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N E U R O S C I E N C E

Distinct impact modes of polygenic disposition to 
dyslexia in the adult brain
Sourena Soheili- Nezhad1,2, Dick Schijven1,2, Rogier B. Mars2,3,  
Simon E. Fisher1,2, Clyde Francks1,2,4*

Dyslexia is a common and partially heritable condition that affects reading ability. In a study of up to 35,231 adults, 
we explored the structural brain correlates of genetic disposition to dyslexia. Individual dyslexia- disposing genetic 
variants showed distinct patterns of association with brain structure. Independent component analysis revealed 
various brain networks that each had their own genomic profiles related to dyslexia susceptibility. Circuits involved 
in motor coordination, vision, and language were implicated. Polygenic scores for eight traits genetically correlat-
ed with dyslexia, including cognitive, behavioral, and reading- related psychometric measures, showed partial 
similarities to dyslexia in terms of brain- wide associations. Notably, microstructure of the internal capsule was con-
sistently implicated across all of these genetic dispositions, while lower volume of the motor cortex was more 
specifically associated with dyslexia genetic disposition alone. These findings reveal genetic and neurobiological 
features that may contribute to dyslexia and its associations with other traits at the population level.

INTRODUCTION
Roughly 3 to 7% of school- age children have dyslexia, a neurodevel-
opmental condition that affects reading, writing, and spelling (1). 
Reading acquisition during childhood is accompanied by the adap-
tation of several brain networks, and multiple hypotheses have been 
formulated to explain the etiology of dyslexia through altered devel-
opmental trajectories in these networks and the functions they sup-
port (2). The phonological deficit hypothesis suggests that dyslexia 
involves diminished ability in associating phonemes, the units of 
spoken language, with written linguistic symbols or graphemes, 
sometimes stemming from a lack of awareness of the phonological 
structure of language (3). In contrast, the orthographic deficit hy-
pothesis suggests that some dyslexic readers may not identify words 
as cohesive patterns, but instead decode them as sequences of letters 
at a slow pace due to impairments of the visual stream (4). Yet, other 
mechanistic models highlight auditory (5) and magnocellular (6) 
pathways. Impairments of rapid automatized naming (7), verbal 
short- term memory (8), and attention control have also been impli-
cated (9, 10). Rather than there being a single, monolithic explana-
tion for dyslexia, it is likely that the underlying mechanisms are 
heterogeneous and multifactorial (11, 12).

Functional neuroimaging of people with dyslexia has suggested re-
duced activation or functional connectivity during reading- related 
tasks of various left- hemisphere regions that are important for lan-
guage and/or normal reading, including the posterior temporoparietal 
cortex, the inferior frontal gyrus, and the anterior occipitotemporal 
cortex (13–17). However, these efforts often used divergent methods 
and task paradigms in sample sizes of only tens of individuals, and 
findings have often been inconsistent (18, 19). In terms of brain 

structural magnetic resonance imaging (MRI), too, results from multi-
cohort or meta- analysis studies in total sample sizes up to hundreds of 
individuals have not aligned well, yielding negative findings or much 
smaller effects than originally reported in smaller individual studies 
(20–23). Moreover, the largest diffusion MRI (dMRI)- based investiga-
tion of white matter microstructure, in 104 affected children and ado-
lescents compared to 582 controls, did not detect significant groupwise 
differences (24).

This overall sequence has been encountered in neuroimaging 
studies of multiple other traits beyond dyslexia; initial waves of un-
derpowered, hypothesis- driven studies produced inconsistent re-
sults, followed by larger more systematic screening studies that 
failed to replicate the initial findings, while sometimes producing 
unanticipated new leads (25). Together, it is clear that hypothesis- 
free brain- wide mapping in much larger sample sizes is needed, to 
better understand the brain regions and networks involved in dys-
lexia (26).

The heritability of dyslexia is estimated to be roughly 40 to 70% 
based on twin studies (27, 28), with common DNA variants ac-
counting for around 15% of its disposition according to genome- 
wide investigations (29, 30). Dyslexia also shows substantial genetic 
correlations (in the range of 0.6 to 0.8) with measures of reading 
and spelling performance, and phonemic awareness, more broadly 
across the population (31). Here, we reasoned that estimating poly-
genic disposition to dyslexia in the UK Biobank, a large general 
population dataset where genome- wide genotype and neuroimaging 
data are available (32–34), would reveal neurobiological markers 
relevant to the development and/or manifestation of dyslexia. To 
calculate polygenic disposition in the UK Biobank individuals, we 
made use of genome- wide association summary statistics from a 
recent study of 51,800 individuals who reported having received a 
dyslexia diagnosis and over 1 million controls [using data from 
23andMe Inc. (30)].

We carried out our brain mapping analyses with respect to voxel- 
wise volumetric measures, as well as fixel- wise apparent fiber den-
sity (AFD), the latter to study white matter microstructure. Different 
disposing genetic loci may affect distinct brain regions and networks. 
We therefore aimed to disentangle heterogeneity in the brain- wide 
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associations of different dyslexia disposing variants, by decomposing 
the overall polygenic disposition into a number of distinct impact 
modes in terms of neurobiological correlates. For this, we developed 
an application of independent component analysis (35, 36).

Dyslexia is also associated with several other traits related to 
cognition, education, and behavior and shows significant genetic 
correlations with attention- deficit hyperactivity disorder (ADHD), 
educational attainment, and intelligence (30). This means that some 
of the genetic factors that dispose to dyslexia are shared with these 
other traits. The question then arises: Which structural brain fea-
tures are associated with polygenic disposition to dyslexia alone, 
versus more generally with polygenic dispositions to a range of cog-
nitive, educational, and behavioral traits that are associated with 
dyslexia? The combination of brain features uniquely associated 
with dyslexia polygenic disposition is likely to distinguish liability 
to this particular trait among others. We therefore went on to quan-
tify the polygenic dispositions of UK Biobank individuals to ADHD, 
educational attainment, school grades, fluid intelligence, and the 
reading- related psychometric traits of single- word reading, non-
word reading, spelling, and phonemic awareness (31). We mapped 
the brain structural correlates of all of these polygenic dispositions 
in the UK Biobank and compared and contrasted with the brain 
maps for dyslexia polygenic disposition.

RESULTS
Brain correlates of dyslexia polygenic scores
After genetic and brain imaging quality control, we generated dys-
lexia polygenic scores (PGSs) for between 31,695 and 35,231 adult 
individuals from the UK Biobank dataset, depending on the avail-
ability of data for diffusion and T1- weighted MRI modalities, re-
spectively (see Materials and Methods). We mapped brain wide 
associations of dyslexia PGS with voxel- wise regional volume de-
rived from tensor- based morphometry (37, 38), as well as micro-
structural measure of AFD derived from fixel- based analysis (39) 
(Materials and Methods). For our main analysis, we report results 
for PGS generated with Lassosum2 (40) that were optimized for 
capturing inter- individual brain variation (Materials and Methods; 
fig. S1), but other automated polygenic methods including SBayesR 
(41) and PRS- CS (42) delivered highly comparable results (fig. S2).

Individuals with higher dyslexia PGS exhibited lower total brain 
volume, which was more apparent in gray matter than white matter 
(t = −6.6 and t = −5.5, respectively; Fig. 1D). Among other global 
measures of brain anatomy, dyslexia PGS was most strongly associ-
ated with lower total cortical surface area, especially of the left 
hemisphere (t = −6.4). Unexpectedly, dyslexia PGS was slightly 
more predictive of overall head size (t = −6.9, r2 = 0.14%, and 
P < 10−11), which is a measure derived from skull anatomy (43), 
than any brain measure (Fig. 1D). Head size or total brain volume 
is commonly used as covariates in structural neuroimaging analy-
sis, when trying to map region- specific effects that are independent 
of global effects. However, head size and brain volume are partly 
heritable traits, so that treating them as confounding variables in 
genetic association analysis may sometimes have unintended con-
sequences for assessing the presence and directions of associations, 
a phenomenon described in detail by Aschard et al. (44). There-
fore, we performed our primary voxel- wise analysis without this 
adjustment (i.e., using raw Jacobian determinant values comprising 
both the nonlinear and linear registration components), but also 

repeated the analysis secondarily with head size treated as a con-
founding covariate.

Without head size adjustment, individuals with higher dyslexia 
PGS showed lower regional volumes across multiple brain regions 
after brain- wide multiple comparison correction (Materials and 
Methods). This included a large frontal cluster along the medial 
wall, extending from Brodmann area 4 to perigenual medial frontal 
cortex (Fig. 1A). In addition, lower volume was observed in mid-
brain, thalamus, and bilateral amygdalae, in individuals with higher 
dyslexia PGS (Fig. 1A). Many of these associations were evident in 
both hemispheres and more or less bilaterally symmetric, except 
two clusters of lateralized lower volume in the left anterior insula 
and in the left posterior temporoparietal junction, again associated 
with higher dyslexia PGS (Fig. 1A). There were no regions where 
higher dyslexia PGS was significantly associated with higher (rather 
than lower) regional volumes in voxel- wise analysis after multiple 
comparison correction. A post hoc regression analysis using log- 
transformed Jacobian determinant values (instead of raw values) 
yielded an effectively identical brain- wide t- map as the original 
analysis without this transformation (Pearson’s r ≅ 1.0; maximum 
absolute voxel- wise t value  =  8.44 in the log- transformed model, 
compared to 8.48 in the original model.)

Following adjustment for head size as a confounding covariate, 
negative associations were again observed between dyslexia PGS 
and similar brain regions as the nonadjusted analysis, although the 
significant clusters were markedly smaller compared to the nonad-
justed analysis (Fig. 1B). In addition, some significant positive 
voxel- wise associations emerged after head size correction, in the 
primary visual cortex and anterior middle temporal gyrus, indicat-
ing that individuals with higher dyslexia PGS had higher volumes 
relative to their head size in these regions (Fig. 1C).

In fixel- wise analysis of white matter microstructure, dyslexia 
PGS was positively associated with AFD in forceps major tracts, 
which connect homologous regions of the bilateral occipital cortices 
(Fig. 2A). In contrast, dyslexia PGS was negatively associated with 
AFD in three separate clusters of fixels bilaterally: within the superior 
longitudinal fasciculi, cerebellar dentate nuclei, and anterior limb of 
the internal capsule (Fig. 2A). Fiber tractography revealed that the 
internal capsule and dentate fixels highlight tracts that pass through 
the brainstem and superior cerebellar peduncles, with neocortical 
connections that mainly span the frontal and parietal cortices (Fig. 
2B). The global mean AFD per participant was not correlated with 
dyslexia PGS (r2 = 1.4 × 10−5 and P > 0.05), such that adjusting for 
this metric as a covariate in post hoc analysis yielded an almost iden-
tical brain- wide association map as the primary, unadjusted analysis 
(r = 0.98, with a maximum absolute fixel- wise t value of 6.59 for the 
adjusted model, compared to 6.61 in the primary model).

Heterogeneous brain- wide associations of dyslexia 
disposing genetic loci
There were 42 independent, genome- wide significant loci associated 
with dyslexia in the 23andMe Inc. genome- wide association study 
(GWAS) (30). For 35 of these loci the lead genetic variant in the UK 
Biobank data passed our quality filtering (Materials and Methods). 
We mapped the brain- wide associations for each of these 35 genetic 
variants separately, with reference to increased dosage of the dispos-
ing alleles. The 35 brain- wide maps showed some limited conver-
gence, most notably in a left hemisphere medial prefrontal region 
peaking in Brodmann area 32 (45) that was associated with six of the 
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Fig. 1. Associations of dyslexia PGSs with regional brain volume. Negative dyslexia PGS associations with regional brain volume before (A) and after head size correc-
tion (B). clusters in (A) and (B) indicate voxels whose volumes are significantly lower in individuals with higher polygenic disposition to dyslexia, at P values of smaller than 
0.05 as obtained from nonparametric testing, with brain- wide correction for multiple comparisons using 5000 permutations. in these significant clusters (rainbow), voxels 
are colored based on t values derived from similar parametric tests, to visualize effect sizes and peak regions. in (C), positive associations in the head- size–corrected 
model are depicted (where higher dyslexia PGS is associated with increased regional volume relative to head size: viridis colors indicate subthreshold (i.e., nonsignificant) 
clusters and red depicts voxels passing brain- wide significance). (D) shows the associations of dyslexia PGS with various global brain metrics and individuals’ heights. 
Figures are shown in radiological convention, where the left side in transverse and coronal views corresponds to the right cerebral hemisphere and vice versa. R, right; l, 
left; tPJ, temporoparietal junction; ct, cortical thickness; GM, gray matter; WM, white matter; vol, volume; cSA, cortical surface area. lasso- sum and PRS- cSauto refer to 
different methods for calculating polygenic scores (see Materials and Methods).
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variants, but there was also much divergence across the 35 maps 
(Fig. 3 and data S1).

For example, for voxel- wise volumetric analysis, the locus in-
tronic to PPP2R3A [index single- nucleotide polymorphism (SNP) 
rs13082684, which was the most significant dyslexia- disposing vari-
ant in the 23andME GWAS] was associated with lower volume in 
the right posterior insula and Heschl’s gyrus, and deep subcortical 
structures spanning the internal capsule, anterior thalamus, and an-
terior thalamic radiations (Fig. 3). The intronic BCL11B variant 
(rs35131341) was associated with lower volume in medial frontopa-
rietal areas, bilateral Heschl’s gyri, and planum temporale (Fig. 3). In 
contrast, association in the opposite direction (i.e., increased vol-
ume with the disposing allele) was observed in posterior cerebellum 
for the BCL11B variant (Fig. 3). The SATB2 locus (rs6435017) ex-
hibited lateralized association with lower volume of the posterior 
insula and left Heschl gyrus, and higher volume in the right anterior 
middle temporal gyrus (Fig. 3). The AUTS2 variant (rs3735260) was 
associated with higher volume in the optic radiation close to the 
primary visual cortex, with a more pronounced effect in the right 
hemisphere, while the SH2B3 locus (rs7310615) was also associated 
with higher volume in the right optic radiation, as well as increased 
volume in the left Heschl’s gyrus (Fig. 3). Brain- wide volumetric as-
sociation maps for all 35 genome- wide significant dyslexia- disposing 
variants are in data S1.

After adjusting for head size as a covariate, the brain- wide asso-
ciation maps remained similar for most of these 35 variants, al-
though the PPP2R3A dyslexia- disposing variant was now associated 
with higher volumes in the cerebellum and midbrain rather than 
widespread regional volume reductions, and the association with 
the BCL11B variant extended to the thalamus (Fig. 3 and data S1).

In terms of white matter microstructure, again the 35 genetic 
variants had mostly distinct brain- wide association maps (fig. S3). 
For example, a variant upstream of NEUROD2 (rs12453682) was 
associated with lower AFD in tracts passing through the internal 
capsule and caudally extending to the brainstem and superior 

cerebellar peduncles (fig. S3). Other negative associations were 
observed in the superior longitudinal fasiculi for the SH2B3 
(rs7310615) and SEMA3F (rs2624839) loci (fig. S3). In contrast, 
positive associations were observed in the occipital lobes for the 
SEMA3F (rs2624839) and ARFGEF2 (rs11393101) loci, such that 
higher AFD in the forceps major tracts was associated with the 
dyslexia- disposing alleles (fig. S3). Fixel- wise associations for all 
35 genome- wide significant dyslexia- associated variants are in 
data S1. Adjusting for global mean AFD as an additional covariate 
made little difference to these association maps, with correlations 
between fixel- wise values before and after adjustment ranging 
from 0.92 to 1.0 across the 35 variants (data S1).

Latent structure in imaging genetic associations revealed by 
impact modes
As described in the previous section, 35 genetic variants that were 
individually associated with dyslexia at a genome- wide significant 
level had largely distinct, but sometimes overlapping, associations 
with regional brain volumes or white matter microstructure. We 
opted to broaden this insight to thousands of genetic variants that 
contribute to the polygenic disposition to dyslexia, through an ap-
plication of probabilistic independent component analysis (36). We 
aimed to understand whether, despite heterogeneity of brain- wide 
associations for different genetic variants, there exists a latent multi-
variate structure. This approach goes beyond the standard PGS ap-
proach that aggregates all disposing variants into a single scalar 
score per subject.

We first mapped the brain- wide associations in the UK Biobank 
data for each of 13,766 genetic variants that were associated with 
dyslexia in the 23andMe GWAS (30) with pointwise association 
P values of less than 0.01 and clumped for linkage disequilibrium 
(Materials and Methods). Together, these variants contribute much 
of the genome- wide polygenic disposition to dyslexia. We then con-
catenated the resulting 13,766 brain- wide association maps and de-
composed them into 10 independent components, separately for 

Fig. 2. Associations of dyslexia PGSs with white matter microstructure. Association of dyslexia PGS with fixel- wise apparent fiber density (A). Probabilistic tractogra-
phy from significant fixels [P < 0.05, 5000 permutations; (B) streamlines in B are colored based on fiber directions] Figures are shown in radiological convention, where the 
left side in transverse and coronal views corresponds to the right cerebral hemisphere and vice versa. Ant, anterior; Pos, posterior; Sup, superior; inf, inferior.
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voxel-  and fixel- wise data (see Materials and Methods). Each 
component reflects a spatially independent map of brain regions as-
sociated with a distinctive set of genetic variants that exhibit similar 
brain- wide effects. We call these components impact modes, a term 
we partly borrowed from Smith et al. (46).

We found that 10 impact modes explained totals of 25.5 and 
8.5% of variance in brain- wide t maps, respectively in voxel-  and 
fixel- wise data. Impact modes localized to anatomically coherent 
features and were more spatially homogenous than the univariate 
brain maps associated with dyslexia PGS (Fig. 4). For example, in 
the voxel- based volumetric data, impact mode #5 mapped distinctly 
to the occipital lobes and posterior thalami [Fig. 4: structural impact 
mode (sIM) #5]. Among genetic variants that contributed especially 

to this impact mode, a dyslexia- disposing variant at the DAAM1 
locus was associated with increased volume of the primary visual 
cortex (rs36065072, mode weight z score = 6.2). A further example 
to illustrate: Impact mode #8 exclusively captured bilateral associa-
tions with temporal lobes (Fig. 4: sIM #8), and an intronic variant in 
MAPT was among those that exhibited a strong weight in this im-
pact mode (rs12150530, mode weight z score = −4.7). The weights 
of all 13,766 variants for the 10 sIMs are provided in table S1.

Impact modes for fixel- based white matter microstructure cor-
responded to groups of identifiable tracts. For example, diffusion 
impact mode #5 captured microstructural variations in the for-
ceps major, optic radiation, and superior longitudinal fasciculus, 
whereas impact mode #10 isolated the internal capsule and 

Fig. 3. Associations of single dyslexia- disposing genetic variants with brain volume. voxel- wise associations with six variants that disposed to dyslexia at a genome- 
wide significant level and exhibited volumetric associations across regions surpassing 5 cm3 in total. Panels show associations with regional brain volume unadjusted 
(A) and adjusted (B) for head size. Rainbow clusters highlight the associations of dyslexia- disposing alleles with lower regional volume, and inferno clusters highlight 
opposite associations. Brain maps of all 35 genome- wide significant variants are also provided in data S1.
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brainstem tracts that caudally enter superior cerebellar peduncles 
(Fig. 5A). While both of these sets of tracts were associated with 
the overall dyslexia PGS (Fig. 2), their association with two in-
dependent modes indicates that they stem from distinct genomic 
underpinnings. The genetic variant with the strongest weight for 
the internal capsule impact mode (#10) was upstream of SLC39A8 
(rs35518360, mode weight z score = −7.6) (Fig. 5B). This variant 
was only weakly associated with dyslexia (GWAS, P = 0.001) but 
has also been significantly associated with schizophrenia (47) and 
educational attainment (48). The variant is in almost full linkage 
disequilibrium (r2 = 0.9) with a missense variant (rs13107325) in 
the same SLC39A8 gene, suggesting that an amino acid change in 
the encoded protein, which is a divalent cation transporter, affects 
microstructural properties of the internal capsule tracts. The 
dyslexia- disposing NEUROD2 variant (rs12453682) exhibited the 
second- strongest weight for this same impact mode (#10) (mode 

weight z score = 5.3) (Fig. 5B). The complete weights of the 13,766 
genetic variants for all 10 diffusion impact modes are provided in 
table S2.

Overlap in brain- wide associations of dyslexia PGSs and 
genetically correlated traits
Consistent with previous reports (30, 31), using GWAS summary 
statistics from large- scale genetic studies of other cognitive, educa-
tional, and behavioral traits (see Materials and Methods), we repro-
duced significant SNP- based genetic correlations between dyslexia 
and GCSE education (General Certificate of Secondary Education 
in the UK) (rg = −0.50), verbal- numerical reasoning (rg = −0.49), 
the first principal component of school grades (rg = −0.39), ADHD 
(rg = 0.40), word reading ability (rg = −0.69), nonword reading abil-
ity (rg  =  −0.71), spelling (rg  =  −0.75), and phonemic awareness 
(rg = −0.62) (all with P values < 10−23) (fig. S4).

Fig. 4. Dyslexia genomic- brain- sIMs. ten impact modes identified by independent component analysis of brain morphometry t maps corresponding to the top 13,766 
independent dyslexia- disposing variants that contribute to polygenic disposition. Z scores indicate the contribution and “weight” of each voxel in the corresponding in-
dependent component. through this analysis, the overall polygenic disposition to dyslexia was decomposed into distinct spatial components in terms of contributing 
genetic variants and their specific brain- wide associations. siM, structural impact mode.
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Fig. 5. Dyslexia diffusion impact modes. (A) Distinct impact modes identified by independent component analysis (icA) of fixel- wise associations, for 13,766 variants 
that contribute to genome- wide polygenic disposition to dyslexia. (B) histogram of variant- wise weights for impact mode #10, and univariate maps of the two top loci 
contributing to this impact mode, NEUROD2 and SLC39A8, as examples of how an impact mode can be queried in terms of specific genetic contributions. SlF, superior 
longitudinal fasciculus.
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We then generated PGS for each of these traits in the UK Biobank 
imaging genetic dataset using Lassosum2 (40) (i.e., the same method 
as for our primary analysis of dyslexia PGS above). PGSs for several 
of these traits were associated with the volumes of basal ganglia, 
thalamus, and adjacent white matter tracts, especially in the internal 
capsule (Fig. 6). These associations extended to the frontal lobes for 
the fluid intelligence PGS, education PGS, and school grade PGS 
and more caudally to the brainstem for ADHD PGS. The directions 
of effects were consistent across traits, with polygenic disposition to 
poorer performance, lower education, and ADHD associated with 
lower regional volumes in these areas (Fig. 6), similarly to dyslexia 
PGS (Fig. 1).

A lateralized association between higher dyslexia PGS and lower 
left anterior insula volume (Fig. 1) was also observed for PGSs for 
lower fluid intelligence, word reading, nonword reading, and GCSE 
education (Fig. 6). Lower temporoparietal junction volume, which 
was observed in individuals with higher dyslexia PGS (Fig. 1), was 
also observed in individuals with lower nonword reading PGS (Fig. 
6). In contrast, as a feature that was only found for dyslexia PGS, the 
association with Brodmann area 4 (primary motor cortex) (Fig. 1) 
was not observed as a focus for PGS of other traits (Fig. 6). PGSs for 
word reading and nonword reading were positively associated with 
the bilateral volumes of Heschl’s gyri that contribute to primary au-
ditory cortex, as well as posterior cerebellum (Fig. 6). No associa-
tions were observed between PGSs for lower performance in any 
trait and higher regional brain volume, with the exception of spell-
ing, for which individuals with polygenic disposition to lower per-
formance showed higher volume in the putamen (fig. S5).

In white matter fixel- based analysis, associations were observed 
between AFD in the internal capsule tracts and PGSs for all traits 
(Fig. 7). Specifically, lower AFD was consistently associated here 
with polygenic disposition to lower performance/achievement and 
higher risk for ADHD. PGS for fluid intelligence and GCSE educa-
tion exhibited the most extensive associations here, passing through 
the anterior limbs of the internal capsule (Fig. 7). In particular, the 
genu and anterior limb of the internal capsule emerged as a hotspot, 
where PGS for dyslexia and all other genetically correlated traits 
overlapped in their associations (Fig. 7). In addition, lower PGS for 
GCSE education and higher PGS for ADHD were associated with 
lower AFD in cerebellar dentate nuclei, similarly as for higher dys-
lexia PGS.

We found that dyslexia PGS was weakly but significantly corre-
lated with the phenotypic traits of fluid intelligence (r  =  −0.11, 
t  =  −21.7, and P  <  10−16) and years of education (r  =  −0.047, 
t = −8.8, and P < 10−16). After including these two traits as addi-
tional covariates, all clusters in voxel- wise volumetric analysis re-
mained significantly associated with dyslexia PGS, apart from the 
left anterior insula that was no longer significant (fig. S6). For white 
matter, all fixel clusters remained significant after adjustment for 
fluid intelligence and years of education, namely, in the internal cap-
sule, forceps major, and superior longitudinal fasciculus (data S1).

DISCUSSION
Our study of genetic disposition to dyslexia in over 30,000 adults 
implicated diverse brain structures, notably involved in motor, 
language- related, and visual functions. Our sample size was more 
than two orders of magnitude larger than any neuroimaging case- 
control study of dyslexia published to date, which is likely to have 

aided in robustness of our findings. Nonetheless, a direct compari-
son cannot be made to case- control studies. Rather, our study shows 
the utility of a complementary approach to studying the neurobiol-
ogy of dyslexia, through identifying neural correlates of genetic dis-
position while leveraging large- scale population data to overcome 
statistical uncertainty.

Independent component analysis identified various impact modes 
comprising sets of dyslexia- disposing genetic loci associated with dis-
tinct brain features. This heterogeneity is consistent with dyslexia as a 
high- level behavioral outcome, with no simple mapping to any single 
brain structure, network, cognitive function, or genetic factor. Dys-
lexia emerges from a complex interplay between genes, environmen-
tal exposures, and neural adaptations during reading acquisition 
(2, 11, 12, 28) and is associated with educational and socioeconomic 
outcomes (49, 50). Some of the structural brain correlates of poly-
genic disposition in the adult population may therefore be linked 
with the development of dyslexia as potential causal factors, while 
others might be consequences of lifestyle differences, for example, 
time spent reading professionally or personally.

Several of the implicated brain structures were also associated 
with genetic dispositions to other traits including educational at-
tainment, fluid intelligence, ADHD, and reading-, and language-
related performance measures across the population. This is 
consistent with dyslexia at the population level showing substan-
tial phenotypic and genetic correlations with these other traits, 
rather than having an entirely distinct etiology of its own, i.e., 
many genomic variants that dispose to dyslexia are likely to be 
pleiotropic for these other traits. However, the volume of a large 
continuous region along the medial wall, spanning parietal and 
frontal cortices and peaking within the primary motor cortex 
(51), showed an association only with genetic disposition to dys-
lexia among all of these traits. A combination of reduced primary 
motor cortex volume together with alterations of other regions 
implicated by this study may therefore dispose individuals to 
dyslexia in particular. Perhaps consistent with this, children with 
dyslexia have shown overactivation of the primary motor cortex 
during reading or reading- related tasks (52). Furthermore, at the 
phenotypic level, dyslexia is associated with motor difficulties 
(53,  54), although many children with dyslexia show no motor 
impairments, and lower performance of sequential motor tasks 
has also been reported for ADHD (53, 54).

Lower volume of the medial wall region spanning the primary 
motor cortex was notably associated with the dyslexia- disposing al-
lele of the BCL11B variant. This allele was also associated with high-
er volume of the posterior cerebellum. Consistent with this, BCL11B 
encodes a zinc finger protein transcription factor and is expressed in 
cerebral cortical layer V projection neurons that send motor con-
nections to the brainstem and cerebellum (55–58). BCL11B may 
therefore modulate the topology of corticocerebellar pathways. Rare 
missense variants of BCL11B are associated with speech impair-
ment, developmental delay, and intellectual disability (59).

Of further relevance in terms of motor circuits, a consistent find-
ing across all of the PGSs that we studied, including dyslexia PGS, 
involved microstructure of the internal capsule. A clue to the role of 
this deep white matter tract in dyslexia is provided by diffusion im-
pact mode #10, which isolated the internal capsule and the cerebel-
lar dentate nuclei together as one single component, linked to a 
shared set of dyslexia- disposing genetic variants. Motor projections 
such as the dentate- thalamic tracts pass through the internal 
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Fig. 6. Brain- wide volumetric associations of PGSs for traits that are genetically correlated with dyslexia. [(A) to (F)] the panel on the left shows the associations of PGS 
with regional brain volumes. the panel on the right shows the associations of PGS with global imaging measures, before and after adjustment for head size as a covariate 
(dashed lines indicate a t value of 2). PGS for phonemic awareness was not significantly associated with the volume of any voxel and therefore not shown in the figure. the 
PGS for spelling ability only showed a significant association in the putamen and is also not shown in this figure (its map is shown in fig. S5). iDP, imaging- derived phenotype.



Soheili-Nezhad et al., Sci. Adv. 10, eadq2754 (2024)     18 December 2024

S c i e N c e  A D v A N c e S  |  R e S e A R c h  A R t i c l e

10 of 17

capsule, while dentate nucleus lesions are the cause of cerebellar 
cognitive affective syndrome that involves linguistic, executive, and 
visual- spatial impairments (60). Especially, the internal capsule’s an-
terior limb was the main focus of convergence across the various 
PGS that we studied. This region reciprocally connects the thalamus 
and frontal cortex and is engaged in multiple cognitive domains that 
contribute to psychiatric traits (61).

Specific genetic loci that contributed strongly to the internal capsule 
and dentate impact mode #10 included the SLC39A8 and NEUROD2 
loci. SLC39A8 encodes a metal ion transporter that modulates neu-
rotransmitter receptor glycosylation (62), and this locus has also 
shown genome- wide significant associations with schizophrenia 
(47), intelligence (63) educational attainment (48), and quantitative 
magnetic susceptibility—an MRI- based measure that is sensitive to 

Fig. 7. White matter microstructural associations of PGSs for traits that are genetically correlated with dyslexia. PGSs of additional traits that are genetically cor-
related with dyslexia show associations with white matter microstructure, measured by apparent fiber density. lower apparent fiber density in the internal capsule was 
consistently associated with polygenic disposition to lower performance/achievement and higher risk for ADhD. the genu of the internal capsule was a hotspot of shared 
association with PGSs for all traits.
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iron deposition, myelin, and calcification—in the caudate, substan-
tia nigra, and pallidum (64). NEUROD2 codes for a neuronal migra-
tion and differentiation factor and its expression colocalizes with 
BCL11B+ layer V pyramidal neurons (65). In mice, NEUROD2 
knockout selectively increases excitability of layer V neurons (65), 
while in humans, haploinsufficiency of NEUROD2 is associated 
with intellectual disability, autism, and speech delay (65). Together 
with our findings across PGS for dyslexia and various other geneti-
cally correlated traits, the internal capsule and cerebellar dentate 
nucleus may be involved in these traits through altered corticocere-
bellar circuits that require layer V projection neurons, with conse-
quences for diverse aspects of cognition, including those required 
for normal reading.

In line with the implication of left- lateralized language- related 
brain regions by some previous studies of dyslexia (see Introduc-
tion), we found that higher dyslexia PGS was associated with lower 
regional volume in the left temporoparietal junction and left anterior 
insula. The left temporoparietal junction is involved in the process-
ing of syntactic and semantic domains of language and coding and 
retrieving speech sounds (66–68). The PGSs for nonword reading 
and school grades were also associated with temporoparietal junc-
tion volume, further supporting the relevance of this brain region for 
phonological decoding ability and educational outcomes. Regarding 
the anterior insula, this region is closely connected to the adjacent 
inferior frontal gyrus (69, 70), another core region that participates 
in the language network. Insular activation recently emerged as a 
focus of convergence in a meta- analysis of functional MRI studies 
using rapid naming, rapid word reading, and rapid sentence reading 
tasks (71). The left anterior insula was also associated with the fluid 
intelligence PGS in our study. This region may therefore contribute 
to dyslexia in terms of both rapid reading fluency and/or more gen-
erally through higher cognitive processes. Consistent with this, 
when we adjusted for the phenotypic traits of years of education and 
fluid intelligence in post hoc analysis, the association of dyslexia PGS 
with the left anterior insula volume was no longer significant, while 
the other regional associations remained.

We found that several of the individual genetic loci that dispose 
most significantly to dyslexia were associated with the volumes of pri-
mary auditory cortices (Heschl’s gyri), including PPP2R3A, BCL11B, 
SATB2, and SH2B3. This supports an involvement of primary audi-
tory cortex in the neural basis of dyslexia, as has been discussed pre-
viously (72). However, the effects that we observed were different 
across the genetic loci in terms of directions of effect (volumetric in-
creases or decreases) associated with the dyslexia disposing alleles, 
even within the same hemisphere. This pattern might arise because 
altered Heschl’s gyrus volumes may be only secondary to the molecu-
lar and cellular roles of these genes in auditory cortex function that 
are relevant for dyslexia.

Regarding visual circuits, increased polygenic disposition to dys-
lexia was associated with increased AFD in the forceps major white 
matter tract. Lesions of the forceps major, which connect bilateral 
occipital cortices, lead to topographical disorientation in humans 
(73). In addition, the AUTS2 and SH2B3 dyslexia- disposing variants 
were associated with higher volume in the optic radiation. Our find-
ings may relate causally to visuo- orthographic deficits in dyslexia 
(74), or might signify a secondary adaptation of the visual network 
to lower reading activity in adults with higher genetic disposition 
(for example, due to reading avoidance). After adjusting for head 
size, we also saw increased volume of primary visual cortex in those 

with higher polygenic disposition to dyslexia, which may be consis-
tent with these scenarios. However, as noted in Results, caution 
should be used when adjusting for heritable traits (such as head size) 
as confounding variables in genetic association analysis (44). As 
higher dyslexia PGS was associated with widespread volume reduc-
tions that affect a substantial proportion of the brain, then some of 
the “spared” regions, i.e., those that were not significantly affected in 
either direction, may appear to “increase” in volume after applying a 
global metric such as head size as a confound variable. From a sta-
tistical perspective, this issue parallels the long- debated practice of 
global signal regression in functional neuroimaging, which can 
sometimes cause spurious anticorrelation signals (75).

The association effect sizes between PGS and neuroimaging 
measures in our study were in the range of 0.2 to 1% of variance 
explained (and the impact modes based on independent component 
analysis explained totals of 25.5 and 8.5% of variance in brain- wide 
t maps for dyslexia- disposing variants, respectively in T1- weighted 
and dMRI data). This range of effect sizes is expected for polygenic 
effects based on common genetic variants, given that individual dif-
ferences in complex behavioral traits in the general population typi-
cally show only subtle associations with neuroimaging measures, 
often requiring sample sizes of thousands of individuals for robust 
statistical detection and quantification (26). The value of the very 
subtle associations reported in the present study are not in terms of 
predictive biomarkers, but rather in terms of mapping specific brain 
regions and networks that associate with genetic disposition. The 
resulting brain maps based on structural and diffusion imaging can 
already give clues about dyslexia manifestation in the brain by que-
rying affected regions with respect to their known functions. Fur-
thermore, affected brain regions in terms of regional volume or 
AFD should be investigated in future studies at other, deeper levels 
of organization, such as spatial gene expression, neurotransmitter 
receptor density, or cytoarchitectonics, where effects of genetic dis-
position may be more apparent.

Our study has some limitations. Although the UK Biobank is a 
population sample, this cohort is healthier on average than the gen-
eral UK population due to volunteering bias (76). Dyslexia PGS was 
derived using data from a large GWAS study of participants who 
self- reported having received a diagnosis of dyslexia (30), but with 
no information on the subtype, timing or severity of this condition 
(e.g., no distinction was made between acquired and developmental 
dyslexia, no information was recorded on who had made the diag-
nosis, and performance on dyslexia- related cognitive or behavioral 
tasks was not recorded). Nevertheless, strongly negative genetic cor-
relations of this dyslexia phenotype with quantitative measures of 
word reading (rg = −0.71) and spelling (rg = −0.75) argue for its 
validity (30, 31). While our “impact mode” analysis of polygenic dis-
position identified distinct sets of genomic factors associated with 
distinct brain regions, we do not claim to show in the present study 
that variation in these different brain regions is associated with dif-
ferent dyslexia- related cognitive traits. The present cross- sectional 
study was carried out using adult data, which means that cause- 
effect aspects are not possible to disentangle with certainty. Future 
large- scale imaging genetic studies would benefit from longitudinal 
data from children, to inform on genomic impact modes for brain 
changes before and during reading acquisition. There is evidence 
that the brain basis of dyslexia partly differs in boys and girls (77), 
but the polygenic dispositions that we calculated for UK Biobank 
participants were based on variant- wise effect sizes from a previous 
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GWAS of dyslexia in which males and females were included to-
gether (30). Future work could examine possible sex differences in 
the neural correlates of genetic disposition to dyslexia in the UK 
Biobank, while calculating PGSs based on sex- specific GWAS re-
sults for dyslexia (30). Replication and/or cross- validation of our 
findings would be desirable, but we are unaware of another adult 
brain imaging genetics cohort of comparable scale.

In summary, we identified multiple brain networks linked to ge-
netic disposition to dyslexia in a large adult sample from the general 
population. This approach complements classical case- control de-
signs, for which it has not been possible to collect sample sizes with-
in the same order of magnitude as that used here. Our study revealed 
that genetic disposition to dyslexia can be decomposed into distinct 
sets of genomic variants associated with distinct sets of brain re-
gions. This decomposition is consistent with dyslexia as a complex 
and heterogeneous trait. Our study also showed which brain struc-
tural features are associated in common across multiple traits that 
are genetically correlated with dyslexia, as opposed to being associ-
ated with dyslexia genetic disposition alone among these traits.

MATERIALS AND METHODS
Experimental design
UK Biobank data
UK Biobank data were accessed following approval of the applica-
tion number 16066, P.I. C.F. UK Biobank is an in- depth investiga-
tion of more than 500,000 volunteers in the UK who are assessed for 
health, lifestyle, genomic, and many other variables (32). Multimod-
al brain MRI data (33, 34) had also been released for approximately 
10% of the individuals when the present study was initiated in 2022 
(78). The UK Biobank received ethical approval from the National 
Research Ethics Service Committee North West- Haydock (refer-
ence 11/NW/0382), and all of their procedures were performed in 
accordance with the World Medical Association guidelines. Written 
informed consent was provided by all of the enrolled participants.

Genotyping has been performed using either BiLEVE Axiom or 
Axiom arrays from Affymetrix, which target highly overlapping sets of 
~800,000 genomic variants with more than 95% similarity (79). The UK 
Biobank has also released common genome- wide variants imputed to 
Haplotype Reference Consortium and UK10K haplotypes (79). In this 
study, we focused on participants who also underwent brain MRI at one 
of the four imaging sites and for whom at least one usable T1- weighted 
and/or dMRI scan had been produced (see the next section). The ge-
netic analyses were focused to the largest ancestry group within this co-
hort, recorded as “white British” using a combination of self- report and 
genomic principal component analysis (this group constitutes ~85% of 
the overall dataset: data field #22006). Pairs of genetically related subjects 
with kinship coefficients above 0.044 were identified in the target sample 
(70). Individuals related to the largest number of others were recursively 
removed until no two individuals were related at or above this kinship 
threshold, leaving 35,231 individuals (18,363 females). The resulting 
sample encompassed individuals aged from 45 to 82 years, with a mean 
age of 64.2 years and an SD of 7.7 years. We then included bi- allelic ge-
netic variants with minor allele frequency ≥ 0.01, imputation quality 
score of higher than 0.7, and Hardy- Weinberg equilibrium P value of 
greater than 10−7, yielding 8,366,177 autosomal single- nucleotide vari-
ants (SNVs) and 1,092,696 short insertion- deletions (indels).

We accessed minimally processed and brain- extracted T1- weighted 
brain MRI volumes of 42,798 individuals (33,  34) for tensor- based 

morphometry using symmetric image normalization (SyN) registra-
tion (37, 38). 

Statistical analysis
Structural MRI: Tensor- based morphometry
For the present study, we generated a study- specific average brain tem-
plate in a randomly chosen subset of 1000 individuals. The template 
was generated through 11 consecutive Advanced Normalization Tools 
(ANTs version 2.3.5) registrations that iteratively refined the template 
shape using rigid, affine, and diffeomorphic SyN transformations at in-
cremental resolutions up to native resolution (i.e., 1 mm3). Thereafter, 
all individuals’ original T1- weighted brain volumes were histogram 
matched, winsorized at 1st to 99th percentiles, and nonlinearly regis-
tered to our study- specific template using SyN. Registration parameters 
included a variance for total field of three, and variance for update field 
of zero, a resolution downsampling scheme of 6×, 4×, 2×, and 1× (i.e., 
full resolution) and Gaussian smoothing at SDs of 4, 2, 1, and 0 voxels. 
A cross- correlation metric with a radius of four voxels was used.

The affine registration matrix was composed with the SyN defor-
mation field and the final warps were subsequently converted to 
Jacobian determinant maps, which encode the amount of regional 
brain tissue “shrinkage” or “expansion” in the brain of each individ-
ual as compared to our study- specific, average T1 template. ANTs 
affine registrations failed in 2098 individuals; instead of removing 
them, we opted to use a comparable linear registration method, FSL 
Flirt (80) to initialize SyN, while controlling for a potential batch 
effect in subsequent analyses as a binary covariate.
dMRI: Data preprocessing and fixel- based analysis
We retrieved minimally preprocessed dMRI volumes of 37,930 sub-
jects from UK Biobank (33, 34). These data have been collected at 
2 mm3 isotropic resolution across 100 different diffusion- encoding 
directions evenly distributed on two spherical shells at b values of 
1000 and 2000 s/mm2, as well as eight blip- reversed b ≅ 0 volumes. 
Diffusion images have been corrected for off- resonance warps, gradi-
ent nonlinearity, Eddy currents, and head motion by the UK Biobank 
team (33, 34). For the present study, we reran these corrections on raw 
data for a first batch of 8247 individuals whose corrected b vector ta-
bles were not available, while accounting for a potential batch effect in 
the subsequent regression model fits through the use of a binary co-
variate. After data preprocessing, we constructed a study- specific fiber 
orientation density (FOD) template using MRTrix3 version 3.0.3 (81) 
from a random subset of 890 individuals who passed registration qual-
ity control by visual inspection out of 1000. This procedure started by 
N4 bias field correction and intensity normalization of the prepro-
cessed diffusion volumes, and estimation of the average tract response 
function (82). Thereafter, spherical deconvolution was performed us-
ing the estimated response function to generate subject- wide FOD 
volumes. These volumes were subsequently nonlinearly registered to a 
common space and an average FOD template was generated iterative-
ly. The FOD template was then “fixelated” to identify the principal di-
rections of white matter tracts in each voxel. The same procedures 
were repeated in all 37,930 individuals to generate FOD volumes, 
which were then registered to the study- specific FOD template (81). 
FOD registrations passed quality control in 37,884 individuals follow-
ing visual inspection of each individual’s template- transformed zeroth- 
order harmonic map, representing average isotropic diffusion in each 
voxel. FOD volumes were segmented to obtain fixel- wise readouts, 
which were then transformed, rotated, and corresponded to the tem-
plate’s fixel- wise space (81). We considered AFD readouts as a measure 
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of white matter microstructure for subsequent analyses (39). In com-
bination with genetic data, the sample available was 31,695 adult indi-
viduals (16,198 female).
Optimizing polygenic scoring
We first concatenated the voxel- wise Jacobian and fixel- wise AFD 
maps across all individuals and then applied MELODIC inde-
pendent component analysis (35, 36) to extract imaging- derived 
phenotypes (IDPs). MELODIC was performed separately per each 
imaging modality and at various dimensions to extract IDPs at in-
cremental levels of spatial detail, following a geometric series cor-
responding with dimensions 11, 18, 29, 47, 76, 124, 200, and 324. 
Because of the large size of this data matrix (6.2 × 1010 voxels in 
structural MRI), we used 8000 internal eigenmaps for indepen-
dent source decomposition (83). In addition, principal compo-
nents analysis was performed on the same data and the first 324 
principal components were extracted as additional IDPs. Together, 
a total of 1153 IDPs were extracted from voxel- wise Jacobian maps 
and an equal number of IDPs from the fixel- wise AFD data. These 
IDPs were derived for the purpose of optimizing our polygenic 
scoring, but they were not used for our voxel-  or fixel- based imag-
ing genetic analyses, nor our impact mode analysis, which form 
the bulk of the findings in this study.

We used summary statistics from the largest GWAS of dyslexia 
that has been performed to date, carried out by 23andMe Inc. (30). 
This GWAS was based on 51,800 individuals of European ancestry 
who answered “yes” to the question “have you been diagnosed with 
dyslexia?,” and 1,087,070 control individuals who answered “no.” 
The SNP- wise effect sizes from this GWAS were then applied to the 
genotype data of UK Biobank individuals, to estimate the polygenic 
disposition of each UK Biobank individual to dyslexia based on the 
combined effects of their autosome- wide genetic variants.

Our primary approach for polygenic scoring was based on the 
Lassosum2 model (40). We observed strong correlation between 
Lassosum2 PGS and two automated PGS methods, SBayesR (41) 
and PRS- CSauto (42). Lassosum2 generally explained the highest 
proportion of variance in brain IDPs (fig. S1) and was therefore 
used for the main analysis. This method fits a sparse elastic- net 
regression and optimizes two shrinkage penalties, including L1- 
norm (λ) and L2- norm (δ). A grid search across 30 λ and 10 δ 
values was used for optimization with respect to maximizing the 
top association with any IDP. The associations of dyslexia PGS 
were quantified with all 1153 IDPs in each imaging modality using 
linear regression. A set of confound covariates were controlled for, 
including subject age at imaging visit (data field #21003, instance 
2), age2, sex (data field #31), age × sex, age2 × sex, the first 10 prin-
cipal components of genomic ancestry (data field #22009), geno-
typing array (data field #22000, either BiLEVE or Axiom), three 
dummy covariates encoding four UK Biobank neuroimaging sites 
(data field #54, instance 2), and the number of days passed since 
MRI scan incepted at the site (as a measure of slow drifts in MRI 
hardware performance; data field #53, instance 2). For structural 
MRI data, the type of affine registration (i.e., ANTs or Flirt) was 
further controlled as a covariate. Structural MRI analysis was per-
formed either without (main analysis) or with (secondary analysis) 
correction for head size as a confounding covariate (data field 
#25000). For dMRI data, the batch effect associated with diffusion 
preprocessing (i.e., either performed by our team or by the UK 
Biobank) was added to the covariates, and the analyses were done 
without (main analysis) and with (secondary analysis) the global 

mean apparent fiber density per individual as an extra covariate. 
We found that high δ values in the range of 102 to 104 slightly in-
creased the accuracy of Lassosum2 over automated models PRS- 
CSauto and SBayesR, and λ in the range of 10−5 to 10−2 resulted in 
the highest accuracy of trait prediction (fig. S1). These shrinkage 
parameters were therefore used for subsequent analyses.
Voxel-  and fixel- wise brain associations with dyslexia PGSs
We tested the brain- wide associations of dyslexia PGS with the voxel- 
wise and fixel- wise data in the UK Biobank. Both parametric [fsl_glm 
6.0.3 (84)] and nonparametric [randomise version 2.9 (85)] linear re-
gression models were fitted to the data, the former to yield t value 
maps for visualization and impact mode analysis, and the latter to 
generate brain- wide multiple- comparisons–corrected P value maps. 
To reduce computation costs, voxel- wise permutations were per-
formed at half (2- mm3 isotropic) resolution with a wall time of 9 days 
for 5000 permutations per statistical contrast. The Randomise C++ 
code was modified to prevent short integer overflows due to the study 
sample size. No cluster enhancement was applied. The same sets of 
covariates as the previous section were used as for optimization. In all 
cases, we observed that a parametric t value of >4.5 was equivalent to 
a nonparametric brain- wide–corrected P value of smaller than 0.05.

As a check on the validity of our findings obtained with Lasso-
sum2, we applied other methods for deriving PGS: SBayesR, PRS- CS, 
and PRS- CSauto. PRS- CS applies continuous shrinkage on variant- wise 
weights using Bayesian priors and is optimized using a single global 
shrinkage hyperparameter (ϕ). We explored four different ϕ values for 
optimizing PRS- CS, which were 10−6, 10−4, 0.01, and 1 (fig. S1). PRS- 
CSauto and SBayesR are automated polygenic scoring methods and 
therefore did not require hyperparameter optimization on an inde-
pendent dataset. We found that dyslexia Lassosum2 PGS was strongly 
correlated with dyslexia PGS derived from PRS- CSauto (Pearson’s 
r = 0.87 and 0.93 following optimization on structural or diffusion- 
derived measures, respectively) and SBayesR (r = 0.74 and 0.84, same 
order). Compared to Lassosum2, these additional PGS exhibited 
highly similar brain- wide associations (fig. S2). To describe the white 
matter tracts that run through regions where fixels showed significant 
associations of AFD with dyslexia PGS, we ran probabilistic fiber trac-
tography using the second- order Integration over Fiber Orientation 
Distributions (iFOD2) algorithm in the template space (86).
Dyslexia locus- based neuroimaging association
Forty- two individual genomic loci were significantly associated with 
dyslexia after genome- wide multiple testing correction in the 23andMe 
Inc. GWAS for dyslexia (30). Thirty- five of these variants passed our 
genetic quality control process in the UK Biobank data (see the “UK 
Biobank data” section above). At each of these 35 loci, dosage of the 
dyslexia disposing allele was calculated and used in separate linear 
regression models to find brain- wide associations with regional 
volume and white matter microstructure (i.e., voxel- wise Jacobian 
values and fixel- wise AFD values, respectively), using the same 
approach and covariates as when testing voxel- wise and fixel- wise 
PGS associations. These covariates included age, age2, sex, age × sex, 
age2 × sex, 10 principal components of genomic ancestry, genotyping 
array, UK Biobank imaging site, the number of days passed since 
MRI scan incepted at the site, the type of affine registration (for 
structural MRI), and preprocessing being either performed by our 
team or by the UK Biobank team (for dMRI). For each variant, we 
also performed secondary analyses in which head size or subject- 
average AFD across all fixels were additionally included as confound 
covariates, respectively in T1 and diffusion data modalities.
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Impact mode decomposition
PGSs approximate polygenic influences through a single scalar value. 
These models represent a weighted average of all disposing allele 
counts and are agnostic to variability in the brain- wide associations 
of genetic variants. We aimed to model the heterogeneity and the 
hidden covariance patterns in the brain- wide genomic associations. 
To achieve this, we initially created a brain- wide univariate associa-
tion map (i.e., voxel- wise or fixel- wise t value maps generated by a 
parametric regression) for each of the top independent 13,766 dys-
lexia GWAS loci, after clumping at a GWAS P value threshold of less 
than 0.01, linkage disequilibrium r2 threshold of less than 0.1 and 
genomic window size of 500 kb (and using the same set of covariates 
as in all sections above). These voxel-  or fixel- wise t value maps were 
then concatenated across all 13,766 variants and decomposed by 
MELODIC into 10 independent components, separately per imaging 
modality. To enhance the sensitivity of ICA rotations to local effects 
rather than genetic associations with global measures, voxel- wise Ja-
cobian determinant values were normalized to total brain volume 
before ICA. The default MELODIC ICA data transformations, in-
cluding variance normalization and mean signal removal, were not 
applied as these momentums reflect meaningful signals in t value 
maps (87). We refer to the extracted independent components as ge-
nomic impact modes, which reflect combinations of distinct genom-
ic variants and spatial profiles through a limited number of features.
PGSs of additional traits related to dyslexia
We first used LD score regression (88, 89) to confirm that we could 
detect previously reported genetic correlations between dyslexia 
and each of eight other behavioral, cognitive, or education- related 
traits, based on summary statistics from the 23andMe dyslexia 
GWAS (30) and other large- scale GWAS studies: ADHD (90), ver-
bal numerical reasoning (also known as fluid intelligence) (Pan- 
UKB team, https://pan.ukbb.broadinstitute.org), the first principal 
components of school grades in mathematics and language (91), 
General Certificate of Secondary Education (GCSE) education 
(Pan- UKB team, https://pan.ukbb.broadinstitute.org), word read-
ing, nonword reading, spelling, and phonemic awareness (31). All 
of these traits showed significant genetic correlations |rg| > 0.4 with 
dyslexia in our analysis (all P < 10−23; fig. S4).

To compare and contrast with dyslexia PGS, we then used 
Lassosum2 to generate PGS in the UK Biobank data for each of these 
eight additional traits, and mapped their brain- wide associations 
with the voxel- wise and fixel- wise data, using the same approach as 
for the dyslexia PGS.
Further post hoc regression analyses
We performed further regression analyses of the association between 
dyslexia PGS and voxel- wise volumes, this time using logarithm- 
transformed Jacobian determinant values to take allometry into 
account (92), rather than raw values, to assess whether this made a 
difference. In another post hoc analysis, two extra covariates were 
added to assess voxel- wise and fixel- wise associations with dys-
lexia PGS independently of fluid intelligence and educational at-
tainment: These covariates were “fluid intelligence” (data field 
#20016) and the number of years of education estimated from the 
data fields “qualifications” (#6138) and “age completed full- time 
education” (#845), following a previously published approach (93). 
Apart from the inclusion of these two covariates, the linear re-
gression models were the same as the primary analyses described 
above in the section “Voxel-  and fixel- wise brain associations with 
dyslexia PGSs.”
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The PDF file includes:
Figs. S1 to S6
legends for tables S1 and S2
legend for data S1

Other Supplementary Material for this manuscript includes the following:
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