TABLE 2.
Model Performance for Survival to ICU Discharge and Hospital Discharge
| Model | Area Under the Curve | Area Under the Precision-Recall Curve | Accuracy | Balanced Accuracy | Precision | Recall | F1 Score |
|---|---|---|---|---|---|---|---|
| ICU survival | |||||||
| Gradient boost | 0.754 | 0.834 | 0.738 | 0.694 | 0.773 | 0.843 | 0.806 |
| Random forest | 0.791 | 0.878 | 0.733 | 0.649 | 0.729 | 0.934 | 0.819 |
| Decision tree | 0.660 | 0.760 | 0.658 | 0.622 | 0.732 | 0.744 | 0.738 |
| Logistic regression | 0.755 | 0.853 | 0.722 | 0.654 | 0.738 | 0.884 | 0.805 |
| Linear SVM | 0.658 | 0.851 | 0.727 | 0.658 | 0.740 | 0.893 | 0.809 |
| Hospital survival | |||||||
| Gradient boost | 0.768 | 0.825 | 0.701 | 0.660 | 0.733 | 0.821 | 0.774 |
| Random forest | 0.768 | 0.847 | 0.695 | 0.645 | 0.717 | 0.846 | 0.776 |
| Decision tree | 0.595 | 0.775 | 0.572 | 0.546 | 0.661 | 0.65 | 0.655 |
| Logistic regression | 0.777 | 0.859 | 0.722 | 0.680 | 0.744 | 0.846 | 0.792 |
| Linear SVM | 0.677 | 0.843 | 0.722 | 0.677 | 0.741 | 0.855 | 0.794 |
SVM = support vector machine.
Bolded rows indicate the best preforming machine learning model for each outcome.