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N E T W O R K  S C I E N C E

Deep representation learning of protein-protein 
interaction networks for enhanced pattern discovery
Rui Yan1, Md Tauhidul Islam2*, Lei Xing1,2,3*

Protein-protein interaction (PPI) networks, where nodes represent proteins and edges depict myriad interac-
tions among them, are fundamental to understanding the dynamics within biological systems. Despite their 
pivotal role in modern biology, reliably discerning patterns from these intertwined networks remains a sub-
stantial challenge. The essence of the challenge lies in holistically characterizing the relationships of each node 
with others in the network and effectively using this information for accurate pattern discovery. In this work, we 
introduce a self-supervised network embedding framework termed discriminative network embedding (DNE). 
Unlike conventional methods that primarily focus on direct or limited-order node proximity, DNE characterizes 
a node both locally and globally by harnessing the contrast between representations from neighboring and 
distant nodes. Our experimental results demonstrate DNE’s superior performance over existing techniques 
across various critical network analyses, including PPI inference and the identification of protein functional 
modules. DNE emerges as a robust strategy for node representation in PPI networks, offering promising ave-
nues for diverse biomedical applications.

INTRODUCTION
Biological networks are instrumental in modeling complex biologi-
cal systems by providing a detailed blueprint of the myriad inter-
actions among genes, proteins, and other cellular components (1, 2). 
These networks delineate entities as nodes and their interactions—
spanning from physical connections to functional associations—as 
edges, laying the groundwork for unraveling the complexities of 
biological systems and processes (3–5). For instance, in protein-
protein interaction (PPI) networks, the intricate web of connections 
contains crucial information for understanding cellular processes 
and disease mechanisms (6–8). However, deciphering these com-
plex networks to gain biological insights poses a substantial chal-
lenge. Network embedding, a process where interconnected nodes 
within a network are mapped into vectors in a lower dimension 
while preserving certain network structure properties and node re-
lationships, is a commonly used approach to discern patterns with-
in biological networks (9–11). The accuracy of network embedding 
critically determines the success of downstream data analysis and 
applications.

The underlying structure of a biological network is widely recognized 
to be highly nonlinear because of complex and nonadditive interactions 
(12–14), and encompasses both local (i.e., immediate connections) and 
high-order (i.e., clustering) structures (15). Despite extensive efforts to 
develop network embedding methods capable of coping with such com-
plexity, a practical solution remains elusive. Traditional network embed-
dings primarily aim to capture node proximity through methods such as 
matrix factorization (12, 16–18) or shallow models (12, 19, 20). How
ever, these methods often encounter limitations because of their reliance 
on low-rank approximations or oversimplified network structures, hin-
dering their ability to fully capture the highly nonlinear patterns and re-
sulting in suboptimal embeddings (21). Recently, deep learning–based 
techniques (22–25) have emerged to tackle the problem by leveraging 

multiple layers of nonlinear transformations to capture the complex net-
work structure.

For instance, variational graph autoencoder (VGAE) (22) uses 
graph neural networks to enhance the expressiveness of node em-
beddings by aggregating information from their neighborhoods. 
While it preserves certain nonlinear structural aspects within node 
embeddings, the algorithm solely focuses on patterns within the lo-
cal neighborhood of each node, thus limiting its capacity to under-
stand the node interrelationships across the wider network. Efforts 
like Deep Graph Infomax (DGI) aim to mitigate these limitations by 
preserving global structural information via aligning node embed-
dings with a global graph summary (23). However, because the focus 
is on global structure, this approach may overlook fine-grained local 
details. Deep Graph Contrastive Representation Learning (GRACE) 
captures global information indirectly by learning embeddings that 
are invariant to graph corruptions introduced by data augmenta
tion (24). The effectiveness of GRACE may depend on the quality of 
these data augmentations.

Here, we introduce a general graph representation learning 
framework that uses deep learning to preserve the nonlinear and 
multifaceted structure of networks in a lower-dimensional space for 
high-performance analyses of biological networks. Our proposed 
method, referred to as discriminative network embedding (DNE), 
characterizes each node through a nonlinear contrast between the 
representations of its direct neighbors and nodes that are farther 
away in the network. Figure 1 illustrates the framework of our pro-
posed DNE method. The proposed approach allows a holistic per-
spective on the role of each node in the network: It highlights the 
immediate connections of a node, such as interactions between pro-
teins in PPI networks, and also its community affiliations within the 
network, such as protein functional modules. We demonstrate that 
DNE substantially outperforms existing network embedding meth-
ods for various networks and multiple downstream tasks, including 
link prediction (i.e., prediction of PPIs) and node clustering (i.e., iden-
tification of functional modules). DNE also offers the flexibility to com-
bine node features with network structures for improved performance. 
By uniquely incorporating protein sequence features from protein 
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language models, DNE substantially boosts downstream performance 
compared to traditional methods. Moreover, we demonstrate that 
DNE can be applied to various network types beyond PPI networks. 
The proposed method introduces a fresh paradigm for network anal-
ysis and promises to broadly advance biomedical data science.

RESULTS
DNE consistently outperforms existing network embedding 
methods in link prediction across PPIs
We first demonstrate the efficacy of DNE in link prediction, which 
predicts the likelihood of edge existence based on the known net-
work structural information. For this purpose, we benchmark our 
method and conduct a comparative analysis with DNE and other 
leading algorithms for predicting protein interactions in PPI net-
works, using the following PPIs: (i) a plant interactome comprising 
2774 proteins and 6205 PPIs, from the Arabidopsis thaliana interac-
tome (26); (ii) a worm interactome with 2528 proteins and 3864 
PPIs, based on Caenorhabditis elegans (27); (iii) a yeast interactome 
with 2674 proteins and 7075 PPIs from Saccharomyces cerevisiae 
(28); (iv) a human interactome consisting of 8272 proteins and 

52,548 PPIs, derived from HuRI (29). For each of the four interac-
tomes, a 20% subset of the edges is randomly selected for testing and 
subsequently removed to form a training network. We then conduct 
a fivefold cross-validation on the remaining data to obtain optimal 
performance. This process is repeated for 10 independent runs.

The performance comparison of DNE with 11 other network 
embedding methods [i.e., DGI (23), GRACE (24), Variational Graph 
Normalized Autoencoder (VGNAE) (25), VGAE (22), Node2Vec 
(20), GraRep (16), High-Order Proximity preserved Embedding 
(HOPE) (17), Large-scale Information Network Embedding (LINE) 
(19), Network Embedding as Matrix Factorization (NetMF) (18), 
Locally Linear Embedding (LLE) (12), and Singular Value Decom-
position (SVD)] is presented in Fig. 2. In the task of predicting links 
on the A. thaliana dataset, DNE scores highest in both the area un-
der the precision-recall curve (PR-AUC) and the area under the re-
ceiver operating characteristic curve (ROC-AUC) (Fig. 2, A and B). 
Notably, DNE achieves a mean ROC-AUC of 88.05% across 10 runs, 
representing approximately a 4% improvement over the results of 
the next best methods. Moreover, DNE consistently excels across all 
PPI networks studied (Fig. 2C and figs. S1 to S6), demonstrating its 
robustness and adaptability to various network characteristics, such 

Fig. 1. Overview of DNE. (A) DNE comprises three main steps: (i) initializing nodes using Laplacian eigenvectors (LEs) of the network’s adjacency matrix, optionally con­
catenated with node features when available; (ii) identifying node neighbors as positive nodes via stochastic neighbors selection and selecting nodes from other network 
regions as negative nodes, based on the distribution of node degrees; and (iii) embedding each node through a deep learning encoder, optimizing the encoder’s param­
eters to ensure the node embeddings preserve discrimination between neighboring and nonlocal nodes. (B) Utilization of the pretrained encoder to generate node 
representations for versatile downstream analysis tasks.



Yan et al., Sci. Adv. 10, eadq4324 (2024)     18 December 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

3 of 10

Fig. 2. Performance of different methods for link prediction across four PPI benchmarks. (A) ROC and (B) PR curves of DNE compared with 11 other network em­
bedding methods for PPI prediction on the A. thaliana dataset. Dashed lines represent level curves for accuracy and F1 score in (A) and (B), respectively. (C) Comparison 
of DNE with network embedding methods in four PPI benchmarks, presenting mean and SDs of ROC-AUC scores from 10 independent runs. (D) Comparison of DNE with 
similarity-based link prediction methods in four PPI benchmarks, presenting ROC-AUC scores from 10 runs. The central line within the box denotes the mean, the box 
edges represent the first and third quartiles, and the whiskers extend to ±1.5 times the interquartile range.
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as the degree and density in existing PPI networks (see table S1 for 
detailed network statistics). In contrast, the performance rankings of 
other methods fluctuate. The observed enhancement in performance 
and the consistency of its outcomes across various runs underscore 
DNE’s efficacy in capturing the structural information of the pro-
vided PPI networks.

We further compare DNE with five heuristic-based link prediction 
methods (30), which use heuristic node similarity scores including 
Common Neighbors (CN), Jaccard Index (JC), Katz Index (Katz), Pref-
erential Attachment (PA), and Resource Allocation Index (RA), for link 
prediction (Fig. 2D). It is observed that the performance of methods 
such as Common Neighbors, Jaccard Index, and Resource Allocation 
Index falls short of expectations. DNE, on the other hand, demonstrates 
a notable improvement, exceeding over 8% in ROC-AUC scores for the 
A. thaliana and C. elegans networks over these heuristic approaches. 
This performance gap highlights the limitations of solely depending on 
preexisting similarity metrics for predicting new interactions. For ex-
ample, because of the complex behavior of biological networks, the ex-
istence of common neighbors does not necessarily indicate a linkage.

DNE effectively identifies functional modules in PPIs
Module detection in PPI and other biological networks is a crucial 
task aimed at identifying clusters of closely interconnected nodes, 
where each cluster signifies a group of proteins that share similar 
functions (31). We evaluate the performance of DNE in module 
identification using PPI data from S. cerevisiae. The S. cerevisiae of-
fers an excellent testing ground for network clustering due to the 
extensive knowledge available about its protein complexes. For ref-
erence standards, we use IntAct protein complexes (32), Kyoto En-
cyclopedia of Genes and Genomes (KEGG) pathways (33), and GO 
Biological Processes (GOBP) (34). Figure 3 compares multiple em-
bedding techniques on these three module detection benchmarks. 
Different network embedding techniques are used to represent pro-
teins in a continuous vector space. Subsequently, hierarchical ag-
glomerative clustering (35) is applied to these learned embeddings 
to identify functional modules in PPIs. For evaluation, we compute 
adjusted mutual information (AMI) score to assess the correspon-
dence between the clusters identified by these methods and the an-
notated complexes contained in S. cerevisiae.

Fig. 3. Performance of different network embedding methods for module identification. (A) AMI scores computed from 10 independent runs by using annotated 
complexes from IntAct, KEGG, and GOBP as reference standards. Mean values are reported, and error bars represent the SDs of the scores. (B) Comparison of per-module 
Jaccard scores between DNE and six representative baselines. Each point represents a protein complex. The x axis and y axis represent the per-module overlap (Jaccard) 
scores obtained by the specified baseline method and DNE, respectively. A score of 0 indicates that no members in the complex were captured, and 1 indicates that all 
members in the complex were captured. The color and size of each point indicate the difference in Jaccard scores between DNE and other baseline methods for the cor­
responding complex.
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DNE excels in predicting protein complexes, exhibiting a substan-
tially higher mean AMI score than other methods in the benchmarks. 
Specifically, DNE achieves a 2% improvement in AMI compared to 
Node2Vec and NetMF and surpasses other baseline methods by a 
considerable margin, ranging from 10 to 50% (Fig. 3A). Moreover, 
we evaluate the degree of overlap between known protein complexes 
and their predicted modules using the Jaccard index. In addition, we 
compute the disparity in the Jaccard index between DNE and six rep-
resentative baseline methods for each complex (Fig. 3B). Our obser-
vations reveal that DNE not only identifies more complexes but also 
achieves higher overlap scores. To better understand the perfor-
mance of DNE in module identification, we scrutinize the Retromer 
complex (Fig. 4). Comprising genes PEP8, VPS35, VPS29, VPS17, 
and VPS5, the Retromer complex plays a pivotal role in vacuolar pro-
tein sorting (36). DNE successfully captures all members of this com-
plex through its learned embeddings, whereas other methods merely 
capture a subset of the module or include spurious members. This 
analysis underscores DNE’s ability to provide biologically meaning-
ful and accurate embeddings for inferring protein functions.

DNE offers the flexibility of integrating protein features from 
protein language models
Unlike many network embedding methods that primarily focus on 
learning network structural information without considering node 
features, DNE provides the flexibility to incorporate these features 
into the embedding process. In this study, we enrich the S. cerevisiae 
network by retrieving its associated protein sequences from the 
Saccharomyces Genome Database (37) and converting them into 
protein features using a pretrained protein language model, ESM-2 
(38). These features, which contain rich semantic information about 
proteins, are then integrated into the PPI network as node features 
(Fig. 5A). We chose this dataset for evaluation because it provides a 
complete set of protein sequences for each protein in its PPI net-
work, whereas other benchmarks we considered do not offer com-
plete protein sequences.

To evaluate the capability of DNE to integrate node features, we 
explored three distinct scenarios by using the following: (i) only pro-
tein features extracted from ESM-2; (ii) network structures alone; 
(iii) a combination of network structures and ESM-2 protein fea-
tures. DNE demonstrates a substantial improvement, with over 20% 
rise in ROC-AUC for PPI prediction on the S. cerevisiae dataset, 
compared to using solely the protein features (Fig. 5B). Furthermore, 
DNE consistently outperforms other baseline methods (DGI, GRACE, 
and VGNAE) in scenarios both with and without node features. 
DNE also effectively integrates node features, demonstrating a 1.3% 
increase in ROC-AUC when including features compared to sce-
narios without them. These results highlight the effectiveness of 
DNE in improving protein representations by harmonizing protein 
sequence features with network structure information.

DISCUSSION
We have introduced a network embedding technique named DNE to 
learn meaningful and discriminative node embeddings from a given 
network. DNE characterizes each node in terms of the contrast between 
the representations from its immediate neighbors and farther nodes, in 
contrast to traditional methods (12, 16–18, 22) that focus primarily on 
limited-order proximity among nodes. By considering both the local 
connectivity pattern and interactions with the broader network, DNE 
allows for a more holistic understanding of node relationships within 
the network. Our evaluation of DNE on multiple PPI datasets demon-
strates its enhanced capability over existing methods in accurately pre-
dicting PPIs and identifying functional modules. DNE also exhibits 
robustness against network perturbations and consistently outperforms 
other methods across different perturbation ratios (fig. S8). Moreover, 
DNE effectively captures biologically meaningful signals by reflecting 
the proximity between proteins in both PPI n-hop distances and Gene 
Ontology functional similarities via its embeddings (fig. S10).

While DNE has the capability to derive node embeddings solely 
from the structural information of networks, it also offers the flexibility 

Fig. 4. Evaluation of the overlap between the predicted complex and the standard Retromer complex. The Retromer complex, as annotated by IntAct, serves as a 
benchmark to assess the performance of various methods in module identification. This standard complex consists of five members: PEP8, VPS35, VPS29, VPS17, and VPS5. 
The degree of overlap between the predicted complexes and the standard complex is measured using the Jaccard index. Purple indicates that the predicted member is 
part of the standard complex, gray indicates that the predicted member is not part of the standard complex, and green denotes that a member from the standard com­
plex has not been captured by the prediction.
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to incorporate node features into the embedding process when these 
features are available. In biological networks like PPIs, where each 
node represents a protein, node (or protein) features can be sourced 
from diverse sources such as amino acid sequences (39, 40), the three-
dimensional (3D) structure of proteins (41), and protein localization 
(42), providing additional information of proteins beyond their topo-
logical function within the network. Our method offers a remarkable 
approach for predicting PPIs by enhancing the network embedding 
through the integration of protein sequence features derived from 
pretrained protein language models. This integration substantially 
improves PPI prediction accuracy compared to existing methods 
that rely solely on sequence data.

Overall, DNE offers several advantages for network analysis. First, 
it generates a more discriminative embedding that captures not only 
the local connectivity patterns of each node but also distinguishes 
these patterns from those of other parts of the network. This enables a 
more accurate representation of each node’s structural role and com-
munity membership, reducing the likelihood of overfitting to local 
network noise. Second, by incorporating data from immediate neigh-
bors as well as other network segments, DNE provides a more holistic 
view of the entire network. Third, DNE can leverage both the structure 
of networks and node features to generate more enriched embeddings. 
In this work, these embeddings are used to infer protein interactions 
and identify functional modules. Further applications may include dis-
ease gene prediction (43), where the embeddings help identify proteins 
associated with disease mechanisms, and protein function prediction 
(39) to facilitate the annotation of proteins in newly sequenced ge-
nomes. It is worth noting that DNE’s applicability extends beyond PPI 
networks and is applicable to various domains. Initial findings on di-
verse network types, such as citation networks (44), power grids (45), 
and internet service provider networks (46), suggest DNE’s broader 
applicability (fig. S7). Therefore, our proposed method marks a notable 
advancement in network embedding and offers an urgently needed 
solution for high-performance network analysis.

While the proposed method shows promise for network analysis, 
future enhancements are feasible. First, the method currently prioritizes 
structural information over node features. While DNE can incorporate 
node features, they primarily serve to initialize the embeddings so that 
the final embeddings can reflect these node attributes. This process 
could be improved by considering the similarity among node features 

alongside node connections during the sampling of context nodes. Sec-
ond, the proposed method uses multilayer perceptrons (MLPs) as the 
encoder. It could also be intriguing to investigate alternative network 
types for potential use as encoders, such as graph neural networks.

Biological networks such as PPIs serve as a backbone for advancing 
our understanding of complex biological systems. However, their 
inherent complexity often poses challenges in analysis and hinders 
downstream applications. In this study, we presented a self-supervised 
network embedding technique aimed at providing more discrimi-
native low-dimensional embeddings of high-dimensional network 
data. The proposed technique uniquely captures the intrinsic char-
acteristics of each node by leveraging insights from both its local 
environment and the broader network context. Extensive experi-
mental studies across various biological networks demonstrate that 
this dual perspective offers a comprehensive and robust representa-
tion of the network, enabling reliable pattern discovery and accurate 
downstream network analysis. Thus, DNE promises to be a valuable 
tool for the fields of bioinformatics and systems biology.

MATERIALS AND METHODS
DNE is proposed to embed network nodes into low-dimensional 
representations to facilitate downstream biological analysis. The 
pretraining stage of DNE comprises three key steps (Fig. 1): (i) 
initializing nodes using node positional encoding obtained from 
eigenvalue decomposition of the network’s adjacency matrix, op-
tionally concatenated with node features when available; (ii) iden-
tifying node neighbors as positive context nodes via stochastic 
neighbor selection, based on random walks, and selecting nodes 
from other network regions as negative context nodes, based on 
the distribution of node degrees; (iii) embedding each node through 
MLP encoders, where the encoder’s parameters are optimized to 
reduce distances between embeddings of the anchor node and its 
positive context nodes, while increasing those between the anchor 
node and its negative context pairs. The overall framework of 
DNE is shown in Fig. 1.

Preliminaries
Given an input network G(V ,E), where V represents nodes and E rep-
resents edges, DNE aims to learn its node representations, such that 

Fig. 5. Performance comparison of various methods in link prediction incorporating protein features. (A) Integrating protein features from PLMs as node features 
in PPI networks for network embedding learning. (B) ROC-AUC scores for DNE and other baseline methods on the Saccharomyces cerevisiae dataset, derived from 10 inde­
pendent runs. The purple dashed line (ESM only) indicates scenarios using only protein features extracted from ESM-2. Gray boxes indicate cases considering only network 
structures, while red boxes depict cases incorporating both network structures and node features.
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all nodes (V = {vi ∣ i = 1, 2, … , ∣V ∣}) can be converted from high-
dimensional space into a set of low-dimensional vectors, denoted as 
{zi ∈ ℝ

l
∣ i = 1, 2, … , ∣V ∣}, where l is the dimension of the output 

vectors and l ≪ ∣V ∣. By learning effective node representations that 
capture the essential properties of the network, DNE aims to improve 
the speed and accuracy of graph analytics tasks, as opposed to directly 
performing such tasks in the complex high-dimensional graph domain.

Node input embedding construction
To construct node input embeddings xi for nodes vi (i = 1, 2, … , ∣V ∣), 
eigenvalue decomposition is performed on the adjacency matrix to 
obtain node positional encodings. These encodings are then concat-
enated with node features (optional) to produce the input embeddings.
Positional encoding
Positional encoding involves eigenvalue decomposition on the net-
work’s adjacency matrix A to capture nodes’ positions within the 
network’s structure. The adjacency matrix A is a square matrix of 
size ∣V ∣ × ∣V ∣, with each element Aij indicating the presence (or 
absence) of an edge between nodes vi and vj. Specifically, in an un-
weighted graph, if nodes vi and vj are connected, Aij = 1 (for weighted 
graphs, Aij = w, where w is the edge weight), otherwise, Aij = 0. Spe-
cifically, DNE implements Laplacian eigenvectors (LEs) for node 
positional encodings.
Laplacian eigenvectors
LE-based positional encoding performs eigenvalue decomposition 
(47) of the normalized graph Laplacian matrix L, which is given by 
L = D−1∕2AD−1∕2. Here, D is the degree matrix, a diagonal matrix 
with the nodes’ degrees on its diagonal, and A is the adjacency ma-
trix of the graph

Here, Q represents the matrix of eigenvectors, and Λ is the diago-
nal matrix of eigenvalues. The k smallest nontrivial eigenvectors 
from L (excluding the trivial eigenvalue of zero) are then used as 
positional encoding. This method effectively captures the connec-
tivity and relative distances between nodes in the graph G.
Node features
In addition to the adjacency matrix A, a network may also have an 
associated node feature matrix X, with dimensions ∣V ∣ × ∣F∣, where 
∣F ∣ represents the number of features of each node. These node fea-
tures represent the specific characteristics of each node. For instance, 
in a PPI network, where nodes represent proteins and edges denote 
protein interactions, node features can be sourced from amino acid 
sequences (39, 40), the 3D structure of proteins (41), and protein lo-
calization (42).

Positive and negative context nodes sampling
For each given node in a network, we treat it as the anchor node and 
initiate short random walks from this node to its neighbors, selecting 
nodes that co-occur on these walks as positive context nodes. In addi-
tion, an equal number of nodes are randomly sampled from the rest of 
the graph, following a probability distribution over the nodes where each 
node’s probability of being sampled is proportional to its degree raised to 
a specific power (20). These nodes are considered as negative pairs.
Positive context nodes sampling via stochastic neighbors 
selection based on random walks
Random walks are used to sample a set of neighboring nodes for 
each node in the training graph G(V ,E). In random walks, we start 

at a chosen node and move to a neighboring node based on a prob-
ability distribution, known as the transition probability. This process 
is similar to a Markov chain, where the next state (or node) we move 
to depends only on the current state. Each step in the walk is deter-
mined by these transition probabilities, which dictate how likely it is 
to move from one node to its neighbor. A random walk rooted at 
node vi (considered as the anchor node) can be represented by 
Wvi

=

(
r0, r1, … , rl

)
 of length l over the graph from the source node 

r0 = vi. Specifically, the probability distribution of moving from one 
node to its neighbors in a random walk can be represented as follows

where pt
(
j
)
 is the probability of being at node vj at step t  and deg

(
j
)
 

is the degree of node vj (the number of edges connected to vj). The 
transition probabilities can also be represented in matrix form as

where p0 is the initial probability distribution across nodes, and pt 
is the probability distribution after t  steps. The matrix D is the di-
agonal degree matrix, with Dii = deg(i) and zeros elsewhere. In our 
implementation, we initiate a specified number of random walks, 
denoted by γ, each with a length of l, from each node vi. Specifically, 
we choose l = 10 and = 100 as the default settings. These random 
walks effectively explore the network, facilitating the sampling of 
nodes that are representative of the local neighborhood structure of 
the graph. An ablation study was conducted to evaluate the effects of 
positive node sampling parameters—walk length (l) and walk num-
ber (γ)—on link prediction, as shown in fig. S9. Overall, the model 
demonstrates robustness to variations in these parameters. On the 
basis of the analysis, increasing the walk length to a certain thresh-
old captures more neighborhood nodes, but further increases can 
introduce noise by including distant or irrelevant nodes. Similarly, 
while increasing the walk number initially captures more nodes 
within the specified walk length, excessive increases may lead to re-
dundancy without adding major improvements.
Negative context nodes sampling based on the distribution of 
node degrees
Negative context nodes are sampled using the distribution Pv = deg(v)β, 
where β is set to 0.75 on the basis of prior works (48). This distribution 
is further normalized such that the probabilities sum up to 1. Conse-
quently, nodes with higher degrees are more likely to be sampled as 
negative context nodes, and vice versa.

Encoder training via contrastive loss
Encoder architecture
DNE leverages MLPs to generate structure-aware representations 
from node input embeddings. Given X =

(
x1, x2, … , x

∣V ∣

)
, where xi 

denotes the input embedding of i-th node, the DNE encoder learns 
a function fθ(⋅): → ℝ

d

 that encodes xi ∈  into a fixed-dimension 
vector representation f

θ

(
xi
)
∈ ℝ

d. The encoder comprises two MLP 
blocks, each containing a fully connected layer, GeLU activation, 
batch normalization, and a dropout layer. The encoder serves as a 
nonlinear projection head to map nodes input into fixed-length vec-
tor representations

L = QΛQT

pt+1(i) =
∑

j:(i,j)∈E

pt
(
j
)

deg
(
j
)

pt+1 =
(
AD−1

)
pt =

(
AD−1

)t
p0
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Note that when focusing only on network structures, we use a 
single MLP encoder. However, to integrate node features, we imple-
ment a dual encoder approach—one encoder for network structures 
and another for node features—with their outputs subsequently con-
catenated (see Fig. 1A).
Encoder training using contrastive loss
For a given set of node inputs {xi}, our encoder f

θ
(⋅): → ℝ

d maps 
a node input xi into a vector of dimension d such that nodes from 
the same random walks have similar embeddings and vice versa. 
Our contrastive loss minimizes the embedding distance between a 
pair of node inputs (xi, xj) if they are from the same random walk 
but maximizes the distance otherwise

where yi = yj if nodes vi and vj are from the same random walks; 
otherwise, yi ≠ yj. fθ

(
xi
)
 and f

θ

(
xj
)
 are outputs of the DNE encoder 

parameterized by θ applied to inputs xi and xj, respectively. The sim-
plified loss can be written as

where V refers to the entire node set of the input network, NR(u) 
represents the sampled neighbors for the source node u using ran-
dom walks, ni denotes the negative context nodes drawn from the 
degree-based probability distribution Pv = deg(v)β, k represents the 
number of negative context nodes, and ϵ is a constant margin. Here, 
the first term encourages embeddings of each node u and its neigh-
bors v to be similar by minimizing the squared L1 norm between 
their embeddings. The second term ensures embeddings of u and a 
negative sample ni are at least ϵ apart by penalizing embeddings that 
are too close (less than ϵ) with a squared penalty. The loss function 
ℒ(θ) is optimized through Adam. During optimization, the param-
eters θ of the encoder f

θ
 are adjusted to minimize ℒ(θ).

In the optimal scenario where ℒ
(
θ
∗
)
 is minimized, the embed-

dings of each node u ∈ V  can be expressed as a nonlinear combina-
tion of the features of its positive and negative context nodes, as 
shown by the equation

Here, the presence of positive context nodes contributes posi-
tively to the embedding of the anchor node, while its negative con-
text nodes contribute negatively. The weights are determined by the 

relative importance of positive and negative context nodes, adjusted 
by kϵ and the denominator.

Network datasets
Our study incorporates a collection of interactome networks from 
various organisms to evaluate the performance of our method com-
pared to existing network embedding techniques for link prediction. 
These datasets include the following: (i) the A. thaliana interactome, 
featuring 2774 proteins and 6205 PPIs (26); (ii) the C. elegans inter-
actome, consisting of 2528 proteins and 3864 PPIs (27); (iii) the 
S. cerevisiae yeast interactome, comprising 2674 proteins and 7075 
PPIs (28); and (iv) an extensive human interactome from the HuRI 
(29) project, which includes 8272 proteins and 52,548 PPIs. These 
diverse datasets allow us to conduct a comprehensive evaluation 
across different species and showcase the adaptability of our method.
Benchmark construction for module detection
To assess the effectiveness of our method in identifying functional 
modules within PPIs, we used data from the S. cerevisiae yeast net-
work. For constructing our benchmarks for module detection, we 
obtained annotations from several sources: IntAct protein complexes 
(32), the KEGG pathways (33), and GOBP (34). Modules were iden-
tified on the basis of the collection of genes annotated with a par-
ticular term from each source. Modules consisting of only one gene 
were excluded because of their lack of informational value. 
Protein sequence features obtained using ESM-2
Our study further enhances the S. cerevisiae PPI by integrating pro-
tein sequences from the Saccharomyces Genome Database (http://sgd-
archive.yeastgenome.org/sequence/S288C_reference/orf_protein/), 
alongside features derived from the pretrained protein language 
model, ESM-2 (38). We selected this dataset for evaluation because 
it provides complete protein sequences for each protein in its PPI net-
work, unlike other benchmarks we considered. ESM-2 is a transformer-
based language model trained on around 65 million unique sequences 
and learned representations of protein sequences that reflect their 
biological properties. In this study, we used the pretrained ESM-2 
model (esm2_t36_3B_UR50D) to generate protein sequence fea-
tures, each of length 2560. This was achieved by averaging the 
last layer outputs of ESM-2 for each amino acid in a protein se-
quence. The pretrained model is available for public access on 
HuggingFace.

Downstream prediction models
We developed downstream models for various tasks using node em-
beddings obtained from network embedding methods as inputs. For 
link prediction, which was considered as a binary classification task 
(presence or absence) based on link embeddings, we first constructed 
link embeddings using four operations: the Hadamard product, ab-
solute difference, squared difference, and averaging of the node em-
beddings from the start and end nodes of each link. Subsequently, 
we used logistic regression (https://scikit-learn.org/stable/modules/
generated/sklearn.linear_model.LogisticRegression.html) as the clas-
sifier, with a fivefold cross-validation applied to achieve the best per-
formance of each method under different operators. For module 
identification, we applied hierarchical agglomerative clustering (35) 
using the AgglomerativeClustering function from the scikit-learn 
library (https://scikit-learn.org/stable/modules/generated/sklearn.cluster. 
AgglomerativeClustering.html) to cluster the nodes on the basis of 
their embeddings. We investigated the performance of each method 

MLPBlock(X) = DropOut
{
BN

[
GeLU(WX+b)

]}

f
θ
(X) =MLPBlock(MLPBlockX)

ℒ

�
xi, xj, θ

�
=1

�
yi = yj

�
‖
�
f
θ

�
xi

�
− f

θ

�
xj

��
‖2
1

+1
�
yi ≠ yj

�
max

�
0, ϵ−‖

�
f
θ

�
xi

�
− f

θ

�
xj

��
‖1
�2

ℒ(θ)=

∑

u∈V

∑

v∈NR(u)

∣ f
θ

(
xu

)
− f

θ

(
xv

)
∣
2

+

k∑

i=1

max
[
0, ϵ− ∣ f

θ

(
xu

)
− f

θ

(
xni

)
∣

]2
, ni ∼Pv

f
θ∗

(
xu
)
=

∑

v∈NR(u)

f
θ∗

(
xv
)2

−

k∑

i=1

f
θ∗

(
xni

)2
+ kϵ

2

[
∑

v∈NR(u)

f
θ∗

(
xv
)2
−

k∑

i=1

f
θ∗

(
xni

)2
]

http://sgd-archive.yeastgenome.org/sequence/S288C_reference/orf_protein/
http://sgd-archive.yeastgenome.org/sequence/S288C_reference/orf_protein/
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html


Yan et al., Sci. Adv. 10, eadq4324 (2024)     18 December 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

9 of 10

across different linkage methods (single, average, and complete), 
distance metrics (Euclidean and cosine), and thresholds to obtain 
the best performance for each method.

Evaluation strategy
To evaluate the methods for link prediction, we randomly selected 
20% of the edges E from the input network for testing to create the 
test edge set Etest, while the remaining edges formed the training 
network and its corresponding training edge set Etrain. We then con-
ducted a fivefold cross-validation on the remaining data to obtain 
optimal performance and repeated this process for 10 independent 
runs. To train our logistic regression classifier with both existing 
and nonexisting links, we constructed a dataset comprising positive 
and negative edge examples. Specifically, we selected 10% of edges 
from Etrain as positive examples, and sampled an equal number of 
nonlinked node pairs from the network as negative examples. The 
performance of each network embedding method for link predic-
tion was evaluated using the ROC-AUC and the PR-AUC, both 
widely used metrics for this task (49).

For module identification, we subsampled the module sets to en-
sure that each gene was assigned to a single cluster, aligning with the 
assumption behind standard clustering evaluation metrics like the 
AMI. Subsequently, we assessed our predicted cluster sets against 
the benchmark module sets using AMI as our primary metric. We 
report the highest AMI score for each method to ensure the optimal 
cluster set for each dataset across clustering parameters is used. This 
evaluation was repeated 10 times to account for score variations due 
to the cluster subsampling strategy. Moreover, to assess the similar-
ity between the clusters identified by our methods and known IntAct 
complexes, we used the Jaccard score (ranges from 0 to 1) to quanti-
tatively measure the set overlaps.

Supplementary Materials
This PDF file includes:
Sections S1 to S8
Figs. S1 to S11
Tables S1 and S2
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