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Abstract
Background Chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) are debilitating 
diseases associated with divergent histopathological changes in the lungs. At present, due to cost and technical 
limitations, profiling cell types is not practical in large epidemiology cohorts (n > 1000). Here, we used computational 
deconvolution to identify cell types in COPD and IPF lungs whose abundances and cell type-specific gene expression 
are associated with disease diagnosis and severity.

Results We analyzed lung tissue RNA-seq data from 1026 subjects (COPD, n = 465; IPF, n = 213; control, n = 348) from 
the Lung Tissue Research Consortium. We performed RNA-seq deconvolution, querying thirty-eight discrete cell-type 
varieties in the lungs. We tested whether deconvoluted cell-type abundance and cell type-specific gene expression 
were associated with disease severity. The abundance score of twenty cell types significantly differed between IPF and 
control lungs. In IPF subjects, eleven and nine cell types were significantly associated with forced vital capacity (FVC) 
and diffusing capacity for carbon monoxide (DLCO), respectively. Aberrant basaloid cells, a rare cells found in fibrotic 
lungs, were associated with worse FVC and DLCO in IPF subjects, indicating that this aberrant epithelial population 
increased with disease severity. Alveolar type 1 and vascular endothelial (VE) capillary A were decreased in COPD 
lungs compared to controls. An increase in macrophages and classical monocytes was associated with lower DLCO in 
IPF and COPD subjects. In both diseases, lower non-classical monocytes and VE capillary A cells were associated with 
increased disease severity. Alveolar type 2 cells and alveolar macrophages had the highest number of genes with cell 
type-specific differential expression by disease severity in COPD and IPF. In IPF, genes implicated in the pathogenesis 
of IPF, such as matrix metallopeptidase 7, growth differentiation factor 15, and eph receptor B2, were associated with 
disease severity in a cell type-specific manner.
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Background
Chronic obstructive pulmonary disease (COPD) and 
idiopathic pulmonary fibrosis (IPF) are debilitating 
chronic diseases of the lungs with progressive and com-
plex pathobiology [1, 2]. COPD is characterized by air-
flow limitation, chronic airway inflammation, and lung 
parenchymal destruction [1]. IPF is characterized by cel-
lular proliferation, interstitial inflammation, and fibrosis 
[2]. COPD and IPF are both related to long-term inhala-
tion of noxious agents (e.g. tobacco smoking) and mani-
fest in older adults as accelerated lung aging [3]. As such, 
both diseases are associated with significant morbidity, 
mortality, and a high economic burden to our society [4, 
5]. Therefore, there is an urgent need for disease preven-
tion and improved treatments.

Genetics plays a role in predisposition to both diseases; 
eighty-two and nineteen loci have been associated with 
the risk of developing COPD or IPF, respectively [6, 7]. 
COPD and IPF risk loci are enriched for pathways impor-
tant in regulating cellular functions. For example, COPD 
risk loci are enriched for pathways regulating extracel-
lular-matrix, cell-matrix adhesion, histone deacetylase 
binding, the Wnt-receptor signaling pathway, SMAD 
binding, and the MAPK cascade [6]. Similarly, IPF risk 
loci are enriched for pathways related to host defense, 
cell-cell adhesion, spindle assembly, transforming growth 
factor beta (TGF-β) signaling regulation, and telomere 
maintenance [8]. Furthermore, genetic factors are postu-
lated to impact disease susceptibility in a cell type-spe-
cific and context specific manner. Therefore, improved 
molecular characterization of cells in the diseased lungs 
may provide insight into understanding disease pathobi-
ology, paving the path to new therapeutics.

Investigating the molecular and cellular aspects of 
pathological lungs in the context of these diseases holds 
great promise for developing preventative and treatment 
strategies. In particular, single-cell RNA sequencing 
(scRNA-seq) has been used in COPD and IPF patients 
to search for putative disease-causing cell types. For 
example, scRNA-seq analysis of IPF lungs has identi-
fied aberrant basaloid cells, a rare, disease-enriched cell 
type [9]. In COPD lungs, scRNA-seq has identified a high 
metallothionein-expressing macrophage subpopulation 
enriched in advanced COPD and altered bioenergetics 
and cellular stress tolerance in an alveolar type 2 pneu-
mocyte (ATII) subpopulation [10]. A recent multi-omic 

single-cell analysis revealed a CD8+ T cell subpopulation 
(KLRG1 + TEMRA cells) to be enriched in COPD lung 
tissue [11]. However, the number of subjects included in 
these prior studies was modest, limiting the generaliza-
tion to a larger patient population.

Due to the cost and technical limitations, performing 
scRNA-seq or tissue dissection experiments combined 
with fluorescence-activated cell sorting are yet to be 
practical in large epidemiology cohorts (n > 1000). More-
over, the impact of tissue dissociation on gene expression 
in fluorescence-activated cell sorting (FACS) and scRNA-
seq protocols remains poorly understood. Given that 
COPD and IPF are heterogeneous diseases, molecular 
studies encompassing a wide range of subjects with cell 
type-specific resolution are needed to unravel the com-
plex interplay of cells in disease pathophysiology. To this 
end, large-scale clinical and genomic data in population 
cohorts may be leveraged to advance our search for cel-
lular drivers of COPD and IPF pathogenesis.

In the present study, we performed computational 
deconvolution with bulk lung homogenate RNA-seq data 
from 1,026 subjects in the Lung Tissue Research Consor-
tium (LTRC). By leveraging the large-scale omics data, 
we tested the hypothesis that there are specific cell types 
whose abundance and cell type-specific gene expression 
are associated with disease severity in COPD and IPF 
subjects.

Methods
Study participants
Research subjects undergoing clinically indicated tho-
racic surgery were recruited to participate in the LTRC, 
as previously described [12]. The study was approved by 
the Mass General Brigham Institutional Review Board 
(Mass General Brigham Human Research Committee) 
and all subjects provided written informed consent. The 
study was conducted in accordance with the Belmont 
Report. The study period was between March 2005 to 
February 2019 and study was registered with clinicaltri-
als.gov with study identification (NCT02988388; first 
posted December 9, 2016).

COPD subjects included in this analysis had forced 
expiratory volume in one second (FEV1) to forced 
vital capacity (FVC) ratio < 0.70 and FEV1% pre-
dicted < 80%. Spirometric severity was characterized by 
Global Initiative for Chronic Obstructive Lung Disease 

Conclusions Utilization of RNA-seq deconvolution enabled us to pinpoint cell types present in the lungs that are 
associated with the severity of COPD and IPF. This knowledge offers valuable insight into the alterations within tissues 
in more advanced illness, ultimately providing a better understanding of the underlying pathological processes that 
drive disease progression.
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spirometry grades 2–4. COPD subjects had either path-
ological emphysema and no alternative pathological 
diagnosis. Any individual meeting the physiological diag-
nostic criteria for COPD but with a clinical diagnosis of 
IPF or sarcoidosis was excluded from the COPD group.

IPF subjects had a clinical diagnosis of IPF based on the 
site’s multidisciplinary diagnostic process of all available 
data instituted at each participating institution. Control 
subjects had normal spirometry with no pathologic diag-
nosis of ILD/IIPs, sarcoidosis, constrictive bronchiolitis, 
cellular hypersensitivity pneumonitis, diffuse alveolar 
damage, or eosinophilic granuloma.

Computational deconvolution
Computational deconvolution was performed using 
CIBERSORTx (available at  h t t  p s : /  / c i  b e  r s o r t x . s t a n f o r d 
. e d u /     ) [13]. We used LTRC TOPMed Harmonized phe-
notype data set dated November 30, 2022 and freeze 1 
LTRC gene expression data set. Data are available on the 
NCBI database of Genotypes and Phenotypes (dbGaP), 
accession phs001662. Detailed methods are provided in 
the online supplemental methods. Briefly, we corrected 
for library generation batch effect using CombatSeq 
before deconvolution.

Thirty-eight discrete cell varieties were queried in the 
deconvolution; cells were labeled as per Adams et al. 
(Supplemental Table 1) [9]. We chose to use this data-
set for two main reasons: (1) the dataset included a wide 
range of control, COPD, and IPF subjects. (2) the data-
set included disease-specific cell types such as aberrant 
basaloid cells. Moreover, the cell annotations for the 
scRNA-seq were shown to be consistent with automated 
annotation drawn from multiple cell type definition data-
bases such as the Human Primary Cell Atlas and Blue 
ENCODE databases, as previously reported [9].

We used CIBERSORTx absolute mode where the 
absolute abundance score was estimated by the median 
expression level of all genes in the signature matrix 
(matrix generated using the reference scRNA-seq matrix) 
divided by the median expression level of all genes in the 
sample mixture (LTRC gene expression) [14, 15]. This 
approach allows relative abundance comparisons across 
samples and cell types.

Cell type-specific differential gene expression analysis
We performed differential gene expression analysis in 
cell type-specific gene expression matrices to find out 
which genes, even after removing the cellular abundance 
effects, were differentially expressed between case and 
controls. Using cell type-specific gene expression matri-
ces (gene-by-sample matrices for each cell type) gener-
ated from CIBERSORTx, we performed differential gene 
expression analysis using limma [16]. Cell type-specific 
differential gene expression was log2-transformed, and 

we included only the genes with varying levels in our 
analysis (a built-in function of CIBERSORTx). We tested 
the association between cell type-specific gene expres-
sion and disease severity separately in the COPD and 
IPF groups. In COPD subjects, disease severity was mea-
sured by lung function tests including forced expiratory 
volume in 1 s (FEV1) and diffusing capacity of the lungs 
for carbon monoxide as a percent predicted (DLCO %). 
In IPF subjects, disease severity was measured by forced 
vital capacity (FVC) and DLCO %. Linear models were 
adjusted for age, sex, height, ever smoking, and lifetime 
smoking intensity (in pack-years). Subject with missing 
covariates were excluded. Multiple testing correction was 
performed by the Benjamini-Hochberg procedure. Sig-
nificance was determined at a false discovery rate (FDR) 
of 5%.

Functional enrichment analysis
We performed functional enrichment analysis using the 
STRING database version 12.0 (https://string-db.org) 
[17]. The reason for using STRING was to use a com-
plementary method based on publicly available dataset 
to explore the functional consequences of differentially 
expressed genes. Alongside the protein-protein inter-
action, we also report gene set enrichment results per-
formed using cell type-specific gene expression data 
which is part of the STRING interactive online platform.

Using the STRING interactive online platform, we que-
ried active interaction sources and obtained confidence 
value in functional protein-protein interactions for pro-
tein network construction. We excluded any protein-pro-
tein interaction source that was based on text mining to 
reduce false positive signals. Active interaction sources 
include experiments, databases, co-expression, neighbor-
hood, gene fusion, and co-occurrence. The list of genes 
used in the functional enrichment analysis are included 
in the Supplemental Tables 2 and 3.

Results
Subjects
465 subjects met the case criteria for COPD, 213 subjects 
met the case criteria for IPF, and 348 subjects met the 
control criteria. Demographic and clinical characteristics 
of the 1,026 subjects included in our analysis are shown in 
Table 1. Notably, IPF subjects were predominantly male 
(70%). The cohort included 90% of self-identified white 
subjects. COPD subjects were predominantly smokers 
(95.2% have ever smoked) and IPF and control subjects 
were 65.3% and 67.8% ever smokers, respectively.

Cellular composition differences among COPD, IPF, and 
controls
Of the thirty-eight cell types queried in the deconvolu-
tion, twenty-seven cell types were detected in at least 

https://cibersortx.stanford.edu/
https://cibersortx.stanford.edu/
https://string-db.org
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10% of samples. Of these, there were nineteen cell types 
whose median proportion was greater than 1% in any one 
of the groups, as shown in Fig. 1.

We compared the cell abundance score between COPD, 
IPF, and control subjects, adjusting for age, sex, height, 
ever smoking, and smoking pack-years. Figure  1 sum-
marizes cell types whose abundance scores were signifi-
cantly different (FDR < 0.05) between COPD and control 
subjects and between IPF and control subjects, respec-
tively. VE Capillary A and ATI were lower in COPD tis-
sue compared to controls. Nine cell types were decreased 
and eleven were increased in IPF compared to controls.

Associations between cell-type abundance and disease 
severity in COPD and IPF lungs
Next, we identified cell types whose abundance scores in 
COPD and IPF lungs were associated with disease sever-
ity measured by FEV1 (COPD), FVC (IPF), and DLCO 
(COPD and IPF). In COPD subjects, there were two and 
six cell types that were significantly associated with FEV1 
and DLCO, respectively (Table 2). In IPF subjects, there 
were eleven and nine cell types that were significantly 
associated with FVC and DLCO, respectively (Table  2). 
Decreases in the abundances of type A capillary vascu-
lar endothelial cells and non-classical monocytes were 
associated with worse disease severity in both COPD 
and IPF subjects. In IPF, aberrant basaloid cells showed 
the strongest association with both FVC and DLCO. In 
fact, we performed additional analysis testing the asso-
ciation between cell abundance score and GAP index 
[18], a mortality predictive score based on gender (G), 
age (A), and physiological measures (P; FVC, and DLCO) 
in IPF, and found that aberrant basaloid cells had one of 

the strongest associations with the index (Supplemental 
Table 4).

Associations between cell type-specific gene expression 
and disease severity in COPD and IPF lungs
We estimated cell type-specific gene expression for cell 
types whose median proportion was greater than 1%: 
ATII, Alveolar Macrophage, SMC, Fibroblast, ATI, Myo-
fibroblast, VE Capillary B, B Plasma, VE Capillary A, ILC 
A, VE Venous, Pericyte, and T Cytotoxic. Table  3 sum-
marizes the number of differentially expressed genes in 
COPD and IPF. Overall, there were more differentially 
expressed genes (FDR < 0.05) in IPF lungs than in COPD 
lungs. ATII cells and alveolar macrophages were two cell 
types with the greatest number of genes with cell type-
specific differential gene expression associated with dis-
ease severity in both diseases. Aberrant basaloid cells, 
despite being estimated to represent only 1.3% (IQR: 
0-3.5%) of cell proportion in IPF subjects, had the second 
largest number of cell type-specific genes whose expres-
sion was positively associated with IPF severity.

Next, we tested the association between cell type-spe-
cific gene expression and disease severity in COPD and 
IPF subjects. We included all cell types whose median 
proportion was greater than 1% in each disease group. 
In COPD subjects, cell types tested were Alveolar Mac-
rophage, ATI, ATII, B Plasma, Fibroblast, ILC A, Myo-
fibroblast, Pericyte, SMC, T Cytotoxic, VE Capillary 
A, VE Capillary B, and VE Venous. In IPF subjects, cell 
types tested included Aberrant Basaloid, Alveolar Mac-
rophage, ATI, ATII, B Plasma, Fibroblast, ILC A, Myo-
fibroblast, Pericyte, SMC, T Cytotoxic, VE Capillary B, 
and VE Venous. Figure 2 (and Supplemental Fig. 2) shows 
the number of genes with cell type-specific expression 

Table 1 LTRC subject demographics and lung function tests
Control COPD IPF

n 348 465 213
Age (mean (SD)) 61.51 (12.53) 63.35 (9.18) 63.55 (8.37)
Sex = Female sex (%) 211 (60.6) 210 (45.2) 64 (30.0)
Race (%)
White 314 (90.2) 423 (91.0) 191 (89.7)
Asian 0 ( 0.0) 0 ( 0.0) 4 ( 1.9)
Black 22 ( 6.3) 29 ( 6.2) 8 ( 3.8)
Hispanic 10 ( 2.9) 9 ( 1.9) 4 ( 1.9)
Other race 2 ( 0.6) 4 ( 0.9) 6 ( 2.8)
BMI (mean (SD)) 28.95 (5.97) 26.30 (5.22) 29.80 (5.44)
Ever Smoking (%) 215 (67.8) 415 (95.2) 128 (65.3)
Pack years of smoking (mean (SD)) 20.12 (27.32) 47.16 (31.73) 18.84 (24.18)
FEV1/FVC (mean (SD)) 0.77 (0.06) 0.45 (0.15) 0.83 (0.07)
FEV1 pp (mean (SD)) 95.87 (12.61) 41.72 (20.27) 65.91 (19.06)
FVC pp (mean (SD)) 96.09 (12.69) 68.36 (18.50) 60.28 (17.75)
DLCO % (mean (SD)) 73.22 (15.44) 42.92 (18.87) 38.04 (19.59)
Abbreviations: COPD, chronic obstructive pulmonary disease; IPF, idiopathic pulmonary fibrosis; SD, standard deviation; BMI, body mass index; FEV1, forced 
expiratory volume in 1s; FVC, forced vital capacity; DLCO, diffusing capacity of the lungs for carbon monoxide as a percent predicted
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associated with lung function measures in COPD and 
IPF subjects. We also provide a list of all cell type-specific 
gene expression associations with disease severity in IPF 
and COPD (Supplemental Tables 5 and 6, available online 
on GitHub repository  (   h t  t p s  : / / g  i t  h u b . c o m / r y u m h / L T R C _ 
R N A s e q _ D e c o n v o l u t i o n )     . ) Fig. 2 also shows the number 

of genes with cell that overlap between the two differ-
ent measures of disease severity. Supplemental Tables 
7 and 8 summarize the number of significant cell type-
specific gene expressions associated with disease severity 
in COPD and IPF, respectively. Of note, besides the ATII 
cells, which were the most abundant cell types in the 

Fig. 1 Cell-type composition of lung tissues in the Lung Tissue Research Consortium derived using RNA sequencing deconvolution
Boxplots show cell type abundance score for each cell type split by disease status. Results are shown only for cell types detected in at least 10% of 
samples, and the median proportion was greater than 1%. Statistical comparison was tested using linear regression adjusting for age, sex, ever-smoking 
and total pack-year. The asterisk (*) and cross sign (†) denote significant differences (FDR < 0.05) between COPD vs. control and IPF vs. control, respectively. 
Abbreviations: COPD, chronic obstructive pulmonary disease; IPF, idiopathic pulmonary fibrosis; ATI, alveolar epithelial type 1 cells; ATII, alveolar epithe-
lial type 2 cells; cDC, classical dendritic cells; ILC, innate lymphoid cells; pDC, plasmacytoid dendritic cells; ncMonocyte, non-classical monocytes; SMC; 
smooth muscle cells; VE Capillary A, vascular endothelial - aerocyte capillary; VE Capillary B, vascular endothelial - general capillary; VE Venous, venous 
vascular endothelial

 

https://github.com/ryumh/LTRC_RNAseq_Deconvolution)
https://github.com/ryumh/LTRC_RNAseq_Deconvolution)
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samples estimated using RNA-seq deconvolution, alveo-
lar macrophages in COPD and aberrant basaloid cells 
had the highest number of genes associated with disease 
severity in both COPD and IPF. Hence, we chose these 
two cell types to perform functional enrichment analyses 
and highlight their upregulated function.

Functional enrichment analysis of genes associated with 
COPD severity in alveolar macrophages
We performed functional enrichment analysis using the 
list of genes whose expression levels in alveolar macro-
phages were positively associated with COPD severity as 
measured by FEV1 and DLCO. We queried all matched 
proteins encoded by the 77 genes identified in this cell 
type-specific differential gene expression analysis. In the 
protein-protein interaction (PPI) network analysis in 
the STRING database, we found significant functional 
enrichment with 144 edges (expected number of edges 
60; PPI enrichment p-value < 1 × 10− 16). Figure  3 shows 

the PPI network for proteins encoded by the alveolar 
macrophage gene expression that is positively associ-
ated with COPD severity. The result of the functional 
enrichment analysis is included in the online Supplement 
Table  8. The most significantly enriched term was from 
the Reactome database for Eukaryotic Translation Elon-
gation (Reactome term HSA-156842: FDR = 1.25 × 10− 11).

Functional enrichment analysis of genes associated with 
IPF severity in aberrant basaloid cells
We performed functional enrichment analysis using the 
list of genes whose expression levels in aberrant basa-
loid cells were positively associated with IPF severity as 
measured by FVC and DLCO. We queried all matched 
proteins encoded by the 185 genes identified in the 
cell type-specific differential gene expression analysis. 
We found significant functional enrichment with 123 
edges (expected number of edges 53; PPI enrichment 
p-value = 2.22 × 10− 16). Figure  4 shows the PPI network 

Table 2 Cell-type transcriptome abundance score associated with disease severity in COPD and IPF
Disease Outcome Cell type Beta 95% CI Adjusted p value
COPD FEV1 VE Capillary A 0.11 0.06,0.16 0.001
COPD FEV1 ncMonocyte 0.09 0.03,0.14 0.02
COPD DLCO ATI 4.79 2.99,6.59 < 0.001
COPD DLCO Macrophage -4.75 -7.02,-2.49 < 0.001
COPD DLCO ncMonocyte 3.71 1.94,5.49 < 0.001
COPD DLCO VE Capillary A 3.69 1.95,5.44 < 0.001
COPD DLCO cMonocyte -3.16 -5.47,-0.86 0.031
COPD DLCO ILC A 2.72 0.93,4.51 0.016
IPF FVC ncMonocyte 0.31 0.21,0.4 < 0.001
IPF FVC Aberrant Basaloid -0.24 -0.34,-0.14 < 0.001
IPF FVC Macrophage -0.20 -0.31,-0.1 0.001
IPF FVC cMonocyte -0.19 -0.29,-0.09 0.001
IPF FVC T Cytotoxic 0.19 0.09,0.29 0.002
IPF FVC ATII 0.16 0.06,0.27 0.007
IPF FVC VE Venous -0.16 -0.27,-0.06 0.012
IPF FVC Alveolar Macrophage 0.15 0.05,0.25 0.016
IPF FVC VE Capillary A 0.15 0.05,0.26 0.016
IPF FVC T -0.14 -0.24,-0.03 0.029
IPF FVC pDC -0.12 -0.23,-0.02 0.046
IPF DLCO Aberrant Basaloid -6.42 -9.25,-3.58 < 0.001
IPF DLCO Alveolar Macrophage 6.08 3.19,8.97 0.001
IPF DLCO ATII 5.65 2.8,8.51 0.001
IPF DLCO T Cytotoxic 5.07 2.04,8.1 0.006
IPF DLCO VE Capillary A 5.06 2.1,8.03 0.006
IPF DLCO ncMonocyte 4.79 1.89,7.69 0.006
IPF DLCO Macrophage -4.64 -7.64,-1.65 0.01
IPF DLCO cMonocyte -4.34 -7.53,-1.15 0.023
IPF DLCO T Regulatory 3.92 1.06,6.77 0.023
Statistical comparison was tested using linear regression adjusting for age, sex, height, ever smoking and total pack-year. Beta was estimated using absolute value 
of outcome measures and are estimated per one standard deviation change in CIBERSORTx absolute abundance score. Pre-bronchodilator FEV1 and DLCO percent 
predicted were used. Abbreviations: COPD, chronic obstructive pulmonary disease; IPF, idiopathic pulmonary fibrosis; CI, confidence interval; FEV1, forced expiratory 
volume in 1s; FVC, forced vital capacity; DLCO, diffusing capacity of the lungs for carbon monoxide as a percent predicted; VE Capillary A, vascular endothelial - 
aerocyte capillary; ncMonocyte, non-classical monocytes; cMonocyte, classical monocytes; ATI, alveolar epithelial type 1 cells; ILC A, type A innate lymphoid cells; 
ATII, alveolar epithelial type 2 cells; VE Venous, vascular endothelial venous cells; pDC, plasmacytoid dendritic cells
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for proteins encoded by the aberrant basaloid genes 
positively associated with IPF severity. The result of the 
functional enrichment analysis is included in the Online 
Supplement Table 9. Formation of the cornified envelope 
(STRING Cluster ID CL34114; FDR = 5.85 × 10− 14) was 
indicated as the top most significant functional enrich-
ment term.

Discussion
We report the results of a computational tissue profiling 
analysis of bulk lung RNA-seq data from 1,026 subjects 
in the LTRC. We report the cellular composition and cell 
type-specific gene expression in lung tissue associated 
with disease severity in COPD and IPF subjects, extend-
ing the single-cell experiment discoveries from a modest 
sample size (< 100 subjects) to a large population cohort 
(> 1000 subjects). We trained a well-established and 
widely implemented computational RNA-seq deconvolu-
tion algorithm, CIBERSORTx [13, 19, 20], using publicly 
available scRNA-seq data from control, COPD, and IPF 
subjects [9]. 

We found that IPF lung tissues showed the most diver-
gence from control lungs in cellular composition, with 
eighteen cell types whose abundance score was different 
from the controls, adjusting for covariates. Our results 
showed in a large IPF sample the association of aber-
rant basaloid cells and their expression with IPF and IPF 
severity; the association with IPF severity has not been 
previously reported. We also found that abundances of 
eight cell types—ncMonocyte, Aberrant Basaloid, Mac-
rophage, cMonocyte, T Cytotoxic, ATII, Alveolar Macro-
phage, and VE Capillary A—were associated with disease 
severity in the IPF subjects. Structural cells such as ATII, 

aberrant basaloid cells, myofibroblasts, and fibroblasts 
were among the cell types with the most number of 
genes associated with IPF severity. Notably, we found 
that aberrant basaloid cells were enriched in IPF lungs, 
and that the abundance of this disease-enriched cell type 
increased as the disease severity increased. It is notable 
that aberrant basaloid proportions remained below 1% in 
COPD.

In aberrant basaloid cells, expression levels of matrix 
metallopeptidase 7 (MMP7), growth differentiation fac-
tor 15 (GDF15), and eph receptor B2 (EPHB2), were neg-
atively associated with FVC or DLCO. In other words, the 
expression of these genes increased in more severe dis-
ease. These genes and the protein they encode have been 
implicated in the pathogenesis of IPF [21–24]. Our data 
supports the notion that GDF15 may be a circulating bio-
marker reflective of aberrant basaloid cells in the airway 
epithelium [23]. We also found that EPHB2 level in myo-
fibroblasts was positively associated with IPF severity, 
extending the previous scRNA-seq finding that demon-
strated increase level of EPHB2 in IPF subjects compared 
to controls [9]. 

The functional enrichment analysis showed that the 
formation of the cornified envelope and keratinization 
were functionally enriched in aberrant basaloid cells 
with increasing severity of IPF. The cornified cell enve-
lope is a highly insoluble and extremely tough structure 
that forms under the epithelium to help the epithelium 
defend against reactive oxygen species [25]. This may 
result from and/or be a contributing factor to the tissue 
fibrosis in IPF; however, alteration in this cellular func-
tion has not been implicated in IPF previously. Therefore, 
this result will require further validation at the protein 

Table 3 Cell type-specific differential gene expression in COPD and IPF lungs compared to control lungs
Cell type Total genes in 

analysis
Number of upregu-
lated genes in COPD

Number of downregu-
lated genes in COPD

Number of upregu-
lated genes in IPF

Number of 
downregu-
lated genes 
in IPF

ATII 10,964 272 2088 3886 2967
Alveolar Macrophage 5614 228 772 1847 1275
SMC 4265 40 183 1922 604
Fibroblast 3500 89 254 1268 658
ATI 3362 252 108 819 578
Myofibroblast 3099 120 399 1225 612
VE Capillary B 2446 54 338 412 943
B Plasma 2325 116 50 1039 460
VE Capillary A 2063 73 284 404 669
ILC A 2049 8 1 332 240
VE Venous 1310 33 114 230 374
Pericyte 1210 26 56 326 275
T Cytotoxic 1139 7 2 192 81
Associations were tested using limma [16] on variable genes only. Signficant association were adjusted to FDR 5%. Abbreviations: COPD, chronic obstructive 
pulmonary disease; IPF, idiopathic pulmonary fibrosis; ATII, alveolar epithelial type 2 cells; SMC, smooth muscle cells; ATI, alveolar epithelial type 1 cells; VE Capillary 
B, vascular endothelial - general capillary; VE Capillary A, vascular endothelial - aerocyte capillary; ILC A, type A innate lymphoid cells; VE Venous, vascular endothelial 
venous cells
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level. In addition to these functions, the protein inter-
action network analysis also highlighted the increased 
expression of matrix metalloproteases such as MMP7, 
MMP10, and MMP1, along with their functionally asso-
ciated genes such as lipopolysaccharide binding protein 
(LBP), lipocalin 2 (LCN2), and transcobalamin1 (TCN1), 
in aberrant basaloid cells with increased disease severity. 
These results suggest that increased abundance of aber-
rant basaloid cells and their gene expression of cellular 
processes involved in aberrant barrier formation and 
extracellular matrix modification is associated with IPF 
severity.

We also showed that cellular composition is different 
between COPD and controls and that there were several 

cell types whose abundance was associated with COPD 
severity. There was a significant decrease in alveolar type 
1 cells and capillary type A vascular endothelial cells in 
COPD lungs compared to controls. Capillary type A vas-
cular endothelial cells were also negatively associated 
with increasing disease severity as measured by FEV1 
and DLCO. This observation provides additional evi-
dence linking endothelial injury to COPD and extends 
earlier findings that identified injury to pulmonary ves-
sels in lung tissue from COPD patients [26]. Beyond the 
pulmonary vasculature, the abundance of macrophage, 
ncMonocyte, and cMonocyte were associated with 
DLCO, but only ncMonocytes abundance was signifi-
cantly associated with FEV1.

Fig. 2 Cell type-specific gene expression associated with disease severity in chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary 
fibrosis (IPF)
Venn diagrams show the five cell types with the most cell type-specific gene expression levels associated with disease severity in COPD and IPF lungs. 
Genes associated with the diffusing capacity of the lungs for carbon monoxide as a percent predicted, forced expiratory volume in 1 s, and forced vital 
capacity are colored blue, pink, and green, respectively
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Fig. 3 Protein-protein interaction network for the proteins encoded by genes in alveolar macrophages positively associated with COPD severity
Edges represent protein-protein associations based on association confidence score calculated using STRING database (version 12.0). The edge line thick-
ness indicates the strength of data support. Disconnected nodes in the network were hidden for illustrative purposes
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Monocytes and macrophages play an important role 
in pulmonary host defenses through their phagocytic 
activities and regulation of innate and adaptive immu-
nity. The circulating monocyte pool and macrophages 
in tissue are composed of multiple subsets, each with a 
specialized function. Animal models and human ex vivo 
experiments have demonstrated the dysregulated func-
tions of macrophage populations in COPD lungs [27]. 
Extensive molecular characterizations of immune cells 

in COPD, particularly the lung macrophage populations, 
have been conducted using flow cytometry and other 
low-throughput molecular techniques [28–30]. However, 
due to the practicality of needing fresh samples and the 
experimental cost, tissue and immune profiling studies 
have been limited in terms of sample sizes (typically < 100 
subjects) and the small number of molecular targets. 
Recently, scRNA-seq studies with more molecular targets 
have been conducted and highlighted immunological 

Fig. 4 Protein-protein interaction network for proteins encoded by genes in aberrant basaloid cells that were positively associated with IPF severity
Edges represent protein-protein associations based on association confidence score calculated using STRING database (version 12.0). The edge line thick-
ness indicates the strength of data support. Disconnected nodes in the network were hidden for illustrative purposes

 



Page 11 of 13Ryu et al. BMC Genomics         (2024) 25:1192 

dysregulation of monocytes and macrophages in COPD 
[9, 10, 31, 32]. However, the number of COPD donors 
was small in these studies, and there was limited infor-
mation on the disease phenotypes, which limited the 
ability to test for associations with disease severity, clini-
cal outcomes, and pathological changes. Our computa-
tional tissue profiling in a large-scale cohort builds on 
this important body of work and extends the findings 
from scRNA-seq to an epidemiological cohort.

Given the important role alveolar macrophages play 
in COPD pathogenesis, we focused on this cell type for 
functional enrichment analysis, which highlighted that 
increased disease severity was associated with increased 
mRNA encoding for proteins involved in translation and 
energy metabolism. This finding agrees with previous 
studies that macrophage metabolic function is associated 
with COPD and supports the notion that metabolomic 
reprogramming of lung macrophages is important in the 
pathogenesis of COPD [33, 34]. We provide the list of cell 
type-specific genes associated with COPD and IPF sever-
ity (Supplemental Tables 5 and 6) for the community to 
explore using the cell type-specific functional enrichment 
using tools such as STRING database  (   h t t p s : / / s t r i n g - d b . o 
r g /     ) for other cell types.

There are some limitations of our study. First, RNA-
seq-based deconvolution methods are more suited for 
the analysis of highly abundant cell types (cell types 
with frequency > 1%) [13, 19]. It is also influenced by the 
size of the cell type-specific transcriptome. This makes 
rare cell types with small transcriptomes challenging to 
study using the deconvolution approach. To overcome 
this issue, future studies may combine RNA-seq decon-
volution with results based on other omics (e.g., DNA 
methylation-based deconvolution). Second, bulk tissue 
analysis is limited in spatial resolution. This limits the 
understanding of the spatial distribution and interaction 
of cells in the diseased lungs. Nevertheless, our study 
informs which cell types may be the better candidates 
to be the focus of future spatial transcriptomic investi-
gations. Finally, the study was limited to a population of 
predominantly white subjects with access to U.S. aca-
demic medical centers. This may limit the generalizability 
and calls for future efforts to include subjects from multi-
ethnic and multi-national backgrounds.

Conclusions
Using computational deconvolution, this study extends 
single-cell experimental discoveries from a modest sam-
ple size to a large population cohort and contributes to 
our understanding of tissue heterogeneity in COPD and 
IPF pathobiology. This knowledge offers insight into the 
alterations within lung tissue in advanced illness, provid-
ing a better understanding of the underlying pathological 
processes that drive disease progression.

Abbreviations
ATI  Alveolar type 1 pneumocytes
ATII  Alveolar type 2 pneumocytes
COPD  Chronic obstructive pulmonary disease
DLCO  Diffusing capacity for carbon monoxide
FACS  Fluorescence-activated cell sorting
FDR  False discovery rate
FEV1  Forced expiratory volume in one second
FVC  Forced vital capacity
IIPs  Idiopathic interstitial pneumonias
ILC A  Type A innate lymphoid cells
ILD  Interstitial lung disease
IPF  Idiopathic pulmonary fibrosis
IQR  Interquartile range
LTRC  Lung Tissue Research Consortium
PPI  protein-protein interaction
RNA-seq  RNA sequencing
SMC  smooth muscle cells
SMC  Smooth muscle cells
TGF-β  Transforming growth factor beta
VE Capillary A  Vascular endothelial - aerocyte capillary
VE Capillary B  Vascular endothelial - general capillary
VE Venous  Vascular endothelial venous cells
cMonocyte  Classical monocytes
ncMonocyte  Non-classical monocytes
pDC  Plasmacytoid dendritic cells, and
scRNA-seq  Single-cell RNA sequencing

Supplementary Information
The online version contains supplementary material available at  h t t  p s : /  / d o  i .  o r 
g / 1 0 . 1 1 8 6 / s 1 2 8 6 4 - 0 2 4 - 1 1 0 3 1 - 5     .  

Supplementary Material 1

Acknowledgements
NHLBI TOPMed: Lung Tissue Research Consortium Molecular data from the 
Trans-Omics in Precision Medicine (TOPMed) program was supported by the 
National Heart, Lung, and Blood Institute (NHLBI). RNASeq for “NHLBI TOPMed: 
Lung Tissue Research Consortium” (phs001662) was performed at the 
Northwest Genomics Center (HHSN268201600032I). Core support including 
centralized genomic read mapping and genotype calling, along with variant 
quality metrics and filtering were provided by the TOPMed Informatics 
Research Center (3R01HL-117626-02S1; contract HHSN268201800002I). 
Core support including phenotype harmonization, data management, 
sample-identity QC, and general program coordination were provided by the 
TOPMed Data Coordinating Center (R01HL-120393; U01HL-120393; contract 
HHSN268201800001I). We gratefully acknowledge the studies and participants 
who provided biological samples and data for TOPMed.

Author contributions
Concept and design: MHR, CPH, and JDM; data collection: JHY, FS, LB, AL, 
GC, KB, RW, FM, KF, MHC, PJC, DLD, EKS, CPH, and JDM; statistical support: 
MHR, KJK, MG, CPH, JDM; data analysis: MHR, JHY, KJK, MG, AG, and JDM; 
manuscript writing - draft: MHR, CPH, and JDM; manuscript writing - edit: all 
authors; funding: PJC, EKS, and CPH. All authors read and approved the final 
manuscript.

Funding
Present work was supported by grants from NHLBI (R01HL166231, 
P01HL114501, R01HL133135, and X01HL139404), K25 HL136846, K08 
HL146972, Alpha-1 Foundation Research Grant, and TOPMed Fellowship. 
Dr. Ryu was supported by the Canadian Institutes of Health Research 
(FRN:194027). MHC was supported by R01HL162813, R01HL153248, and 
R01HL147148.

Data availability
Data are available on the NCBI database of Genotypes and Phenotypes 
(dbGaP), accession phs001662 (LTRC). LTRC RNA-seq data from TOPMed 
(https://topmed.nhlbi.nih.gov) are available through dbGaP. The analysis 

https://string-db.org/
https://string-db.org/
https://doi.org/10.1186/s12864-024-11031-5
https://doi.org/10.1186/s12864-024-11031-5


Page 12 of 13Ryu et al. BMC Genomics         (2024) 25:1192 

results and code can be obtained by contacting the corresponding author 
with a reasonable request.

Declarations

Ethics approval and consent to participate
The participating centers’ Institutional Review Boards approved the study, and 
all subjects provided written informed consent.

Consent for publication
Not applicable.

Competing interests
Dr. Hersh reports grant support from Bayer, Boehringer-Ingelheim, and 
Vertex, and consulting fees from Chiesi, Sanofi, and Takeda, unrelated to this 
manuscript. Dr. Silverman reports grant support from Bayer and Northpond 
Laboratories. Dr. Cho reports grant support from Bayer. Dr. DeMeo reports 
grant support from Bayer and Alpha-1 Foundation. Dr. Castaldi reports grant 
support from Bayer, Sanofi and consulting fees from Verona Pharmaceuticals. 
Dr. Yun reports grant support from Bayer and consulting fees from Bridge 
Biotherapeutics, and travel reimbursement from the Korean Academy of 
Tuberculosis and Respiratory Disease unrelated to this manuscript. Dr. 
Flaherty reports grant funding from Boehringer Ingelheim unrelated to this 
manuscript. Dr. Martinez reports grant supports from NHLBI, AstraZeneca, 
Chiesi, Boehringer-Ingelheim, GalaxoSmithCline, Novartis, Polarean, Sanofi/
Regeneron, Sunovion, and TEVA Pharmaceuticals. Dr. Martinez reports 
receiving consulting fee from AstraZeneca, Boehringer-Ingelheim and Bristol 
Myers Squibb. Dr. Wise reports receiving consulting fees from Boehringer-
Ingelheim, AstraZenica, Abb-Vie, and Galderma.

Author details
1Channing Division of Network Medicine, Department of Medicine, 
Brigham and Women’s Hospital, Boston, USA181 Longwood Ave, 02115,  
MA
2Division of Pulmonary and Critical Care Medicine, Brigham and Women’s 
Hospital, Boston, MA, USA
3Harvard Medical School, Boston, MA, USA
4Department of Medicine, Division of Pulmonary, Critical Care, and Sleep 
Medicine, SUNY Upstate Medical University, 750 East Adams Street, 
Syracuse, NY, USA
5Division of Pulmonary, Allergy and Critical Care Medicine, University of 
Pittsburgh, Pittsburgh, PA, USA
6Emmes, Frederick, MD, USA
7Division of Pulmonary and Critical Care Medicine, Department of Internal 
Medicine, Mayo Clinic, Rochester, MN, USA
8Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple 
University, Philadelphia, PA, USA
9Department of Medicine, National Jewish Health, Denver, CO, USA
10Department of Medicine, Johns Hopkins Medicine, Baltimore, MD, USA
11Department of Medicine, Weill Cornell Medical College, NYPresbyterian 
Hospital, New York, NY, USA
12Division of Pulmonary and Critical Care Medicine, University of Michigan 
Health System, Ann Arbor, MI, USA
13Division of General Internal Medicine and Primary Care, Brigham and 
Women’s Hospital, Boston, MA, USA

Received: 27 September 2024 / Accepted: 11 November 2024

References
1. Agustí A, Hogg JC. Update on the pathogenesis of chronic obstructive 

pulmonary disease. N Engl J Med. 2019;381:1248–56.
2. Lederer DJ, Martinez FJ. Idiopathic pulmonary fibrosis. N Engl J Med. 

2018;378:1811–23.
3. Selman M, Martinez FJ, Pardo A. Why does an aging smoker’s lung develop 

idiopathic pulmonary fibrosis and not chronic obstructive pulmonary dis-
ease? Am J Respir Crit Care Med. 2019;199:279–85.

4. Chen S, Kuhn M, Prettner K, Yu F, Yang T, Bärnighausen T, et al. The global eco-
nomic burden of chronic obstructive pulmonary disease for 204 countries 

and territories in 2020–50: a health-augmented macroeconomic modelling 
study. Lancet Glob Heal. 2023;11:e1183–93.

5. Wong AW, Koo J, Ryerson CJ, Sadatsafavi M, Chen W. A systematic review on 
the economic burden of interstitial lung disease and the cost-effectiveness of 
current therapies. BMC Pulm Med. 2022;22:148.

6. Sakornsakolpat P, Prokopenko D, Lamontagne M, Reeve NF, Guyatt AL, Jack-
son VE, et al. Genetic landscape of chronic obstructive pulmonary disease 
identifies heterogeneous cell-type and phenotype associations. Nat Genet. 
2019;51:494–505.

7. Allen RJ, Stockwell A, Oldham JM, Guillen-Guio B, Schwartz DA, Maher TM, et 
al. Genome-wide association study across five cohorts identifies five novel 
loci associated with idiopathic pulmonary fibrosis. Thorax. 2022;77:829–33.

8. Allen RJ, Guillen-Guio B, Oldham JM, Ma S-F, Dressen A, Paynton ML, et al. 
Genome-wide association study of susceptibility to idiopathic pulmonary 
fibrosis. Am J Respir Crit Care Med. 2019;201:564–74.

9. Adams TS, Schupp JC, Poli S, Ayaub EA, Neumark N, Ahangari F, et al. Single-
cell RNA-seq reveals ectopic and aberrant lung-resident cell populations in 
idiopathic pulmonary fibrosis. Sci Adv. 2020;6:eaba1983.

10. Sauler M, McDonough JE, Adams TS, Kothapalli N, Barnthaler T, Werder RB, 
et al. Characterization of the COPD alveolar niche using single-cell RNA 
sequencing. Nat Commun. 2022;13:494.

11. Villaseñor-Altamirano AB, Jain D, Jeong Y, Menon JA, Kamiya M, Haider H, et 
al. Activation of CD8 + T cells in chronic obstructive pulmonary disease lung. 
Am J Respir Crit Care Med. 2023;208:1177–95.

12. Yang IV, Pedersen BS, Rabinovich E, Hennessy CE, Davidson EJ, Murphy E, 
et al. Relationship of DNA methylation and gene expression in idiopathic 
pulmonary fibrosis. Am J Respir Crit Care Med. 2014;190:1263–72.

13. Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F, et al. 
Determining cell-type abundance and expression from bulk tissues with 
digital cytometry. Nat Biotechnol. 2019;37:773–82.

14. Chen B, Khodadoust MS, Liu CL, Newman AM, Alizadeh AA. Cancer systems 
Biology, methods and protocols – profiling tumor infiltrating immune cells 
with CIBERSORT. Methods Mol Biol. 2018;1711:243–59.

15. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust 
enumeration of cell subsets from tissue expression profiles. Nat Methods. 
2015;12:453–7.

16. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers dif-
ferential expression analyses for RNA-sequencing and microarray studies. 
Nucleic Acids Res. 2015;43:e47–47.

17. Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, et al. The 
STRING database in 2023: protein–protein association networks and func-
tional enrichment analyses for any sequenced genome of interest. Nucleic 
Acids Res. 2022;51:D638–46.

18. Ley B, Ryerson CJ, Vittinghoff E, Ryu JH, Tomassetti S, Lee JS, et al. A multidi-
mensional index and staging system for idiopathic pulmonary fibrosis. Ann 
Intern Med. 2012;156:684.

19. Jin H, Liu Z. A benchmark for RNA-seq deconvolution analysis under dynamic 
testing environments. Genome Biol. 2021;22:102.

20. Im Y, Kim Y. A comprehensive overview of RNA deconvolution methods and 
their application. Mol Cells. 2023;46:99–105.

21. Bauer Y, White ES, de Bernard S, Cornelisse P, Leconte I, Morganti A, et al. 
MMP-7 is a predictive biomarker of disease progression in patients with 
idiopathic pulmonary fibrosis. ERJ Open Res. 2017;3:00074–2016.

22. Pardo A, Cabrera S, Maldonado M, Selman M. Role of matrix metallopro-
teinases in the pathogenesis of idiopathic pulmonary fibrosis. Respir Res. 
2016;17:23.

23. Zhang Y, Jiang M, Nouraie M, Roth MG, Tabib T, Winters S, et al. GDF15 is an 
epithelial-derived biomarker of idiopathic pulmonary fibrosis. Am J Physiol-
Lung Cell Mol Physiol. 2019;317:L510–21.

24. Lagares D, Ghassemi-Kakroodi P, Tremblay C, Santos A, Probst CK, Franklin A, 
et al. ADAM10-mediated ephrin-B2 shedding promotes myofibroblast activa-
tion and organ fibrosis. Nat Med. 2017;23:1405–15.

25. Schäfer M, Werner S. The cornified envelope: a first line of defense against 
reactive oxygen species. J Investig Dermatol. 2011;131:1409–11.

26. Polverino F, Celli BR, Owen CA. COPD as an endothelial disorder: endothelial 
injury linking lesions in the lungs and other organs? (2017 Grover Conference 
Series). Pulm Circ. 2018;8:2045894018758528.

27. Kapellos TS, Bassler K, Aschenbrenner AC, Fujii W, Schultze JL. Dysregu-
lated functions of lung macrophage populations in COPD. J Immunol Res. 
2018;2018:2349045.



Page 13 of 13Ryu et al. BMC Genomics         (2024) 25:1192 

28. Tesfaigzi Y, Curtis JL, Petrache I, Polverino F, Kheradmand F, Adcock IM, et al. 
Does COPD originate from different cell types? Am J Respir Cell Mol Biol. 
2023. https:/ /doi.or g/10.11 65/r cmb.2023-0175ps.

29. Freeman CM, Curtis JL. Lung dendritic cells: shaping immune responses 
throughout chronic obstructive pulmonary disease progression. Am J Respir 
Cell Mol Biol. 2016;56:152–9.

30. Dewhurst JA, Lea S, Hardaker E, Dungwa JV, Ravi AK, Singh D. Characterisa-
tion of lung macrophage subpopulations in COPD patients and controls. Sci 
Rep. 2017;7:7143.

31. Morrow JD, Chase RP, Parker MM, Glass K, Seo M, Divo M, et al. RNA-sequenc-
ing across three matched tissues reveals shared and tissue-specific gene 
expression and pathway signatures of COPD. Respir Res. 2019;20:65.

32. Huang Q, Wang Y, Zhang L, Qian W, Shen S, Wang J, et al. Single-cell tran-
scriptomics highlights immunological dysregulations of monocytes in the 
pathobiology of COPD. Respir Res. 2022;23:367.

33. Ogger PP, Byrne AJ. Macrophage metabolic reprogramming during chronic 
lung disease. Mucosal Immunol. 2021;14:282–95.

34. Fujii W, Kapellos TS, Baßler K, Händler K, Holsten L, Knoll R, et al. Alveolar 
macrophage transcriptomic profiling in COPD shows major lipid metabolism 
changes. ERJ Open Res. 2021;7:00915–2020.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

https://doi.org/10.1165/rcmb.2023-0175ps

	Computational deconvolution of cell type-specific gene expression in COPD and IPF lungs reveals disease severity associations
	Abstract
	Background
	Methods
	Study participants
	Computational deconvolution
	Cell type-specific differential gene expression analysis
	Functional enrichment analysis

	Results
	Subjects
	Cellular composition differences among COPD, IPF, and controls
	Associations between cell-type abundance and disease severity in COPD and IPF lungs
	Associations between cell type-specific gene expression and disease severity in COPD and IPF lungs
	Functional enrichment analysis of genes associated with COPD severity in alveolar macrophages
	Functional enrichment analysis of genes associated with IPF severity in aberrant basaloid cells

	Discussion
	Conclusions
	References


