subjects
were 65.3% and 67.8% ever smokers, respectively.

Cellular composition differences among COPD, IPF, and
controls

Of the thirty-eight cell types queried in the deconvolu-
tion, twenty-seven cell types were detected in at least
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Table 1 LTRC subject demographics and lung function tests

Control COPD IPF
n 348 465 213
Age (mean (SD)) 61.51(12.53) 63.35(9.18) 63.55 (8.37)
Sex=Female sex (%) 211 (60.6) 210 (45.2) 64 (30.0)
Race (%)
White 314 (90.2) 423 (91.0) 191 (89.7)
Asian 0(0.0) 0(0.0) 4(19
Black 22(63) 29(6.2) 8(3.8)
Hispanic 10(2.9) 9(1.9 4(1.9)
Other race 2(06) 4(0.9) 6(2.8)
BMI (mean (SD)) 2895 (5.97) 26.30(5.22) 29.80 (5.44)
Ever Smoking (%) 215 (67.8) 415(95.2) 128 (65.3)
Pack years of smoking (mean (SD)) 20.12 (27.32) 47.16 (31.73) 18.84 (24.18)
FEV,/FVC (mean (SD)) 0.77 (0.06) 045 (0.15) 0.83(0.07)
FEV, pp (mean (SD)) 95.87 (12.61) 41.72 (20.27) 65.91 (19.06)
FVC pp (mean (SD)) 96.09 (12.69) 68.36 (18.50) 60.28 (17.75)
D,CO % (mean (SD)) 7322 (15.44) 42.92 (18.87) 38.04(19.59)

Abbreviations: COPD, chronic obstructive pulmonary disease; IPF, idiopathic pulmonary fibrosis; SD, standard deviation; BMI, body mass index; FEV,, forced
expiratory volume in 1s; FVC, forced vital capacity; DLCO, diffusing capacity of the lungs for carbon monoxide as a percent predicted

10% of samples. Of these, there were nineteen cell types
whose median proportion was greater than 1% in any one
of the groups, as shown in Fig. 1.

We compared the cell abundance score between COPD,
IPFE, and control subjects, adjusting for age, sex, height,
ever smoking, and smoking pack-years. Figure 1 sum-
marizes cell types whose abundance scores were signifi-
cantly different (FDR<0.05) between COPD and control
subjects and between IPF and control subjects, respec-
tively. VE Capillary A and ATI were lower in COPD tis-
sue compared to controls. Nine cell types were decreased
and eleven were increased in IPF compared to controls.

Associations between cell-type abundance and disease
severity in COPD and IPF lungs

Next, we identified cell types whose abundance scores in
COPD and IPF lungs were associated with disease sever-
ity measured by FEV; (COPD), FVC (IPF), and D;,CO
(COPD and IPF). In COPD subjects, there were two and
six cell types that were significantly associated with FEV,
and D;CO, respectively (Table 2). In IPF subjects, there
were eleven and nine cell types that were significantly
associated with FVC and D, CO, respectively (Table 2).
Decreases in the abundances of type A capillary vascu-
lar endothelial cells and non-classical monocytes were
associated with worse disease severity in both COPD
and IPF subjects. In IPE, aberrant basaloid cells showed
the strongest association with both FVC and D;CO. In
fact, we performed additional analysis testing the asso-
ciation between cell abundance score and GAP index
[18], a mortality predictive score based on gender (G),
age (A), and physiological measures (P; FVC, and D;CO)
in IPF, and found that aberrant basaloid cells had one of

the strongest associations with the index (Supplemental
Table 4).

Associations between cell type-specific gene expression
and disease severity in COPD and IPF lungs

We estimated cell type-specific gene expression for cell
types whose median proportion was greater than 1%:
ATII, Alveolar Macrophage, SMC, Fibroblast, ATI, Myo-
fibroblast, VE Capillary B, B Plasma, VE Capillary A, ILC
A, VE Venous, Pericyte, and T Cytotoxic. Table 3 sum-
marizes the number of differentially expressed genes in
COPD and IPE. Overall, there were more differentially
expressed genes (FDR<0.05) in IPF lungs than in COPD
lungs. ATII cells and alveolar macrophages were two cell
types with the greatest number of genes with cell type-
specific differential gene expression associated with dis-
ease severity in both diseases. Aberrant basaloid cells,
despite being estimated to represent only 1.3% (IQR:
0-3.5%) of cell proportion in IPF subjects, had the second
largest number of cell type-specific genes whose expres-
sion was positively associated with IPF severity.

Next, we tested the association between cell type-spe-
cific gene expression and disease severity in COPD and
IPF subjects. We included all cell types whose median
proportion was greater than 1% in each disease group.
In COPD subjects, cell types tested were Alveolar Mac-
rophage, ATI, ATII, B Plasma, Fibroblast, ILC A, Myo-
fibroblast, Pericyte, SMC, T Cytotoxic, VE Capillary
A, VE Capillary B, and VE Venous. In IPF subjects, cell
types tested included Aberrant Basaloid, Alveolar Mac-
rophage, ATI, ATII, B Plasma, Fibroblast, ILC A, Myo-
fibroblast, Pericyte, SMC, T Cytotoxic, VE Capillary B,
and VE Venous. Figure 2 (and Supplemental Fig. 2) shows
the number of genes with cell type-specific expression
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Fig. 1 Cell-type composition of lung tissues in the Lung Tissue Research Consortium derived using RNA sequencing deconvolution

Boxplots show cell type abundance score for each cell type split by disease status. Results are shown only for cell types detected in at least 10% of
samples, and the median proportion was greater than 1%. Statistical comparison was tested using linear regression adjusting for age, sex, ever-smoking
and total pack-year. The asterisk (¥) and cross sign (1) denote significant differences (FDR < 0.05) between COPD vs. control and IPF vs. control, respectively.
Abbreviations: COPD, chronic obstructive pulmonary disease; IPF, idiopathic pulmonary fibrosis; ATl, alveolar epithelial type 1 cells; ATII, alveolar epithe-
lial type 2 cells; cDC, classical dendritic cells; ILC, innate lymphoid cells; pDC, plasmacytoid dendritic cells; ncMonocyte, non-classical monocytes; SMC;
smooth muscle cells; VE Capillary A, vascular endothelial - aerocyte capillary; VE Capillary B, vascular endothelial - general capillary; VE Venous, venous

vascular endothelial

associated with lung function measures in COPD and
IPF subjects. We also provide a list of all cell type-specific
gene expression associations with disease severity in IPF
and COPD (Supplemental Tables 5 and 6, available online
on GitHub repository (https://github.com/ryumh/LTRC_
RNAseq_Deconvolution).) Fig. 2 also shows the number

of genes with cell that overlap between the two differ-
ent measures of disease severity. Supplemental Tables
7 and 8 summarize the number of significant cell type-
specific gene expressions associated with disease severity
in COPD and IPF, respectively. Of note, besides the ATII
cells, which were the most abundant cell types in the
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Table 2 Cell-type transcriptome abundance score associated with disease severity in COPD and IPF

Disease Outcome Cell type Beta 95% Cl Adjusted p value
COPD FEV, VE Capillary A 0.11 0.06,0.16 0.001
COPD FEV, ncMonocyte 0.09 0.03,0.14 0.02
COPD D,CO ATI 4.79 2.99,6.59 <0.001
COPD D.CO Macrophage -4.75 -7.02,-249 <0.001
COPD D,CO ncMonocyte 3.71 1.94,5.49 <0.001
COPD D,CO VE Capillary A 3.69 195,544 <0.001
COPD D.CO cMonocyte -3.16 -547,-0.86 0.031
COPD D,CO ILCA 2.72 0.93,4.51 0.016
IPF FvC ncMonocyte 0.31 0.21,04 <0.001
IPF FVC Aberrant Basaloid -0.24 -0.34,-0.14 <0.001
IPF FVC Macrophage -0.20 -0.31,-0.1 0.001
IPF FVC cMonocyte -0.19 -0.29-0.09 0.001
IPF FVC T Cytotoxic 0.19 0.09,0.29 0.002
IPF FvC ATII 0.16 0.06,0.27 0.007
IPF FVC VE Venous -0.16 -0.27,-0.06 0.012
IPF FVC Alveolar Macrophage 0.15 0.05,0.25 0.016
IPF FVC VE Capillary A 0.15 0.05,0.26 0016
IPF FVC T -0.14 -0.24,-0.03 0.029
IPF FvC pDC -0.12 -0.23,-0.02 0.046
IPF b.Co Aberrant Basaloid -6.42 -9.25,-3.58 <0.001
IPF D.CO Alveolar Macrophage 6.08 3.19,897 0.001
IPF D.CO ATl 5.65 28851 0.001
IPF D.CO T Cytotoxic 5.07 204,81 0.006
IPF D,CO VE Capillary A 5.06 2.1,8.03 0.006
IPF BEE) ncMonocyte 4.79 1.89,7.69 0.006
IPF D,CO Macrophage -4.64 -7.64,-1.65 0.01
IPF D,CO cMonocyte -4.34 -7.53-1.15 0.023
IPF D.CO T Regulatory 392 1.06,6.77 0.023

Statistical comparison was tested using linear regression adjusting for age, sex, height, ever smoking and total pack-year. Beta was estimated using absolute value
of outcome measures and are estimated per one standard deviation change in CIBERSORTx absolute abundance score. Pre-bronchodilator FEV, and DLCO percent
predicted were used. Abbreviations: COPD, chronic obstructive pulmonary disease; IPF, idiopathic pulmonary fibrosis; Cl, confidence interval; FEV,, forced expiratory
volume in 1s; FVC, forced vital capacity; DLCO, diffusing capacity of the lungs for carbon monoxide as a percent predicted; VE Capillary A, vascular endothelial -
aerocyte capillary; ncMonocyte, non-classical monocytes; cMonocyte, classical monocytes; ATl, alveolar epithelial type 1 cells; ILC A, type A innate lymphoid cells;
ATII, alveolar epithelial type 2 cells; VE Venous, vascular endothelial venous cells; pDC, plasmacytoid dendritic cells

samples estimated using RNA-seq deconvolution, alveo-
lar macrophages in COPD and aberrant basaloid cells
had the highest number of genes associated with disease
severity in both COPD and IPE. Hence, we chose these
two cell types to perform functional enrichment analyses
and highlight their upregulated function.

Functional enrichment analysis of genes associated with
COPD severity in alveolar macrophages

We performed functional enrichment analysis using the
list of genes whose expression levels in alveolar macro-
phages were positively associated with COPD severity as
measured by FEV; and D;CO. We queried all matched
proteins encoded by the 77 genes identified in this cell
type-specific differential gene expression analysis. In the
protein-protein interaction (PPI) network analysis in
the STRING database, we found significant functional
enrichment with 144 edges (expected number of edges
60; PPI enrichment p-value<1x10‘16). Figure 3 shows

the PPI network for proteins encoded by the alveolar
macrophage gene expression that is positively associ-
ated with COPD severity. The result of the functional
enrichment analysis is included in the online Supplement
Table 8. The most significantly enriched term was from
the Reactome database for Eukaryotic Translation Elon-
gation (Reactome term HSA-156842: FDR=1.25x10"'1).

Functional enrichment analysis of genes associated with
IPF severity in aberrant basaloid cells

We performed functional enrichment analysis using the
list of genes whose expression levels in aberrant basa-
loid cells were positively associated with IPF severity as
measured by FVC and D;CO. We queried all matched
proteins encoded by the 185 genes identified in the
cell type-specific differential gene expression analysis.
We found significant functional enrichment with 123
edges (expected number of edges 53; PPI enrichment
p-value=2.22x1071%). Figure 4 shows the PPI network
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Table 3 Cell type-specific differential gene expression in COPD and IPF lungs compared to control lungs

Cell type Total genes in Number of upregu- Number of downregu-  Number of upregu- Number of

analysis lated genes in COPD  lated genes in COPD lated genes in IPF downregu-

lated genes
in IPF

ATII 10,964 272 2088 3886 2967

Alveolar Macrophage 5614 228 772 1847 1275

SMC 4265 40 183 1922 604

Fibroblast 3500 89 254 1268 658

ATI 3362 252 108 819 578

Myofibroblast 3099 120 399 1225 612

VE Capillary B 2446 54 338 412 943

B Plasma 2325 116 50 1039 460

VE Capillary A 2063 73 284 404 669

ILCA 2049 8 1 332 240

VE Venous 1310 33 114 230 374

Pericyte 1210 26 56 326 275

T Cytotoxic 1139 7 2 192 81

Associations were tested using limma [16] on variable genes only. Signficant association were adjusted to FDR 5%. Abbreviations: COPD, chronic obstructive
pulmonary disease; IPF, idiopathic pulmonary fibrosis; ATlI, alveolar epithelial type 2 cells; SMC, smooth muscle cells; ATI, alveolar epithelial type 1 cells; VE Capillary
B, vascular endothelial - general capillary; VE Capillary A, vascular endothelial - aerocyte capillary; ILC A, type A innate lymphoid cells; VE Venous, vascular endothelial

venous cells

for proteins encoded by the aberrant basaloid genes
positively associated with IPF severity. The result of the
functional enrichment analysis is included in the Online
Supplement Table 9. Formation of the cornified envelope
(STRING Cluster ID CL34114; FDR=5.85x10"1%) was
indicated as the top most significant functional enrich-
ment term.

Discussion

We report the results of a computational tissue profiling
analysis of bulk lung RNA-seq data from 1,026 subjects
in the LTRC. We report the cellular composition and cell
type-specific gene expression in lung tissue associated
with disease severity in COPD and IPF subjects, extend-
ing the single-cell experiment discoveries from a modest
sample size (<100 subjects) to a large population cohort
(>1000 subjects). We trained a well-established and
widely implemented computational RNA-seq deconvolu-
tion algorithm, CIBERSORTx [13, 19, 20], using publicly
available scRNA-seq data from control, COPD, and IPF
subjects [9].

We found that IPF lung tissues showed the most diver-
gence from control lungs in cellular composition, with
eighteen cell types whose abundance score was different
from the controls, adjusting for covariates. Our results
showed in a large IPF sample the association of aber-
rant basaloid cells and their expression with IPF and IPF
severity; the association with IPF severity has not been
previously reported. We also found that abundances of
eight cell types—ncMonocyte, Aberrant Basaloid, Mac-
rophage, cMonocyte, T Cytotoxic, ATII, Alveolar Macro-
phage, and VE Capillary A—were associated with disease
severity in the IPF subjects. Structural cells such as ATII,

aberrant basaloid cells, myofibroblasts, and fibroblasts
were among the cell types with the most number of
genes associated with IPF severity. Notably, we found
that aberrant basaloid cells were enriched in IPF lungs,
and that the abundance of this disease-enriched cell type
increased as the disease severity increased. It is notable
that aberrant basaloid proportions remained below 1% in
COPD.

In aberrant basaloid cells, expression levels of matrix
metallopeptidase 7 (MMP?), growth differentiation fac-
tor 15 (GDF15), and eph receptor B2 (EPHB2), were neg-
atively associated with FVC or D; CO. In other words, the
expression of these genes increased in more severe dis-
ease. These genes and the protein they encode have been
implicated in the pathogenesis of IPF [21-24]. Our data
supports the notion that GDF15 may be a circulating bio-
marker reflective of aberrant basaloid cells in the airway
epithelium [23]. We also found that EPHB2 level in myo-
fibroblasts was positively associated with IPF severity,
extending the previous scRNA-seq finding that demon-
strated increase level of EPHB2 in IPF subjects compared
to controls [9].

The functional enrichment analysis showed that the
formation of the cornified envelope and keratinization
were functionally enriched in aberrant basaloid cells
with increasing severity of IPE. The cornified cell enve-
lope is a highly insoluble and extremely tough structure
that forms under the epithelium to help the epithelium
defend against reactive oxygen species [25]. This may
result from and/or be a contributing factor to the tissue
fibrosis in IPF; however, alteration in this cellular func-
tion has not been implicated in IPF previously. Therefore,
this result will require further validation at the protein
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Fig. 2 Cell type-specific gene expression associated with disease severity in chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary

fibrosis (IPF)

Venn diagrams show the five cell types with the most cell type-specific gene expression levels associated with disease severity in COPD and IPF lungs.
Genes associated with the diffusing capacity of the lungs for carbon monoxide as a percent predicted, forced expiratory volume in 1 s, and forced vital

capacity are colored blue, pink, and green, respectively

level. In addition to these functions, the protein inter-
action network analysis also highlighted the increased
expression of matrix metalloproteases such as MMP7,
MMPI0, and MMP1, along with their functionally asso-
ciated genes such as lipopolysaccharide binding protein
(LBP), lipocalin 2 (LCN2), and transcobalaminl (TCN1),
in aberrant basaloid cells with increased disease severity.
These results suggest that increased abundance of aber-
rant basaloid cells and their gene expression of cellular
processes involved in aberrant barrier formation and
extracellular matrix modification is associated with IPF
severity.

We also showed that cellular composition is different
between COPD and controls and that there were several

cell types whose abundance was associated with COPD
severity. There was a significant decrease in alveolar type
1 cells and capillary type A vascular endothelial cells in
COPD lungs compared to controls. Capillary type A vas-
cular endothelial cells were also negatively associated
with increasing disease severity as measured by FEV,
and D;CO. This observation provides additional evi-
dence linking endothelial injury to COPD and extends
earlier findings that identified injury to pulmonary ves-
sels in lung tissue from COPD patients [26]. Beyond the
pulmonary vasculature, the abundance of macrophage,
ncMonocyte, and cMonocyte were associated with
D;CO, but only ncMonocytes abundance was signifi-
cantly associated with FEV;.
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Monocytes and macrophages play an important role
in pulmonary host defenses through their phagocytic
activities and regulation of innate and adaptive immu-
nity. The circulating monocyte pool and macrophages
in tissue are composed of multiple subsets, each with a
specialized function. Animal models and human ex vivo
experiments have demonstrated the dysregulated func-
tions of macrophage populations in COPD lungs [27].
Extensive molecular characterizations of immune cells

in COPD, particularly the lung macrophage populations,
have been conducted using flow cytometry and other
low-throughput molecular techniques [28—-30]. However,
due to the practicality of needing fresh samples and the
experimental cost, tissue and immune profiling studies
have been limited in terms of sample sizes (typically <100
subjects) and the small number of molecular targets.
Recently, scRNA-seq studies with more molecular targets
have been conducted and highlighted immunological



Ryu et al. BMC Genomics (2024) 25:1192

dysregulation of monocytes and macrophages in COPD
[9, 10, 31, 32]. However, the number of COPD donors
was small in these studies, and there was limited infor-
mation on the disease phenotypes, which limited the
ability to test for associations with disease severity, clini-
cal outcomes, and pathological changes. Our computa-
tional tissue profiling in a large-scale cohort builds on
this important body of work and extends the findings
from scRNA-seq to an epidemiological cohort.

Given the important role alveolar macrophages play
in COPD pathogenesis, we focused on this cell type for
functional enrichment analysis, which highlighted that
increased disease severity was associated with increased
mRNA encoding for proteins involved in translation and
energy metabolism. This finding agrees with previous
studies that macrophage metabolic function is associated
with COPD and supports the notion that metabolomic
reprogramming of lung macrophages is important in the
pathogenesis of COPD [33, 34]. We provide the list of cell
type-specific genes associated with COPD and IPF sever-
ity (Supplemental Tables 5 and 6) for the community to
explore using the cell type-specific functional enrichment
using tools such as STRING database (https://string-db.o
rg/) for other cell types.

There are some limitations of our study. First, RNA-
seq-based deconvolution methods are more suited for
the analysis of highly abundant cell types (cell types
with frequency>1%) [13, 19]. It is also influenced by the
size of the cell type-specific transcriptome. This makes
rare cell types with small transcriptomes challenging to
study using the deconvolution approach. To overcome
this issue, future studies may combine RNA-seq decon-
volution with results based on other omics (e.g., DNA
methylation-based deconvolution). Second, bulk tissue
analysis is limited in spatial resolution. This limits the
understanding of the spatial distribution and interaction
of cells in the diseased lungs. Nevertheless, our study
informs which cell types may be the better candidates
to be the focus of future spatial transcriptomic investi-
gations. Finally, the study was limited to a population of
predominantly white subjects with access to U.S. aca-
demic medical centers. This may limit the generalizability
and calls for future efforts to include subjects from multi-
ethnic and multi-national backgrounds.

Conclusions

Using computational deconvolution, this study extends
single-cell experimental discoveries from a modest sam-
ple size to a large population cohort and contributes to
our understanding of tissue heterogeneity in COPD and
IPF pathobiology. This knowledge offers insight into the
alterations within lung tissue in advanced illness, provid-
ing a better understanding of the underlying pathological
processes that drive disease progression.
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ATl Alveolar type 1 pneumocytes

ATII Alveolar type 2 pneumocytes

COPD Chronic obstructive pulmonary disease
D,CO Diffusing capacity for carbon monoxide
FACS Fluorescence-activated cell sorting

FDR False discovery rate

FEV, Forced expiratory volume in one second
FVC Forced vital capacity

IIPs Idiopathic interstitial pneumonias

ILCA Type A innate lymphoid cells

ILD Interstitial lung disease

IPF Idiopathic pulmonary fibrosis

IQR Interquartile range

LTRC Lung Tissue Research Consortium
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SMC Smooth muscle cells

TGF-B Transforming growth factor beta
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VE Capillary B Vascular endothelial - general capillary
VE Venous Vascular endothelial venous cells
cMonocyte Classical monocytes

ncMonocyte Non-classical monocytes

pDC Plasmacytoid dendritic cells, and
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